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Abstract—LLM deployment on resource-constrained edge de-
vices faces severe latency constraints, particularly in real-time
applications where delayed responses can compromise safety or
usability. Among many approaches to mitigate the inefficiencies
of sequential token-by-token generation, Speculative Decoding
(SD) has emerged as a promising technique. However, SD at the
edge is hindered by two major challenges: (1) integrating SD into
a compiler-based workflow without sacrificing performance or
programmability, and (2) exploiting the heterogeneous compute
resources of modern SoCs through carefully designed partitioning
strategies. This work addresses these challenges by using an
analytical cost model that explores heterogeneous hardware
configurations and guides coarse-grained partitioning of LLM
subgraphs, particularly with edge-typical short input sequence
lengths. The cost model predicts when speculative sampling and
heterogeneous execution are jointly beneficial and is validated on
an edge device featuring a hexacore Cortex-A CPU and a Mali
GPU, revealing up to 1.68x speedup for translation tasks, closely
matching analytic expectations.

Index Terms—Edge computing, Large language model, Spec-
ulative sampling, Heterogeneous execution, IREE, SoC

I. INTRODUCTION

Enabling Large Language Models (LLMs) on edge devices
is essential for applications requiring privacy, robustness, and
low latency, such as offline health assistants or real-time
translation [2]. However, deploying LLMs on edge platforms
faces severe challenges under the scarce compute, power, and
memory available. Modern System-on-Chip (SoC) platforms
integrate multiple heterogeneous Processing Units (PUs), such
as multi-core CPUs, mobile GPUs, and accelerators, creating
opportunities for workload acceleration. Still, transformer-
based LLMs present a particularly challenging workload due
to their autoregressive decoding, which generates one token at
each forward pass and imposes hard sequential dependencies.
Addressing these challenges, therefore, requires a combina-
tion of algorithmic-, system-, and hardware-level optimization
techniques.

Speculative Decoding (SD), in particular, has demonstrated
remarkable improvements in the generative pipeline on high-
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end GPUs, achieving speedups up to 6.5x compared to tra-
ditional autoregressive decoding [3], [4]. SD converts savings
from traditional algorithmic optimizations (e.g., quantization,
pruning, and distillation) into end-to-end latency reductions by
relying on an inexpensive draft model to reduce the number
of costly target-model decoding steps, with performance de-
termined by the draft cost, verification cost, and acceptance
rate. This approach naturally lends itself to migrating LLM
inference from cloud to edge platforms.

A key question is how to integrate SD into the software
stack of an edge system in a way that preserves productivity
for developers while enabling meaningful hardware-aware
optimization. Without such careful integration, SD is not
inherently beneficial: naive adoption or poor hardware map-
ping can negate its advantages and even increase end-to-end
latency. In this work, we build upon IREE [6], an open-source
ML compiler to provide a unified representation of SD that
supports explicit device affinities, coarse-grained heteroge-
neous mapping, and Ahead-of-Time (AOT) compilation across
multiple backends. On top of that, we leverage the analytical
cost model from [3] to guide LLM partitioning and mapping
across heterogeneous PUs. Concretely, our contributions are
the following:

o We apply an analytical cost model to (i) determine when
to use speculative sampling and to (ii) map it onto het-
erogeneous PUs for efficient LLM inference acceleration;

e We present compiler-level abstractions of speculative
sampling that enable device placement decisions for
heterogeneous edge execution, comparing monolithic and
modular compilation strategies;

o We demonstrate that our optimized heterogeneous map-
pings can outperform homogeneous CPU execution by
up to 1.68x by reducing speculation overhead;

o We validate the proposed cost model using a hexacore
Cortex-AS55 CPU and a Mali-G310 GPU integrated on
an NXP i.MX95 SoC, for translation tasks, with a 4%
deviation from analytical expectations.



II. BACKGROUND AND RELATED WORK

This section builds on insights into computational bot-
tlenecks inherent in LLM inference, SD as an algorithmic
optimization technique, and the role of ML compilers in en-
abling efficient deployment across diverse hardware platforms.
Toward the end, we review related work on accelerating neural
network inference and highlight how our approach differs from
existing techniques.

