
From PyTorch to Calyx: An Open-Source Compiler
Toolchain for ML Accelerators

Jiahan Xie
Computer Science and Engineering Department

UC Santa Cruz
Santa Cruz, USA
jxie84@ucsc.edu

Evan Williams
Computer Science Department

Cornell University
Ithaca, USA

emw236@cornell.edu

Adrian Sampson
Computer Science Department

Cornell University
Ithaca, USA

asampson@cs.cornell.edu

Abstract—We present an end-to-end open-source compiler
toolchain that targets synthesizable SystemVerilog from ML mod-
els written in PyTorch. Our toolchain leverages the accelerator
design language Allo, the hardware intermediate representation
Calyx, and the CIRCT project under LLVM. We also implement
a set of compiler passes for memory partitioning, enabling
effective parallelism in memory-intensive ML workloads. Exper-
imental results demonstrate that our compiler can effectively
generate optimized FPGA-implementable hardware designs that
perform reasonably well against closed-source industry-grade
tools such as Vitis HLS.

Index Terms—Compiler, Open-Source, Hardware Accelerators,
Machine Learning

I. INTRODUCTION

As ML applications grow in complexity [2] and perfor-
mance demand, general-purpose processors are no longer opti-
mal for ML workloads due to their limited efficiency and high
energy overhead in computation-intensive tasks [1]. Although
custom hardware accelerators [3] offer significant performance
and energy efficiency gains [4], designing them at the register-
transfer level (RTL) is difficult. Hardware description lan-
guages (HDLs) such as SystemVerilog or VHDL offer fine-
grained control over circuit behavior, but writing and verifying
correct HDL code is time-consuming and error-prone. With
the rapid evolution of ML models and the explosive need for
custom hardware to run modern workloads, hardware design
cycles must become faster and more adaptable.

High-level synthesis (HLS) offers a promising alternative
for designing ML accelerators [8] [9] [16]. HLS allows us
to compile high-level functional specifications from software
(typically written in C or C++) to synthesizable RTL suitable
for hardware implementation. However, few HLS approaches
exist for compiling directly from the languages and frame-
works that are commonly used to express ML models, such
as PyTorch. Moreover, the prior work relies heavily on closed-
source commercial HLS toolchains, such as Xilinx Vitis HLS
[17]. Recent MLIR-based HLS systems demonstrate the po-
tential for open-source compiler stacks for accelerator design
[14].

Therefore, we introduce an end-to-end open-source com-
piler toolchain that generates synthesizable SystemVerilog
from PyTorch models through a structured compilation flow.
Our system uses Allo [7] to translate PyTorch programs

into MLIR, leverages domain-specific MLIR dialects [11]
to preserve high-level tensor structure, and relies on the
CIRCT [6], [12] infrastructure to perform hardware lowering.
The resulting program is expressed in Calyx, whose explicit
separation of control and hardware structure allows us to
encode accelerator architectures and optimizations cleanly.
Finally, we compile Calyx to SystemVerilog and use standard
FPGA vendor tools such as Xilinx Vivado to synthesize,
place–and–route, and deploy accelerators. Our contributions
are as follows:

• An end-to-end open-source compiler stack from PyTorch
to synthesizable SystemVerilog using Allo, CIRCT, and
Calyx.

• Memory banking and partitioning analyses in Calyx en-
abling safe and efficient parallel access patterns.

• FPGA evaluation showing performance up to 2.21×
faster than Vitis HLS.

II. BACKGROUND AND CHALLENGES

A. Allo

Allo [7] is a compiler for constructing large-scale, high-
performance hardware accelerators. Its lowering pipeline com-
piles PyTorch programs into MLIR while preserving tensor
semantics, control flow, and data-layout information. The
resulting structured MLIR program integrates cleanly with
downstream dialects and compiler infrastructures, forming
a bridge between high-level ML frameworks and hardware
generation backends.

