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Abstract—Deploying high-resolution Convolutional Neural
Networks (CNNs) on memory-constrained embedded targets is
fundamentally limited by the peak memory footprint of inter-
layer activation maps, especially for high-resolution input images.
While modern Deep Learning compilers employ sophisticated
memory planning and buffer reuse algorithms, they typically
operate within the constraints of layer-wise execution. This
paradigm necessitates the materialization of full intermediate
feature maps, creating unavoidable memory peaks.

In this work, we address this bottleneck by implementing
Depth-First Scheduling (DFS) within the TVM compiler stack.
By bridging high-level graph partitioning (Relax) with low-
level loop tiling (TIR), our approach virtualizes intermediate
activations, restricting their lifetime to transient sliding windows
rather than fully materialized Dynamic Random Access Memory
(DRAM) allocations. Crucially, this method operates orthogonally
to existing compiler optimizations, providing reductions on top of
standard memory planning passes. We evaluate our framework
on the MobileOne-S4 architecture with high-resolution inputs
(500x500). Experimental results demonstrate a 68.8% reduction
in peak activation memory compared to a strong baseline utilizing
TVM’s default memory planning, validating the efficacy of DFS
for modern lightweight CNN architectures.

Index Terms—Compilation, Code optimization, Memory foot-
print reduction, Embedded systems, TVM, CNN.

I. INTRODUCTION

Real world deployment of Convolutional Neural Networks
(CNN) on embedded targets faces harsh resource constraints
in memory footprint, energy consumption and latency require-
ments. Peak activation memory can become a dominant lim-
itation especially for processing high-resolution inputs where
intermediate tensors become prohibitively large.

Thus, controlling activation lifetimes and reducing the
footprint of temporary buffers are becoming as crucial as
minimizing arithmetic cost. However, current compilation
toolchains offer limited visibility into the impact of scheduling
choices on activation peaks and overall memory pressure dur-
ing compilation. This lack of information regarding memory
management complicates the task for developers who want to
anticipate bottlenecks and generate schedules that adhere to
strict memory constraints.

Existing deep learning compilers primarily focus on
compute-time optimizations, few studies systematically an-
alyze memory peaks to guide convolution optimization at
the intermediate-representation (IR) level (e.g., TVM’s Relax,
TIR), while maintaining a hardware-agnostic representation.

Consequently, compiler schedules may inadvertently generate
large intermediate buffers that exceed embedded memory
budgets.

At the IR level, the compiler retains access to structured
information about tensor shapes, loop nesting, tile boundaries,
and merge possibilities, information often lost during transla-
tion to hardware-specific code. Thus, operating at the IR level
by analyzing and transforming code allows for anticipating,
predicting, and reshaping memory lifetimes before actual
allocation, promoting proactive memory management. This
also allows transformations to remain hardware-independent
while exposing enough structure to guide efficient memory
planning.

This paper presents ongoing work towards a compile-time
analysis and scheduling strategy that reduces peak memory
directly at the IR level. To this end, we leverage depth-first
scheduling [1]–[4] that can limit the materialization of large
intermediate activations by computing convolutions over par-
tial spatial tiles and directly consuming them in the following
layers. This approach reduces the size of required live memory
buffers and therefore peak memory consumption. At high
level, our method (i) partitions the CNN computation graph
into macro-kernels, then (ii) generates a loop-level scheduling
strategy that induces tiled, sliding-window execution for each
fused macro-kernel, and (iii) standard compiler passes are
leveraged to minimize the storage of the remaining materi-
alized buffers.
Our preliminary work can be summarized as follows:

• We describe a concrete implementation of depth-first
scheduling implementation in TVM, leveraging loop-
level schedule manipulations. We demonstrate how
sliding-window buffering can be composed with standard
memory reuse algorithms to minimize footprint without
modifying the compiler’s core allocator.