A. LLM Inference Bottlenecks

Inference in transformer-based LLMs proceeds in two
phases, each presenting distinct computational challenges [7].
The prefill phase processes the entire input sequence in
parallel, populating the Key—Value (KV) cache across all
transformer layers. In contrast, the decode phase generates
tokens sequentially, with each token depending on the previous
model state. As such, opportunities for parallelism are limited.
Furthermore, the hidden dimension of the LLM, denoted as
d, plays a pivotal role in shaping the computational char-
acteristics of the model [1]. The sequence length (SpL) is
often categorized relative to d: short sequences (S; < d) are
dominated by the linear layers, whereas the attention layers
dominate in long sequences (S; > d). This distinction is
crucial for understanding performance bottlenecks.

B. Speculative Decoding

SD accelerates autoregressive generation by reducing the
number of full forward passes needed from the LLM (referred
to as the target model). The process is conceptually divided
into two phases. In the speculation phase, the system gener-
ates a sequence of candidate tokens using a computationally
inexpensive mechanism. This may be a smaller transformer,
a distilled or pruned version of the original network, or a
specialized predictive module, and is designed to approximate
the next-token distribution of the target model at a significantly
lower computational cost. In the subsequent verification phase,
the larger target model evaluates the drafted tokens in a single
forward pass, in a parallel way similar to the prefill phase of
the LLM inference. Speculated tokens are accepted or rejected
according to a selection criterion. Fig. 1 illustrates standard
incremental decoding (top) and two speculative strategies:
sequence-based (middle) and tree-based (bottom). Orange seg-
ments indicate speculation by a lightweight model, while green
segments denote verification by the target model.

Speculative sampling [3] is a form of SD that avoids the
training of a drafter mechanism, since it employs a smaller
transformer model as the speculation strategy. The structural
similarity between drafter and target yields sufficiently corre-
lated logits to produce meaningful acceptance rates, enabling
substantial speedups on server hardware. On edge devices,
however, acceptance behavior is more complex. Quantization
alters the relative probabilities of the vocabulary distribution,
resulting in acceptance rates lower than those observed with
full-precision models [8].

In speculative sampling, the achieved speedup depends
not only on the alignment between the drafter and target

model distributions, but also on the workload, the task, and
the hardware-software environment in which the accelerated
LLM is executed. A formalism modeling the hardware impact
on the speculative sampling speedup is developed in [3]. It
presents the speedup S as a function of the acceptance rate’s
expected value («, the mean proportion of accepted tokens),
the speculated draft length (v, the sequence length of the
speculated tokens), and the cost coefficient ¢ = tgaf /tmget,
a hardware- and software-dependent parameter representing
the ratio between the latency of a single drafter forward pass
(tarare) and that of the target model (targer). The speedup S is
given by (1).
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Moreover, the condition ¢ < o must hold to achieve any
speedup at all. This guarantees that there is at least one value
of ~ that yields a speedup greater than 1. Furthermore, the
optimal draft length v* that maximizes the speedup depends on
both the hardware configuration and the quality of the drafting
mechanism [3].

C. Related Work

Traditional algorithmic optimizations (e.g., quantization,
pruning, and knowledge distillation) reduce compute and
memory requirements, effectively producing a cheaper draft
model and/or improving draft—target agreement. Recent sys-
tems (e.g., Sequoia [16], DuoDecoding [17], and Dove-
tail [18]) further show that the optimal draft/verifier con-
figuration depends on hardware characteristics and device
heterogeneity, motivating joint algorithm-system co-design.
However, these approaches primarily target high-end GPU
platforms rather than edge-grade SoCs. Complementary work
on mapping neural workloads onto heterogeneous compute
resources, including polyhedral optimization and design-
space exploration, appears in frameworks like Tiramisu [19],
ZigZag [20], and FlexInfer [21]. Related efforts on the edge
explore algorithm-hardware co-design on reconfigurable plat-
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Fig. 1: Three generative pipelines: standard sampling (top, in
blue), and two variants of SD: sequential drafting (center) and
tree-based drafting (bottom). Adapted from [15].
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Fig. 2: Overview of heterogeneous mapping workflow for speculative sampling on edge devices.

forms, combining algorithmic optimizations, such as pruning
and early-exit [10], [11].

Neural network multi-tenancy represents another relevant
research direction. Frameworks like MAGMA [22] and
Adyna [23] address how concurrent models contend for lim-
ited compute and memory resources. Such systems reveal
structural similarities to speculative sampling pipelines, where
drafter and target models form a multi-tenant workload shar-
ing limited edge resources. However, these works focus on
the orchestration of independent models, rather than coupled
models within a pipeline. Furthermore, they evaluate against
accelerator models or simulators rather than on silicon, as done
in this work.