B. Calyx

Calyx [5], [13] is an intermediate representation (IR) and
compiler infrastructure designed for generating hardware ac-
celerators from high-level programming languages. It explic-
itly separates control flow from structural hardware descrip-
tions, enabling optimizations that leverage both perspectives.
The control sublanguage expresses imperative constructs such
as loops and conditionals, while the structural sublanguage
instantiates hardware components and defines the wiring be-
tween them. This split representation allows compiler fron-
tends to describe both computation and architecture naturally.



The Calyx compiler then lowers the program into synthesiz-
able RTL through its series of transformation and optimization
passes.

C. CIRCT

Circuit IR Compilers and Tools (CIRCT) [6] is an open-
source, LLVM-based infrastructure for building hardware
compilers. Built atop MLIR (Multi-Level Intermediate Rep-
resentation), CIRCT provides a suite of hardware-specific
dialects and transformation passes to support the development
of custom compilation flows, hardware synthesis pipelines,
and intermediate representations. Notable dialects include HW
(hardware module descriptions), FSM (finite-state machines),
and various dialects for scheduling and memory management.

CIRCT aims to accelerate compiler development for hard-
ware by offering a modular and extensible framework [12].
Calyx is integrated into CIRCT as one of its dialects, allowing
users to implement transformation passes that lower high-
level MLIR dialects (e.g., SCF) to Calyx. This integration
enables full-stack compilation from high-level MLIR programs
to hardware-level IRs, which can then be lowered into synthe-
sizable SystemVerilog.

D. Challenges

Despite these advances, several challenges remain in build-
ing an end-to-end compiler stack for ML workloads targeting
hardware accelerators:

Bridging the software-hardware gap. Although Calyx
unifies software-style control and hardware-style structure,
programming directly in Calyx remains low-level and resem-
bles writing HDL code. For ML workloads primarily written
in Python, an end-to-end flow is needed that compiles high-
level Python programs to CIRCT dialects and ultimately to
synthesizable hardware. Bridging this gap between Python and
hardware remains a central challenge.

Floating-point support. Floating-point arithmetic is a core
component of modern ML models but is notoriously difficult to
implement efficiently in hardware. Unlike integer arithmetic,
floating-point operations require managing special cases such
as NaNs and infinities, and involve more complex circuits.
The CIRCT and Calyx ecosystems originally lacked floating-
point support due to this complexity. However, ML workloads
depend heavily on floating-point math, making it essential to
extend these infrastructures with robust support for floating-
point constants and operations.

Limited coverage of ML kernels. The early Calyx-based
CIRCT flow [11] handled only a narrow subset of SCF
constructs, restricting its applicability to simple kernels such as
matrix multiplication. It lacked support for richer ML compo-
nents, including multi-layer perceptrons, nonlinear activations,
and softmax operators used in attention. Moreover, ML models
rely on parameterized storage - weights and biases - which
requires explicit modeling of data layout and memory orga-
nization. Supporting multi-module models and inter-function
orchestration also adds complexity to the compiler pipeline.

Performance optimization through parallelism. Once
a functional compiler flow is established, the next goal is
improving hardware performance. Parallel execution is key.
Calyx supports parallelism as a first-class control construct,
translating concurrent execution into multiple finite-state ma-
chines (FSMs) while checking for resource contention, such
as memory port conflicts. Due to the memory-intensive nature
of ML workloads, achieving correct and efficient parallel ex-
ecution requires sophisticated compiler analyses and transfor-
mations to avoid hazards and resource contention at runtime.

III. TECHNICAL CONTRIBUTION

A. Overview

The goal of this work is to execute ML programs written in
PyTorch on custom hardware accelerators. We use FPGAs as
the prototyping platform and develop a fully open-source com-
pilation pipeline that transforms high-level Python programs
into synthesizable hardware designs.

Our toolchain is composed of several open-source compo-
nents. We begin by using the Allo framework [7] to compile
PyTorch models into MLIR programs. These MLIR programs
are then progressively lowered via native MLIR passes to
dialects supported by CIRCT, leveraging CIRCT’s integration
with MLIR to apply software-like optimizations and analysis.
While CIRCT brings the program close to hardware form,
Calyx provides explicit control and memory structure needed
for accelerator-oriented analysis and transformations.