• We apply this methodology to the MobileOne-S4 CNN.
Experiments on high-resolution inputs (500 × 500)
demonstrate a 68.8% reduction in peak activation mem-
ory compared to a non-DFS baseline.

Crucially, these results highlight that the benefits of Depth-
First Scheduling are orthogonal to standard memory optimiza-
tion passes. Our approach achieves these reductions on top of
TVM’s robust default memory planning passes.



The remainder of the paper is organized as follows: Section
II reviews the landscape of depth-first scheduling and memory-
efficient inference, Section III details our approach before
evaluating it on MobileOne-S4 in Section IV. Finally, we
discuss our perspectives in Section V.

II. RELATED WORK

Conventional layer-wise (breadth-first) execution of CNNs
requires materializing full activation maps in memory, which
frequently exceeds the memory capacity of embedded devices.
Therefore, memory-efficient execution schemes of CNNs has
received significant attention, such as depth-first scheduling.
DFS, also known as fused-layer or patch-based execution,
avoids complete materialization by partitioning computation
into spatial tiles, and immediately forwarding them through
subsequent layers, thereby consuming them and reducing peak
memory use.

Early experiments by Alwani et al. [1] on FPGAs demon-
strated the method’s effectiveness on reducing off-chip mem-
ory accesses. MicroController Units (MCUs) being highly
memory constrained, MCUNetV2 [5] and StreamNet [6]
showed the potential of the method on such hardware. Com-
plementary approaches such as PEX [7] or FDT [4] explored
channel-wise partial execution enabling CNN inference within
a few tens of kilobytes of SRAM. These approaches demon-
strate the strong potential of fine-grained memory scheduling
to meet strict resource constraints. However, they remain
tightly coupled to specific hardware architectures and often
require manual tuning or custom runtimes. While primarily
studied for inference, depth-first execution combined with
checkpointing has also been shown to benefit training work-
loads by enabling larger image resolutions under restricted
memory constraints [8]. Beyong DFS approaches, various
memory-saving methods have been studied, such as tensor
rematerialization exemplified in systems like Checkmate [9],
or algebraic graph rewriting [10]. In parallel, modern com-
pilers such as TVM [11], MNN [12] and others incorporate
sophisticated memory planning and buffer-reuse mechanisms.

In addition to strict memory capacity constraints, embedded
inference is fundamentally limited by battery life. Since off-
chip DRAM accesses are orders of magnitude more energet-
ically expensive than arithmetic operations, minimizing data
movement is critical. This strategy is central to architecture-
specific implementations such as MAFAT [13] and a key
objective of Deeploy [14] compilation strategy for heteroge-
neous MCUs. However, minimizing transfers via Depth-First
Scheduling is not without cost; it incurs a re-computation
overhead due to overlapping halo regions in convolutional
layers. As noted in StreamNet [6], aggressive fusion can
result in prohibitive computational costs that negate energy
savings. Consequently, efficient scheduling requires navigat-
ing the complex trade-off between arithmetic intensity and
memory traffic. Pioneering works like LBDF [15] and [16]
formally modeled this interaction, establishing the basis for
placing the cursor between re-computation and data transfer.

While theoretical models exist, applying them across a
full network creates a combinatorial space of tiling sizes,
fusion depths, and compute orders that is too vast for manual
tuning. To address this, recent works have integrated ana-
lytical data movement cost models into automated Design
Space Exploration (DSE) engines. This approach, seen in
DeFiNES [2] and Welder [17], enables systematic and rapid
traversal of the scheduling space. Other frameworks employ
alternative search strategies: Optimus [3] utilizes Dynamic
Programming and DNNFuser [18] exploits deep learning-
based estimation. Focusing specifically on memory footprint
constraints, FDT [4] formulates the problem using Mixed-
Integer Linear Programming (MILP). Collectively, these tools
demonstrate that accurate cost estimation is a prerequisite for
effective scheduling.