Our work differs since (1) we target an edge SoC rather than
high-end GPU platforms, addressing the unique constraints of
resource-limited devices; (2) we provide the first exploration
of coarse-grained heterogeneous partitioning strategies for
speculative sampling, leveraging high-level compiler frontend
abstractions to express device placement decisions; (3) we
apply an analytical cost model that jointly optimizes al-
gorithmic acceleration (speculative sampling) and hardware
mapping decisions for heterogeneous edge execution; and (4)
we validate our approach on real silicon rather than relying
on simulators, providing empirical evidence of the method
accuracy.

III. HETEROGENEOUS MAPPING FRAMEWORK FOR
SPECULATIVE SAMPLING

This section presents a systematic approach to evaluate
mappings of LLMs with speculative sampling on edge de-
vices. It begins by providing an overview of the complete
compilation and optimization workflow in Sec. III-A, followed
by the formulation of the heterogeneous mapping problem
as a Design Space Exploration (DSE) in the Sec. III-B
and III-C. Sec. III-D details how abstractions can be aligned
with hardware-aware execution to preserve productivity while
enabling good performance.

A. Overview of the Compilation and Optimization Workflow

Our approach combines offline profiling, analytical mod-
eling, and compiler-assisted code generation (Fig. 2a). We
evaluate speculative sampling [3] for its training-free nature,
though the workflow is generalizable to other sequential SD
techniques. Our workflow consists of the following steps:

a) Offline quantization (Sec. IlI-C): Model quantization
is performed offline. In Fig. 2a, from @) to (b) the target model
and the drafter model are quantized with different schemes that
match the available arithmetic on the target SoC. In (©), the
acceptance rate « is measured for the different combinations
of quantized target-drafter mechanisms.

b) Profiling (Sec. IlI-B and I1I-C): We compile forward
passes of both models targeting all PUs (I), profile them on
hardware to measure tgrg and fier @), and calculate the cost
coefficient ¢ = tgpas/ Liarger fOr €ach design variant 3) (Fig. 2b).

c) Exploration (Sec. II1I-B): With « and c values in hand,
the analytical cost model @) is evaluated to determine the
optimal draft length v and device mapping for each hardware
configuration (see ().

d) Compilation and Inference (Sec. IlI-D): The complete
SD pipeline is compiled and executed using IREE in (6).

B. Design Space Encoding, Exploration, and Evaluation

We formulate the heterogeneous execution of an LLM with
speculative sampling as a DSE problem over static spatial
mappings of the computational graph: each subgraph is as-
signed ahead of time to a PU and no dynamic remapping is
considered. Additionally, the search concentrates on coarse-
grained partitions that separate the drafter (speculation mech-
anism model) from the target model (LLM to be accelerated), a
modeling choice motivated by the fact that the cost coefficient
c (the cost of the speculation phase) must be lowered by, for
example, decreasing the latency of the drafter model.

We express the size of the design space as v- N, where v is
the number of design variants, /N the number of distinct PUs
available for assignment, and m is the number of subgraph
partitions. In this formulation, a design variant corresponds
to a unique combination of cores, shaders, or PEs available



across all PUs, which we count by placing its unordered
configurations in bijective correspondence with the Cartesian

product
V= H ng,
i

where n; denotes the number of available cores, shaders, or
PEs in PU;. For example, Fig. 2b (top) depicts a CPU with
six physical cores and a GPU with a single shader that yields
v = 6 x 1 = 6 distinct hardware configurations for mapping
subgraphs. In practice, only a subset of these resources may
be accessible at runtime, for example two active CPU cores
as shown in gray. Moreover, for the configuration illustrated
in Fig. 2b, assuming two PUs available for mapping (N = 2)
(top) and two graph partitions (m = 2, one for the drafter
and one for the target, bottom), the size of the design space
becomes v = 6 - 22 = 24 possible mappings.

This space grows quickly if any of its factors increase: finer-
grained partitioning (larger m) increases the exponent, adding
more types of PUs (larger V) raises the base, and incorpo-
rating more cores, shaders, and PEs (larger v) multiplies the
size of the space. In practice, therefore, exhaustive exploration
becomes infeasible on richer platforms; for this reason, and to
keep the study focused, we deliberately keep v, N, and m
small and rely on the analytical cost model presented in (1)
to guide the search.