Once the program reaches a form compatible with Calyx,
we emit code in the Calyx intermediate representation. The
Calyx compiler then performs hardware-specific transforma-
tions and generates synthesizable SystemVerilog. This hard-
ware design is finally deployed to an FPGA, completing the
software-to-hardware compilation path.

B. Lowering to Calyx

To generate synthesizable hardware designs from high-level
MLIR programs, the first step is to lower operations from
high-level software-oriented dialects to the hardware-centric
Calyx dialect. This requires bridging the semantic gap between
software abstractions such as control flow, function calls, and
floating-point operations, in addition to their hardware real-
izations. Prior work by Urbach and Petersen [11] established
an initial foundation for this lowering, which we extend and
build upon in our compiler.

Figure 1 shows the compilation flow we developed and
orchestrated to lower PyTorch to Calyx. We leverage Allo
to lower to the MLIR Linalg dialect. We then lower to the
MLIR Affine dialect, and then the Memref and SCF dialects.
We use CIRCT to produce Calyx, and Vivado HLS to execute
the design on an FPGA.

CIRCT lowers structured control flow constructs (e.g., for,
while, if) into Calyx by constructing explicit state machines
and scheduling logic. Loops are lowered using dedicated regis-
ters for induction variables, along with Calyx control operators
like repeat, seq, and while. Conditional branches are
translated to if operations with value-passing handled through



Fig. 1. Compilation pipeline from PyTorch through Allo to Calyx.

auxiliary result registers. A hierarchical control schedule is
constructed by traversing the program’s control flow graph,
resulting in a Calyx control block that faithfully captures the
structure of the original software logic.

Function boundaries are lowered into Calyx components.
Each software-level function becomes a hardware module with
scalar arguments mapped to input/output ports and memory
arguments instantiated as memory components with structured
interfaces. Function calls are translated into component instan-
tiations and invocations, enabling modular and reusable hard-
ware. When a top-level function contains memory references
or internal allocations, an additional wrapper component is
generated to externalize memory and expose it at the hardware
boundary.

We developed a full, general floating-point library for
Calyx to provide floating-point support in CIRCT, including
the integration of the Berkeley HardFloat [15] components.
Floating-point support is modeled at the bit-level, since CIRCT
and Calyx fundamentally operate on integer-typed bitvectors.
To handle floating-point constants, both ordinary and special
values are represented using IEEE-754 encodings as bitvec-
tors. To retain readability and support debugging, decimal
representations are attached as attributes, enabling CIRCT and
Calyx to internally convert between human-readable and bit-
level formats. All floating-point constants are thus treated as
raw bitpatterns during lowering. The Calyx native compiler
integrates HardFloat modules to implement floating-point op-
erations, generates the necessary hardware components, and
preserves the original MLIR semantics during lowering.

Altogether, this lowering process forms the foundation of
our end-to-end compiler stack, allowing software-level MLIR
programs to be expressed in the Calyx IR and synthesized into
RTL.

C. Memory and Parallelism Optimizations

The primary optimization goal in our compilation flow is
to reduce the wall-clock latency of the forward pass of ML
models. To achieve this, we leverage parallelism to increase
hardware throughput. Calyx supports parallel execution as a
first-class control construct, allowing us to explicitly model
concurrent computation. Our task is to expose and maximize
parallelism in memory access patterns while adhering to
hardware constraints.

In hardware, there are two main types of parallelism:
pipeline parallelism, which breaks a task into stages using
different resources, and data parallelism, which duplicates
hardware units to perform computations concurrently. We
adopt the latter and focus on memory partitioning (also
known as memory banking), since Calyx assumes that each
memory unit supports at most one read or write per cycle. To
support concurrent accesses, we duplicate memories and route
operations to different banks.

Static optimization of memory concurrency is challenging.
Calyx detects access violations during simulation, but our goal
is to eliminate such contention through static analysis and
code transformations. However, memory banking introduces
complexity because it increases the number of memory ports
and leads to control structures that select which bank to access,
often with nested conditionals. These extra control paths
increase both latency and resource usage if left unoptimized.