Despite these advances, existing methods predominantly
operate at the hardware-specific or runtime level and do not
provide a general mechanism for integrating memory-aware
scheduling into a compiler IR. Current approaches lack a static
analysis framework capable of estimating and optimizing peak
activation memory during compile time. Moreover, depth-
first execution strategies have not been incorporated into IR-
level transformations that are portable, hardware-agnostic, and
compatible with modern deep-learning compilation pipelines.
The approach proposed in this work addresses these gaps by
introducing a compile-time memory optimization mechanism
that integrates depth-first scheduling concepts directly at the
IR level, enabling deterministic memory usage estimation and
automatic generation of memory-efficient execution plans.

Fig. 1. Layer-wise (breadth-first) vs Depth-First CNN execution



III. IMPLEMENTATION OF DEPTH-FIRST SCHEDULING IN
TVM

We implement a Depth-First Scheduling (DFS) within the
TVM compiler stack, leveraging the synergy between its two
primary Intermediate Representations (IRs): Relax [19] and
TIR [20]. We utilize Relax (the high-level compute graph)
to manage global operator fusion and memory planning,
while employing TIR (the low-level tensor IR) to explicitly
manipulate loop nests, buffer scopes, and access patterns
at the kernel level. Our approach fundamentally transforms
the execution model from layer-wise processing to a tiled,
fused pipeline. This involves three distinct stages: (1) strategic
graph partitioning and kernel fusion, (2) tiling and schedule
propagation, and (3) buffer minimization.

A. Graph Partitioning and Kernel Fusion

Standard TVM fusion rules typically merge element-wise
operations (e.g., ReLU, Bias Add) with the preceding convo-
lution. To enable DFS, we extend this by fusing sequences of
multiple convolutional layers into ”macro-kernels.” However,
fusing the entire network into a single macro-kernel is neither
feasible nor optimal. We therefore partition the network into
subgraphs driven by three constraints.

First, minimizing the re-computation overhead: as fusion
depth increases, the overlap (halo) required for correct convo-
lution calculation grows, eventually leading to prohibitive re-
dundant computation that outweighs memory benefits. Second,
structural limitations on the CNN model architecture impose
hard fusion barriers, preventing fusion because of introduced
dependencies in the dataflow (e.g., global pooling layers).
Third, and central to our optimization on MobileOne-S4, is
a partitioning heuristic driven by activation memory size. As
illustrated in Fig. 2, the network exhibits significant variance
in between-layer buffer sizes. We strategically align fusion
boundaries (inter-kernel junctions) with the local minima of
these activation sizes. This effectively encapsulates the high-
footprint layers (the peaks) within the fused kernels, where
they are processed as transient tiles rather than fully material-
ized tensors.

B. Tiling and Schedule Propagation

Once the graph is partitioned, we generate the schedule for
each fused group using TVM’s Tensor Intermediate Repre-
sentation (TIR). A depiction of the method is available in
Figure 3. Instead of allocating full activation maps, we employ
a producer-consumer tiling approach. With a parameterizable
user-defined tile size at the output of the fused group, we lever-
age TVM’s analytical capabilities to back-propagate dependent
tiles computation through the chain of operators (from last to
first). Mechanically, this is achieved using TVM’s automatic
transformation primitives, which nests the computation of
producer layers within the loops of consumer layers. This
automatically reconstructs the producer loop nest, ensuring
that producer tiles are computed immediately before they
are consumed, implicitly handling the complex halo regions
required by valid convolutions.
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Fig. 2. Between-layer activation size in MB for MobileOne-s4 model

Fig. 3. Macro-kernel fusion and tiling for DFS

C. Buffer Minimization and Memory Estimation

To realize the theoretical gains of DFS, we implement a
buffer minimization strategy that operates at the intra-kernel
(TIR) level.

Sliding Window Addressing (TIR Level). Inside the gen-
erated TIR code, we shrink the storage buffer of intermediate
feature maps to match the tile size rather than the full tensor
dimensions. Since producer loops are nested within consumer
loops, the compiler recognizes that only a small ”sliding
window” (the tile plus the necessary halo) needs to be resident
in memory.