To evaluate each mapping, we find the « value that yields
the highest acceleration S, for a given cost coefficient c,
that encodes the speculation computational cost of a given
mapping, and a given acceptance rate «, that encodes the
drafter model speculation quality. Both @ and ¢ are measured
empirically as described next.

C. Measuring Acceptance Rates and Cost Coefficients

We determine empirically the acceptance rate « using a
16-core server-grade CPU. Although « is a model-dependent
value, reflecting how closely the drafter model approximates
the larger target model, it remains hardware-independent!.
Concretely, to estimate o, we employed the Spec-Bench, a
benchmark designed to evaluate SD performance across mul-
tiple tasks [24]. The dataset comprises 480 samples distributed
among thirteen tasks.

In edge deployments, such task variability is lower because
models are tailored to a single domain and typically benefit
from knowledge distillation or task-specific fine-tuning. For
this reason, we focus on the translation task. Additionally, due
to the nature of translation, the length of the generated tokens
tends to closely match the input sequence length, which is
typically short (a few tens of tokens representing a sentence).

As quantization is a key enabler of ML systems on edge
devices, we evaluated the acceptance rate o of multiple model
configurations. These included:

o fully quantized target-drafter pairs,
ISlight deviations may occur when different devices handle rounding

and precision differently, potentially leading to numerical discrepancies or
precision divergence arising from quantization.

o semi-quantized combinations, and
o unquantized FP16 counterparts as reference models.

All quantization schemes are static and implemented in
w8a8 precision using the Intel Neural Compressor [25].

We compute ¢ by compiling a single forward pass of both
the drafter and target models using IREE 3.6.0, evaluating all
combinations of the LLVM and SPIR-V backends indepen-
dently, and benchmarking their respective runtimes. The ratio
between these measured latencies directly yields ¢, thereby
quantifying the relative computational cost of the speculation
phase with respect to the target model for each homogeneous
and heterogeneous configuration.

Given the measured acceptance rate « and c values, the
cost model given by (1) is used to estimate the expected
speedup and the optimal speculative length v for each device
pairing (homogeneous and heterogeneous). We then calculate
the best-performing mapping and then validate the predicted
speedup experimentally on hardware, comparing the resulting
acceleration against a CPU-only, non-speculative baseline.

D. Matching Abstractions of Speculative Sampling and Het-
erogeneous Execution

Selecting the abstraction level for spatial partitioning onto
heterogeneous PUs presents a tension: speculative sampling
is most naturally expressed in high-level ML frameworks,
whereas heterogeneous partitioning requires low-level control.
We address this by rising hardware partitioning into the
compiler frontend and integrating it directly within the specu-
lative sampling pipeline. This unified, high-level formulation
preserves the programmability of PyTorch-level code while
enabling targeted acceleration (e.g., mapping the speculative
phase onto an appropriate PU).

IREE, backed by Multi-Level Intermediate Representation
(MLIR), enables mixing high-level dialects (e.g., Torch IR)
with lower-level dialects (e.g., Flow), allowing spatial parti-
tioning to be expressed at the PyTorch level using custom
operators resolved to physical devices during lowering. This
enables capturing the entire pipeline within a single optimized
module (Fig. 3), reducing glue code while supporting end-
to-end optimization. However, monolithic AOT compilation
increases complexity, particularly for procedural logic with
data-dependent control flow.

Alternatively, Fig. 4 shows a modular design where target
and drafter are compiled independently while procedural logic
executes in the serving mechanism. This simplifies hetero-
geneous execuiton but introduces stricter boundaries between
modules, reflected by additional API calls (thick black arrows),
which add runtime overhead. We evaluate both alternatives in
the following section.