Our implementation supports cyclic memory partitioning,
and we assume this scheme throughout. To route accesses to
the correct bank, we use a switch statement (or nested if-
else chains where switch is unavailable). A naive imple-
mentation that directly emits control branches for each bank
leads to code-size blow-up. For a memory with d dimensions
and a partition factor c, the number of unique control branches
scales as cd. In Calyx, these branches are all instantiated as
hardware, even if only one is active at runtime. This not only
increases area usage but also results in deeper control FSMs,
which hurt performance.

Further complications arise when attempting to parallelize
memory access. Calyx’s par construct does not perform
constant folding, even mutually exclusive guarded operations,
such as executing one statement when a flag is statically known
to be true and a different statement when it is false, are
still instantiated as parallel hardware. Consequently, although
only one branch can execute semantically, both are present in
the generated circuit and may contend for shared resources,
leading to unintended memory conflicts.

To illustrate the problem concretely, consider the simple
loop in Listing 1, which writes to a four-element memory.
Suppose we apply cyclic memory banking with a factor
of 2, resulting in two memory banks, mem_bank_0 and
mem_bank_1. A straightforward transformation produces the
code shown in Listing 2.

To parallelize this loop, we materialize it with a factor of 2
using nested seq and par, as shown in Listing 3. However,
each par block must be unrolled into separate arms with



for (int i = 0; i < 4; ++i) {
mem[i] = i;

}

Listing 1. Original loop

for (int i = 0; i < 4; ++i) {
if (i % 2 == 0) {

mem_bank_0[i / 2] = i;
} else {

mem_bank_1[i / 2] = i;
}

}

Listing 2. Naive memory banking

seq for (int i = 0; i < 2; ++i) {
par for (int j = 0; j < 2; ++j) {

int new_index = 2 * i + j;
if (new_index % 2 == 0) {

mem_bank_0[new_index / 2] = new_index;
} else {

mem_bank_1[new_index / 2] = new_index;
}

}
}

Listing 3. Materialized loop with banking

seq for (int i = 0; i < 2; ++i) {
parallel execution {

execute par-arm-0 {
int new_index = 2 * i + 0;
if (new_index % 2 == 0) {

mem_bank_0[new_index / 2] = new_index;
} else {

mem_bank_1[new_index / 2] = new_index;
}

}
execute par-arm-1 {
int new_index = 2 * i + 1;
if (new_index % 2 == 0) {

mem_bank_0[new_index / 2] = new_index;
} else {

mem_bank_1[new_index / 2] = new_index;
}

}
}

}

Listing 4. Unrolled parallel execution

statically known indices. The resulting unrolled version is
shown in Listing 4.

Although each arm only triggers one branch of the if-
else, both branches are instantiated. If two arms write to the
same memory bank due to symbolic indices, a write conflict
will occur at runtime. Since Calyx lacks symbolic constant
folding in this context, the compiler cannot resolve the access
pattern statically.

We implement two techniques to ensure safe and efficient
memory parallelism: (1) we express banking by embedding
the bank index into the memory’s dimensional layout instead
of guarding accesses with conditional logic; and (2) we

seq for (int i = 0; i < 2; ++i) {
par for (int k = 0; k < 2; ++k) {

mem[k][i] = 2 * i + k;
}

}

Listing 5. Bank dimension encoding

seq for (int i = 0; i < 2; ++i) {
parallel execution {

execute par-arm-0 {
mem[0][i] = 2 * i + 0;

}
execute par-arm-1 {

mem[1][i] = 2 * i + 1;
}

}
}

Listing 6. Conflict-free parallel write

rewrite loop nests whose structure would otherwise duplicate
sequential controllers when executed in parallel.

For the first, rather than emitting branch logic per access,
we raise the memory’s dimensionality and bake the bank index
into the first dimension. An example of this transformation is
shown in Listing 5.

Unrolling this loop yields the conflict-free parallel write
shown in Listing 6.

Here, the bank index is a compile-time constant in each
parallel arm, ensuring that memory accesses are disjoint
and contention-free. This approach enables us to preserve
parallelism without incurring the cost of unnecessary control
overhead.