To map the original global loop indices to these shrunk
buffer indices, we employ modulo arithmetic via TVM prim-
itives. Crucially, to preserve data validity, the capacity of



these circular buffers must be rigorously lower-bounded. We
determine this minimum size analytically, thereby ensuring
that the producer’s write pointer never overtakes the con-
sumer’s read pointer before data dependencies are resolved.
This ensures that data is cyclically overwritten in a compact
footprint without risking the corruption of live values.

Memory Optimization Passes. We leverage TVM’s op-
timization passes to manage these buffers efficiently. At the
intra-kernel level, TIR compiler passes analyzes the liveness
of the sliding windows, reusing memory addresses for non-
overlapping temporary buffers. At the graph level, Relax
manages the materialized buffers, the inter-kernel junction
points introduced in Section III.1, in the same manner. By
combining our graph partitioning and kernel fusion strategy
with tiled execution, we minimize peak memory footprint:
only the carefully chosen kernel-separating activation buffers
and the reduced localized tiles are active simultaneously.

IR Memory Estimation. To effectively measure the mem-
ory requirements of our execution strategy, we implemented a
low-level IR parser. This tool operates prior to code generation
(e.g., C, CUDA, or LLVM), analyzing the allocation and
deallocation events in the IR:

• Relax Level: It tracks allocations and free events for
global tensors.

• TIR Level: It tracks allocate nodes and infers deallocation
from the scope of the block.

By serializing these events, we generate a precise memory
timeline and calculate the peak usage, by summing current
TIR kernel and Relax allocations. This allows us to account
for both the reduced tile sizes and the impact of memory reuse
optimizations.

IV. EXPERIMENTAL RESULTS

We evaluated our DFS method on MobileOne-S4 [21], a
state-of-the-art lightweight CNN designed for efficient mobile
inference. Experiments were conducted using 3 × 500 × 500
fp32 images, a scenario where activation memory outweights
parameter storage. Consequently, this study focuses on mini-
mizing dynamic activation memory. Weight storage optimiza-
tion is reserved for future work.

Mobileone-S4 exhibits a dual structure. The initial stage
consists of a strictly sequential linear branch of convolutions,
on which we aggressively applied DFS, yielding substantial
reductions. The latter stages are comprised of residual blocks
and pooling layers with large kernel window sizes. While
residual blocks do not impede the DFS applicability, pooling
layers that span the complete spatial dimensions of the feature
map (32x32 at this stage) collapse the dataflow dependencies.
These global dependencies prevent the pipelining required for
DFS. Therefore, we revert to standard layer-wise execution for
these specific blocks to maintain valid execution.

As depicted in Figure 4, we compare memory con-
sumption timelines of two executions: with and without
DFS. Both approaches use identical custom fusion patterns
(Conv+Bias+Activation groups of 6 to 16 operations) and
default memory planning passes (StaticPlanBlockMemory +

StorageRewrite) of TVM 0.21.0 version. The un-tiled variant
uses TVM’s default TIR lowering, which materializes com-
plete intermediate activations for each fused operation group,
resulting in layer-by-layer execution. Depth-first scheduling
processes 8x8 spatial tiles through entire fused operation
chains before proceeding to the next tile, enabling temporal
reuse within tiles. The method does not require a specific data
type, making it orthogonal to quantization, to further increase
memory gains. Input images are 3x500x500 and the batch
size 1. Each point represents a Relax function call with two
allocated Relax tensors plus TIR kernel internals.

Ablation Study. Table I presents an ablation study isolating
the impact of our DFS from TVM’s memory planning and
reuse passes.

1) TVM Baseline: Represents the default TVM compilation
flow using standard fusion passes.