IV. EXPERIMENTAL SETUP AND EVALUATION

Tab. I summarizes the experimental configuration adopted
in this work. It outlines the workload characteristics, task
definition, optimization objective, SD strategy, and the hetero-
geneous hardware resources considered during evaluation. In
our setup, greedy sampling is used across all experiments and
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TABLE I: Experimental settings

Setting Description
Workload Short sequence lengths (S, < d)
Task Translation (from Spec-Bench benchmark [24])

Optimization objective Minimize latency

SD technique Speculative sampling with target: Llama 3.2 3B
and drafter: Llama 3.2 1B.
Mali-G310 GPU and Hexacore Cortex-A55

CPU on NXP i.MX95 SoC

Heterogeneous edge hardware

no KV cache is enabled. We employ the Llama 3.2 family,
specifically Llama 3.2 1B as drafter and Llama 3.2 3B as
target, following prior work demonstrating that alignment of
the training data distributions between drafter and target is
beneficial for draft acceptance [3].

A. Empirical Estimation of Acceptance Rate

The acceptance rate « serves as a required input parameter
for the analytical cost model given by (1). While improving «
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Fig. 5: Acceptance rate « distribution for different quantization
schemes: FP (FP32), T (target), D (drafter).

through better quantization schemes [8] or training quantized
drafters directly [4] falls outside the scope of this work, we
must characterize its behavior to validate our heterogeneous
mapping methodology on real hardware. Evaluating these
techniques on edge hardware represents a direction for future
work; our contributions lies in how to exploit « effectively.

Fig. 5 shows the impact of quantization on « for the
translation task (Fig. 5a) and the full Spec-Bench dataset
(Fig. 5b). The vertical axes represent the acceptance rate «,
while each box represents the distribution of « for three pairs
of models: from left to right: an unquantized FP1 6 drafter and
target, a partially quantized configuration, where just the target
model is quantized’, and a fully quantized INT8 setup. As
the level of quantization increases, the boxes shift downward,
showing a consistent reduction in the median value for «. In
particular, the fully quantized pairing median collapses toward
a = 0, indicating that almost no drafted tokens are accepted.
In contrast, the unquantized configuration achieves a median
value of o = 0.58.

These results confirm prior work [8]: as quantization in-
creases, it introduces a distributional mismatch between drafter
and target models, and the median « decreases substantially

2Note that the fully unquantized configuration, as well as the partially
quantized variant in which only the drafter is quantized, were excluded
from the experiments due to memory limitations during initialization on our
hardware-software setup.



for speculative sampling on edge devices. This pattern is
consistent across the entire Spec-Bench dataset, as shown
in Fig. 5b, where the median falls along with increased
quantization. The subsequent analysis concentrates on the
translation task using the semiquantized configuration, for two
reasons: (1) it provides a realistic edge deployment scenario
balancing memory constraints with model accuracy, and (2) its
broad distribution of acceptance rates, with « values spanning
from 0% to 100%, enables an exploration of the full range of
speculative sampling behavior.

B. Computation of the Cost Coefficient

We individually measured the latency of one forward pass
for both the target and drafter models as a function of the
input sequence length and then calculated the cost coefficient
¢, summarized in Fig. 6. The horizontal axes represent the
input sequence length, and each curve depicts one design
variant. Fig. 6a shows c values for homogeneous mappings on
CPU, whereas Fig. 6b shows heterogeneous mappings where
the drafter is executed on the GPU>. The regions with ¢ > 1
are shaded in red to indicate infeasible configurations in which
one forward pass of the drafter is slower than the target model.
These infeasible cases arise mainly when the system uses three
to six CPU cores in the heterogeneous mapping (i.e., drafter
model mapped on the GPU).

A notable case appears in the design variant with only a
single CPU core available (purple curves in both plots). When
performing a heterogeneous mapping, the cost coefficient c
decreases substantially, from approximately 0.80 (purple curve
at the top for an input sequence length of 63)* to 0.41
at the same sequence length, shown at the bottom. This
improvement arises because the GPU executes the drafter
model roughly three times faster than a single CPU core,
significantly reducing the computational cost of the speculative
phase. As a result, this configuration emerges as the most
favorable candidate for speculative sampling on the evaluated
SoC using the Spec-Bench dataset.

C. Estimation of the Speedup with the Cost Model

The expected speedup is estimated using Eq. (1) for two
acceptance rates: a high value of a = 0.90 corresponding to
the 90th percentile and a low value of o = 0.17 corresponding
to the median. The results are reported in Tab. II and Tab. III,
respectively. For a = 0.90 (Tab. II), speculative sampling
combined with heterogeneous execution yields substantial
improvements, particularly in design variant 1, which corre-
sponds to a configuration with one CPU core available for
mapping and the GPU (recall that a design variant represents
a unique combination of cores, shaders, or PEs across all
the PUs). This variant reaches a speedup of 1.68x using
~ = 5. The correct selection of the draft sequence length (v) is

3We do not map the quantized target model onto the GPU because it does
not support INT8 datatype; any INT8 tensor is promoted to FP32, adding
overhead and diminishing the benefits of quantization.