The second transformation operates at the level of loop
structure. This example also highlights a broader point: loop
transformations that are semantically equivalent in software
do not necessarily yield equivalent hardware. Consider two
nestings: one where seq(i) surrounds par(j), and another
where par(j) surrounds seq(i). Although they are seman-
tically equivalent to par(j) around seq(i) in software,
they behave very differently in hardware. In the first form,
there is a single sequential controller that iterates over i, and
each iteration triggers a parallel group over j. In the second
form, however, each parallel arm receives its own private se-
quential controller for iterating over i, effectively duplicating
the entire FSM. This replication inflates the hardware area
and increases control overhead. To prevent such unnecessary
duplication, our compiler detects these patterns and rewrites
parallel–sequential loop nests into schedules that share control
logic while preserving the intended parallelism.

Through these memory and loop-aware transformations,
our compiler produces parallel Calyx programs that are both
correct and efficient for hardware execution.

IV. RESULTS AND EVALUATION

In this section, we evaluate our Calyx-based flow against
Vitis HLS under two configurations. In Section IV-C, we
compare baseline designs with no data parallelism: neither



toolchain applies any banking strategy. In Section IV-D, we
enable memory banking for both flows using matched parti-
tioning factors, schemes, and dimensions, allowing a direct
comparison of parallelized configurations.

Before presenting quantitative results, it is important to
contextualize the comparison. Vitis HLS has been developed
and tuned for over a decade, and applies many mature and of-
ten implicit optimizations — including automatic scheduling,
resource sharing — that are not present in our current Calyx-
based flow and cannot be selectively disabled or inspected
through pragmas. For this reason, we do not expect Calyx to
outperform Vitis HLS in baseline latency or resource usage.
Rather, the interesting question is how competitive Calyx can
be despite its simpler optimization stack, and whether targeted
compiler transformations can substantially close the gap. Our
results demonstrate that, although Vitis retains an advantage in
baseline configurations, Calyx approaches competitive perfor-
mance under parallelized banking, while remaining fully open-
source and compiler-controlled. We view this as a promising
foundation for continued work in bringing Calyx-based com-
pilation closer to state-of-the-art commercial HLS flows.

A. Experimental Setup
All experiments are conducted on a dual-socket Intel Xeon

Gold 6230 workstation (20 cores, 40 SMT threads per socket
at 2.10,GHz) with 512 GB RAM. The FPGA accelerator
platform we are targeting is a Xilinx Alveo U50 board. For
the commercial toolchain, we use AMD/Xilinx Vitis HLS and
Vivado version 2023.2.

For all Calyx designs, we report post–place-and-route oper-
ating frequencies obtained from Vivado. For Calyx-generated
RTL, we synthesize and place-and-route the design in Vivado
2023.2, sweeping the timing constraint upward until the design
produces zero or positive worst-negative slack (WNS). The
highest frequency meeting timing is then used to convert cycle
counts into wall-clock latency. Cycle counts are obtained by
simulating the SystemVerilog code with Verilator.

Vitis HLS directly reports latency in milliseconds. We
similarly sweep the timing constraint for each Vitis design
in Vivado 2023.2 and select the implementation that achieves
the lowest reported latency without violating WNS.

As a result, the two toolchains’ latency numbers are ob-
tained via different methodologies: Vitis provides an estimated
latency based on its internal scheduling and performance
model timing, while our Calyx flow reports simulated dynamic
behavior under the achieved frequency. This mismatch intro-
duces an inherent margin of error in absolute comparisons,
particularly when the reported latencies are close. However,
we apply the same timing-constraint sweep procedure to both
flows and use each toolchain’s standard reporting method, and
we primarily interpret the results in terms of relative trends
across models and partitioning factors rather than claiming
exact absolute latency equivalence.

B. Benchmark Models
We evaluate the performance and resource usage of our

compiler by benchmarking three representative machine learn-

ing models and comparing them against a commercial HLS
toolchain, Xilinx Vitis HLS. The models include a feed-
forward neural network (FFNN), a convolutional neural net-
work (CNN), and a multi-head attention (MHA) module.