2) Custom Fusion Baseline (Un-tiled): Applies our graph
partitioning (Section III.1) but executes kernels in a
standard layer-by-layer fashion. Notably, this alone re-
duces memory compared to the TVM baseline by a
factor of 32.5% (52.39 → 35.34 MB) because our inter-
kernel junctions are better aligned with TVM’s default
memory optimization passes behaviour compared to
TVM’s default greedy fusion.

3) Custom Fusion + DFS: Applies our full method, en-
abling intra-kernel loop tiling and sliding window buffer
allocation.

As shown, enabling DFS within the TIR kernels achieves
68.8% reduction in peak memory compared to the Custom
Fusion baseline, demonstrating the efficacy of tiling in con-
strained environments.

0 5 10 15 20
Operator Execution Sequence

0

5

10

15

20

25

30

35

40

M
em

or
y 

(M
B) 68.8% reduction

Un-tiled (layer-by-layer)
Depth-first scheduling
Peak (Un-tiled): 35.34 MB
Peak (depth-first): 11.01 MB

Fig. 4. Impact of depth-first scheduling on peak memory for MobileOne-S4
inference.

V. CONCLUSION AND FUTURE WORK

This paper presented a memory-efficient compilation strat-
egy for CNN inference on embedded targets. Our method
automatically performs multi-step fusion and spatial tiling
within TVM Relax-TIR pipelines, allowing the compiler to



TABLE I
ABLATION STUDY OF ACTIVATION MEMORY FOOTPRINT ON MOBILEONE-S4 (3× 500× 500, FP32). COMPARISON OF DEFAULT TVM HEURISTICS

AGAINST OUR GRAPH PARTITIONING AND DFS TILING.

Experiment Optimization Strategy Peak Mem (MB) Reduction

TVM Baseline Default Kernel Fusion Heuristics (FuseOps) 52.39 (Baseline)
Custom Fusion Baseline Graph Partitioning + Kernel Fusion 35.34 -32.5%
DFS (Ours) Graph Partitioning + Kernel Fusion + DFS Tiling 11.01 -79.0%
*Reduction percentages in the table are relative to TVM Baseline.
**DFS achieves a 68.8% reduction compared to the Custom Fusion Baseline.

generate optimized macro-kernels that significantly reduce
peak activation memory. This mechanism preserves com-
patibility with standard memory planning, most scheduling
heuristics, and TVM backend optimizations. Importantly, our
approach operates at IR-level, remains hardware-independent,
and is inherently portable to architectures supported by TVM
code generation. Beyond the 68.8% memory reduction on
Mobileone-S4 CNN architecture demonstrated here, this strat-
egy provides a solid foundation for future automated search
techniques: DFS can be integrated into a parameter space
exploration system to explore and select optimal schedule
transformation parameters, such as fusion choices and tiling
sizes, under tight memory constraints.

While this work demonstrates the efficacy of Depth-First
Scheduling (DFS) for activation memory reduction on Mo-
bileOne, several avenues remain to fully exploit this paradigm
in constrained embedded environments.

Currently, our approach minimizes dynamic activation foot-
print, which is the dominant factor in high-resolution infer-
ence. However, for total SRAM compliance, static parame-
ters (weights) must also be managed. Future iterations will
integrate scheduling memory transfers for kernel weights in
tandem with activation tiling to respect the on-chip memory
budget. We aim to extend our partitioning and tiling method
beyond the linear structures of MobileOne to support the
complex DAG topologies found in state-of-the-art backbones.
This entails adapting our partitioning strategy to handle nested
residual connections and branching paths where managing
producer-consumer dependencies become non-trivial.

Finally, as discussed in Section II, minimizing footprint
may induce a penalty in memory traffic due to re-computation
overhead. Consequently, a systematic exploration of the joint
design space encompassing graph partitioning, tile sizes, and
fusion depth remains to be conducted. Integrating an analytical
cost model for DRAM traffic would allow for a fast quanti-
tative assessment of these trade-offs, balancing strict memory
constraints against latency requirements.
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