4This input sequence length corresponds to the average length of the
translation task in the Spec-Bench dataset.
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Fig. 6: Cost coefficients ¢ for homogeneous (a) and hetero-
geneous (b) mappings as a function of input sequence length.
The black vertical line indicates S;, = 63, the average input
sequence length for the translation task in the Spec-Bench
C-A55 nC: Cortex-A55 CPU, n cores.

crucial: each design variant achieves its best performance with
a different v value, ranging from O (no speculative sampling)
to 5.

TABLE II: Estimated speedup for o = 0.90 and Sp = 63

Design Speculative | Heterogeneous | Speedup
Variant Sampling Execution [x]

1 Yes (y = 5) Yes 1.68

2 Yes (7 = 2) Yes 1.10

3 No NA 1

4 No NA 1

5 Yes (y = 1) No 1.02

6 No NA 1

TABLE II: Estimated speedup for « = 0.17 and Sy, = 63

Design Speculative | Heterogeneous | Speedup
Variant Sampling Execution [x]
1-6 No NA 1

In contrast, design variants with a higher number of avail-
able cores (i.e., 3, 4, and 6 cores upwards) are expected to
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have a performance decline when both speculative sampling
and heterogeneous execution are applied. Therefore, these
methods should be avoided in such configurations. For the
design variant holding five CPU cores, there is a modest
speedup, but heterogeneous mapping should not be applied.
If the performance gain is too small, there is a risk that, in a
real system, the improvement becomes negligible, especially
when accounting for deployment overheads. As a result, we
discourage the use of heterogeneous mapping in this scenario.
However, for o = 0.17 (Tab. III), even the shortest draft length
v = 1 becomes detrimental and neither speculative sampling
nor heterogeneous execution yields a speedup in any design
variant.

D. Validation and Discussion

The underlying acceleration trend and its empirical valida-
tion are jointly illustrated in Fig. 7, where the horizontal axes
represent the acceptance rate o and the vertical axes report
the predicted or achieved acceleration S, in Figs. 7a and 7b,
respectively. In both cases, we present the heterogeneous
mapping in which the quantized target model is executed
on a single CPU core, while the unquantized drafter model

is assigned to the GPU. The results for an input sequence
length of 63 are shown. The different curves correspond to
different draft lengths ~, with longer drafts (orange and red
curves) offering greater acceleration at sufficiently high o,
while becoming detrimental when « falls. This explains why
the semiquantized configuration with an acceptance rate of
a = 0.17 in Tab. III yields no measurable speedup: the
acceptance rate is simply too low for speculative sampling
to be beneficial. Fig. 7b presents the measured acceleration,
showing that the expected acceleration (Fig. 7a) is achieved
with an « approximately 4% higher than estimated. Despite
this shift, the empirical curve remains consistent with the
analytic prediction.

The evaluated heterogeneous configuration (drafter on GPU,
target on single CPU core) arises from hardware-software con-
straints (e.g., IREE lacking INT8 support for Mali backends,
quantization effects on « leading to semiquantized setups).
Alternative strategies (full-GPU execution, dynamic schedul-
ing) either exceed the memory budget of the platform, damage
drafter accuracy, or require unavailable runtime capabilities.
The analytical cost model (Eq. 1) abstracts hardware char-
acteristics via c¢ to determine when heterogeneous execution
is beneficial. The methodology generalizes to other platforms
through profiling ¢ and measuring task-specific a.

Runtime constraints in IREE 3.6.0 prevented deploying a
monolithic graph with heterogeneous device affinities. Con-
sequently, we compiled separate graphs (Fig. 4) orchestrated
via IREE’s runtime API. This introduces interface overhead
that may explain the measured 4% deviation, but provided
necessary flexibility for heterogeneous execution.