The FFNN model takes an input of 64 features, followed
by a fully connected layer of size 64×48, a ReLU activation,
and a second fully connected layer of size 48× 4.

The CNN model processes a 80 × 60 color image with 3
channels. The first layer performs a 2D convolution with 5×5
kernels, 3 input channels, and 8 output channels using unit
strides. This is followed by a ReLU activation and a max-
pooling layer with a 2× 3 window. The resulting feature map
is flattened and passed through a fully connected layer for
binary classification.

The MHA model is derived from the Transformer archi-
tecture and uses 2 attention heads. Each head operates on a
21-dimensional subspace of a 42-dimensional embedding, with
causal masking for autoregressive decoding.

C. Comparison Across Models

For comparison, we use Vitis HLS, a widely used commer-
cial HLS tool. The Allo project provides a shared frontend
that lowers PyTorch models to MLIR, which is then further
compiled to either HLS C++ for Vitis or Calyx for our flow. To
ensure fairness, the MLIR input is held constant across both
paths. All HLS pragmas are disabled except for #pragma
ARRAY_PARTITION, which is used to match our memory
banking configuration. We ensure consistent banking factors,
schemes (cyclic), and dimensions across both flows. Vitis’s
automatic scheduling and optimization passes are left on, as
they cannot be turned off.

Figure 2 shows the wall-clock latency of each model across
the two toolchains. Vitis outperforms our Calyx-based in most
cases. This performance gap is largely due to limitations in Ca-
lyx’s memory model: Calyx only supports single-dimensional
memories, requiring us to flatten multi-dimensional tensors.
As a result, access indices—often affine expressions of loop
variables—are lowered to hardware as expensive arithmetic
operations like multiplication and modulo, which introduce la-
tency. Furthermore, the CNN model’s convolution and pooling
layers naturally lead to deeper loop nests, amplifying this cost.
Without common CNN optimizations such as line buffering,
the performance gap is further exposed. However, with the
addition of our memory banking strategy, we find that Calyx
achieves a 2.21× speedup over Vitis.

Table I and Table II report resource utilization across the
same models. We observe that Vitis uses more BRAMs for
storing weights and biases, while Calyx consumes significantly
more LUTs and FFs due to its use of explicit finite state
machines (FSMs) for control. In several cases, Calyx exhibits
a 3–4× increase in LUT usage relative to Vitis, representing
a substantial area overhead. This overhead stems primarily
from Calyx’s explicit and unoptimized control representation,
in which structured software-level control flow is lowered
into hardware FSMs without aggressive scheduling, resource



Fig. 2. Wall-clock latency comparison across models.

TABLE I
LUT AND FF USAGE ACROSS MODELS.

Model LUTs FFs

Vitis Calyx Vitis Calyx

MHA 7846 33312 4017 5561
CNN 3136 4574 1815 1223
FFNN 2011 3730 1281 742

sharing, or control minimization. This area overhead is there-
fore a current limitation of our approach and represents a
barrier to practical industrial adoption. Accordingly, we view
the present system as a research and prototyping tool rather
than a replacement for mature commercial HLS compilers, and
reducing control overhead while preserving analyzability is an
important direction for future work.

D. Memory Banking for Parallelism

To further investigate the impact of memory banking,
we conduct a detailed case study on the FFNN model.
In this study, every memory is partitioned cyclically along
each dimension. In Vitis, this is done via #pragma
ARRAY_PARTITION, while in Calyx the partitioning is im-
plemented via our compiler pass. We compare both latency
and resource usage across varying banking factors.

Figure 3 shows the latency across different partition factors.
For factor=1 and factor=2, Vitis performs better.

However, at factor=4, Calyx becomes faster. Moreover, the
relative speedup for Vitis is modest: increasing the banking
factor from 2 to 4 yields diminishing returns, with a speedup
of only 7908/6813 ≈ 1.16. Given that all matrices are two-
dimensional, the theoretical maximum speedup is 22 = 4
under ideal conditions. The limited gain suggests that other
bottlenecks remain.