V. CONCLUSION AND OUTLOOK

This work showed how compiler-assisted heterogeneous
mapping can accelerate LLM inference with speculative sam-
pling on resource-constrained edge devices. An analytical
cost model provided a basis for deciding when speculative
sampling and heterogeneous execution are worthwhile under
fixed hardware budgets, and model validation showed a 4%
deviation from predictions. Exposing low-level abstractions
into the compilation flow facilitated combining speculative
sampling with heterogeneous execution, improving productiv-
ity with minimal performance penalties. Under favorable con-
ditions (with a predicted @ = 0.90 and measured o = 0.94),
Llama 3.2 3B achieved up to a 1.68x speedup.

Future work should: (1) integrate improved quantization
techniques to achieve higher « values; (2) validate the cost
model with additional edge SoCs and other SD techniques, as
discussed in Sec. III-A; (3) extend the model to incorporate
finer-grained partitioning would allow mapping computation
onto NPUs and other accelerators with restricted operation
support; and (4) improve the runtime memory allocator for
heterogeneous execution of monolithic graphs with mixed
device affinities to allow shared GPU-CPU scheduling.



ACKNOWLEDGMENT

This result is part of the IPCEI ME/CT and is funded by
the European Union Next Generation EU, the German Federal
Ministry for Economic Affairs and Energy, the Bavarian
Ministry of Economic Affairs, Regional Development and
Energy, the Free State of Saxony with the help of tax revenue
based on the budget approved by the Saxon State parliament
and the Free and Hanseatic City of Hamburg. The authors
acknowledge the financial support by the Federal Ministry
of Research, Technology and Space of Germany and by
Séchsische Staatsministerium fiir Wissenschaft, Kultur und
Tourismus in the program Center of Excellence for Al-research
“Center for Scalable Data Analytics and Artificial Intelligence
Dresden/Leipzig”, project identification number: ScaDS.AlL

[1]

[3

[t}

[4]

[5

=

[6

=

[7]

[8]

[9]

[10]

(11]

(12]

[13]

[14]

REFERENCES

S. Kim, C. Hooper, T. Wattanawong, M. Kang, R. Yan er al., “Full
Stack Optimization of Transformer Inference,” in Proc. Architecture and
System Support for Transformer Models (ASSYST @ ISCA), 2023.

Y. Zheng, Y. Chen, B. Qian, X. Shi, Y. Shu, and J. Chen, “A Review
on Edge Large Language Models: Design, Execution, and Applica-
tions,” ACM Computing Surveys, Feb. 2025, Art. no. 3719664, doi:
10.1145/3719664.

Y. Leviathan, M. Kalman, and Y. Matias, ‘“Fast Inference from Trans-
formers via Speculative Decoding,” in Proc. International Conference
on Machine Learning (ICML), 2023, pp. 19274-19286.

Y. Li, F. Wei, C. Zhang, and H. Zhang, “EAGLE: Speculative Sam-
pling Requires Rethinking Feature Uncertainty,” in Proc. International
Conference on Machine Learning (ICML), 2024.

L. Deng, G. Li, S. Han, L. Shi, and Y. Xie et al., “Model Compression
and Hardware Acceleration for Neural Networks: A Comprehensive
Survey,” Proceedings of the IEEE, vol. 108, no. 4, pp. 485-532, 2020.
Linux Foundation, “IREE,” https://iree.dev/, 2025. Accessed: Sept. 11,
2025.

Y. Hu, Z. Liu, Z. Dong, T. Peng, B. McDanel, and S. Q. Zhang, “Spec-
ulative Decoding and Beyond: An In-Depth Survey of Techniques,”
arXiv:2502.19732, Mar. 2025, unpublished.

Y. Zhang, W. Zhao, X. Han, T. Zhao, W. Xu, H. Cao, and C. Zhu,
“Speculative Decoding Meets Quantization: Compatibility Evaluation
and Hierarchical Framework Design,” arXiv:2505.22179, May 2025,
unpublished.

M. Li, Y. Liu, X. Liu, Q. Sun, X. You, H. Yang, Z. Luan, L. Gan,
G. Yang, and D. Qian, “The Deep Learning Compiler: A Comprehensive
Survey,” IEEE Transactions on Parallel and Distributed Systems, vol. 32,
no. 3, pp. 708-727, Mar. 2021.

G. Korol, M. G. Jordan, M. B. Rutzig, J. Castrillon, and A. C. S. Beck,
“Pruning and Early-Exit Co-Optimization for CNN Acceleration
on FPGASs,” in Proc. Design, Automation and Test in Europe
Conference (DATE), Antwerp, Belgium, Apr. 2023, pp. 1-6, doi:
10.23919/DATES6975.2023.10137244.