In contrast, the Calyx-based flow shows significant improve-
ment with higher partitioning. The speedup from factor=1
to factor=2 is 22475/9378 ≈ 2.40, and from factor=2
to factor=4 is 9378/3078 ≈ 3.05. This demonstrates the

TABLE II
BRAM AND DSP USAGE ACROSS MODELS.

Model BRAMs DSPs

Vitis Calyx Vitis Calyx

MHA 194 71 19 67
CNN 213 43 5 14
FFNN 43 9 5 6

Fig. 3. Latency vs. partition factor for FFNN.

effectiveness of our memory banking analysis and transforma-
tion passes, which allow Calyx to unlock more parallelism at
the memory level.

Table III and Table IV show the resource usage correspond-
ing to these experiments. DSP usage is comparable across
both toolchains. Vitis uses slightly more BRAMs and FFs,
while Calyx consumes significantly more LUTs, particularly
at factor=4, due to the additional control logic needed
for managing multiple memory banks. These results illustrate
the tradeoff between performance and hardware complexity
introduced by fine-grained memory partitioning.

V. FUTURE WORK

There are several promising directions for extending this
compiler framework. First, we plan to broaden the set of sup-
ported ML kernels by adding lowering patterns and optimiza-
tions for additional operators beyond the models evaluated in
this work. Expanding kernel coverage will further improve the
applicability of the toolchain to real-world workloads.

Further, we aim to extend the compilation flow to support
the backward pass. This requires lowering differentiation-
related operations, handling gradient propagation, and man-
aging the additional memory and parallelism introduced by
training workloads. Supporting training as well as inference
with the same flow would enable end-to-end hardware gen-
eration, allowing accelerator designs to perform on-device
learning, fine-tuning, and inference without relying on external
frameworks.



TABLE III
RESOURCE USAGE VS. PARTITION FACTOR FOR THE FFNN MODEL.

Partition LUTs FFs

factor Vitis Calyx Vitis Calyx

1 2011 3730 1281 742
2 6021 13197 4036 3145
4 13799 49121 15083 10657

TABLE IV
MEMORY AND DSP USAGE VS. PARTITION FACTOR FOR THE FFNN

MODEL.

Partition BRAMs DSPs

factor Vitis Calyx Vitis Calyx

1 43 9 5 6
2 39 10 7 20
4 64 20 80 69

As discussed in Section III-C, hardware parallelism includes
both data parallelism and pipeline parallelism. An important
next step is to introduce pipelining support analogous to
Vitis’ #pragma HLS PIPELINE. This entails generating
pipelined control schedules using the scheduling and loop-
pipelining dialects in CIRCT and automatically identifying
program regions that benefit from initiation-interval optimiza-
tion. Adding first-class pipelining capabilities will allow our
compiler to more effectively exploit fine-grained parallelism
and reduce overall latency.

A further important direction is reducing the substantial con-
trol and logic overhead currently introduced by our lowering
strategy, as shown in Section IV-C.

Beyond further optimizations analogous to Vitis HLS prag-
mas, we are also currently exploring alternate compilation
paths through the MLIR/CIRCT infrastructure. By integrating
with tools such as Torch-MLIR [18] and [19], we can make
our open-source toolchain more accessible and provide more
options to the end-user.

VI. CONCLUSION

This work presents a complete open-source compilation
toolchain that transforms PyTorch programs into synthesizable
hardware designs using Allo, CIRCT, and Calyx. We bridge
the gap between software-level ML programs and hardware
accelerators by implementing support for structured control
flow, function modeling, floating-point arithmetic, and mem-
ory layout transformations.

We focus in particular on optimizing memory access concur-
rency through static memory banking and control restructur-
ing. Our evaluation on three representative ML models shows
that while the Calyx-based flow trails behind commercial
tools like Vitis in general-purpose scheduling and resource
efficiency, it demonstrates promising performance gains when
aggressive memory partitioning is applied. These results high-
light the potential of Calyx as a research and prototyping

platform for hardware accelerator compilation, especially in
settings where open-source and customization are prioritized.