G. Korol, M. G. Jordan, M. B. Rutzig, J. Castrillon, and
A. C. S. Beck, “Design Space Exploration for CNN Offloading to
FPGAs at the Edge,” in Proc. IEEE Computer Society Annual Sym-
posium on VLSI (ISVLSI), Foz do Iguacu, Brazil, Jun. 2023, doi:
10.1109/ISVLSI59464.2023.10238644.

T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, et al., “TVM: An Au-
tomated End-to-End Optimizing Compiler for Deep Learning,” in Proc.
13th USENIX Conf. on Operating Systems Design and Implementation
(OSDI’'18), Carlsbad, CA, USA, 2018, pp. 579-594.

N. Rotem, J. Fix, S. Abdulrasool, G. Catron, and S. Deng et al.,
“Glow: Graph Lowering Compiler Techniques for Neural Networks,”
arXiv:1805.00907, 2019, unpublished.

C. Lattner, M. Amini, U. Bondhugula, A. Cohen, A. Davis, et al.,
“MLIR: Scaling Compiler Infrastructure for Domain Specific Computa-
tion,” in Proc. IEEE/ACM International Symposium on Code Generation
and Optimization (CGO), 2021, pp. 2-14.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

X. Miao, G. Oliaro, Z. Zhang, X. Cheng, Z. Wang, et al., “SpecInfer:
Accelerating Large Language Model Serving with Tree-based Spec-
ulative Inference and Verification,” in Proc. 29th ACM Int. Conf.
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), Vol. 3, Apr. 2024, pp. 932-949.

Z. Chen, A. May, R. Svirschevski, Y. Huang, , M. Ryabinin, et al.,
“SEQUOIA: Scalable and Robust Speculative Decoding,” in Proc.
38th Int. Conf. on Neural Information Processing Systems (NeurIPS),
Vancouver, BC, Canada, 2024, Art. no. 4116, 33 pp.

K. Lv, H. Guo, Q. Guo, and X. Qiu, “DuoDecoding: Hardware-aware
Heterogeneous Speculative Decoding with Dynamic Multi-Sequence
Drafting,” arXiv:2503.00784, Mar. 2025, unpublished.

L. Zhang, Z. Zhang, Xubaizhou, R. Li, Z. Tian, et al., “Dovetail: A
CPU/GPU Heterogeneous Speculative Decoding for LLM Inference,”
in Proc. EMNLP, Suzhou, China, Nov. 2025, pp. 17393-17406.

R. Baghdadi, J. Ray, M. B. Romdhane, E. D. Sozzo, A. Akkas, et al.,
“Tiramisu: A Polyhedral Compiler for Expressing Fast and Portable
Code,” in Proc. CGO, 2019, pp. 193-205.

L. Mei, P. Houshmand, V. Jain, S. Giraldo, M. Verhelst, et al., “ZigZag:
Enlarging Joint Architecture-Mapping Design Space Exploration for
DNN Accelerators,” IEEE Transactions

S. Na, G. Jeong, B. H. Ahn, A. Jezghani, and J. Young et al., “FlexInfer:
Flexible LLM Inference with CPU Computations,” in Proc. 8th Conf.
on Machine Learning and Systems (MLSys), 2025.

S. C. Kao and T. Krishna, “MAGMA: An Optimization Framework for
Mapping Multiple DNNs on Multiple Accelerator Cores,” in Proc. IEEE
International Symposium on High-Performance Computer Architecture
(HPCA), Apr. 2022, pp. 814-830.

Z.Li, B. Yang, J. Li, T. Chen, X. Li, and M. Gao, “Adyna: Accelerating
Dynamic Neural Networks with Adaptive Scheduling,” in Proc. IEEE
International Symposium on High Performance Computer Architecture
(HPCA), Mar. 2025, pp. 549-562.

H. Xia, Z. Yang, Q. Dong, P. Wang, and Y. Li et al., “Unlocking Effi-
ciency in Large Language Model Inference: A Comprehensive Survey of
Speculative Decoding,” in Findings of the Association for Computational
Linguistics: ACL 2024, Aug. 2024, pp. 7655-7671.

Intel Corporation, “intel/neural-compressor,” Oct. 2025. [Online]. Avail-
able: https://github.com/intel/neural-compressor