REFERENCES

[1] R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B. C. Lee,
S. Richardson, C. Kozyrakis, and M. Horowitz, “Understanding sources
of inefficiency in general-purpose chips,” in Proc. 37th Int. Symp. Com-
put. Archit. (ISCA), 2010, pp. 37–47, doi: 10.1145/1815961.1815968.

[2] P. Villalobos, J. Sevilla, T. Besiroglu, L. Heim, A. Ho, and
M. Hobbhahn, “Machine learning model sizes and the parameter
gap,” arXiv preprint arXiv:2207.02852, 2022. [Online]. Available:
https://arxiv.org/abs/2207.02852.

[3] D. Ali, A. U. Rehman, and F. H. Khan, “Hardware accelerators and
accelerators for machine learning,” in Proc. Int. Conf. IT Ind. Technol.
(ICIT), 2022, pp. 1–7, doi: 10.1109/ICIT56493.2022.9989124.

[4] M. Vaithianathan, M. Patil, S. Ng, and S. Udkar, “Comparative
study of FPGA and GPU for high-performance computing and
AI,” Int. J. Adv. Comput. Technol., vol. 1, pp. 37–46, 2023, doi:
10.56472/25838628/IJACT-V1I1P107.

[5] R. Nigam, S. Thomas, Z. Li, and A. Sampson, “A compiler infras-
tructure for accelerator generators,” in Proc. ACM Int. Conf. Archit.
Support Program. Lang. Oper. Syst. (ASPLOS), 2021, pp. 804–817, doi:
10.1145/3445814.3446712.

[6] LLVM CIRCT Developers, “CIRCT: Circuit IR compilers and tools,”
2024. [Online]. Available: https://github.com/llvm/circt.

[7] H. Chen, N. Zhang, S. Xiang, Z. Zeng, M. Dai, and Z. Zhang,
“Allo: A programming model for composable accelerator design,” Proc.
ACM Program. Lang., vol. 8, no. PLDI, pp. 171:1–171:28, 2024, doi:
10.1145/3656401.

[8] S. I. Venieris and C. Bouganis, “fpgaConvNet: A framework for mapping
convolutional neural networks on FPGAs,” in Proc. IEEE Int. Symp.
Field-Program. Custom Comput. Mach. (FCCM), 2016, pp. 40–47, doi:
10.1109/FCCM.2016.22.

[9] H. Sharma, J. Park, D. Mahajan, E. Amaro, J. K. Kim, C. Shao,
A. Mishra, and H. Esmaeilzadeh, “From high-level deep neural models
to FPGAs,” in Proc. IEEE/ACM Int. Symp. Microarchitecture (MICRO),
2016, Art. no. 17, pp. 1–12.

[10] C. Lattner, M. Amini, U. Bondhugula, A. Cohen, A. Davis, J. Pienaar,
R. Riddle, T. Shpeisman, N. Vasilache, and O. Zinenko, “MLIR:
Scaling compiler infrastructure for domain specific computation,” in
Proc. IEEE/ACM Int. Symp. Code Gener. Optim. (CGO), 2021, pp. 2–14,
doi: 10.1109/CGO51591.2021.9370308.

[11] M. Urbach and M. B. Petersen, “HLS from PyTorch to SystemVerilog
with MLIR and CIRCT,” presented at the 2nd Workshop on Languages,
Tools, and Techniques for Accelerator Design (LATTE’22), 2022. [On-
line]. Available: https://capra.cs.cornell.edu/latte22/paper/2.pdf.

[12] J. Demme and A. Landy, “Using CIRCT for FPGA physical de-
sign,” presented at the 2nd Workshop on Languages, Tools, and Tech-
niques for Accelerator Design (LATTE’22), 2022. [Online]. Available:
https://capra.cs.cornell.edu/latte22/paper/10.pdf.

[13] R. Nigam, S. Atapattu, S. Thomas, Z. Li, T. Bauer, Y. Ye, A. Koti,
A. Sampson, and Z. Zhang, “Predictable accelerator design with
time-sensitive affine types,” in Proc. ACM SIGPLAN Conf. Pro-
gram. Lang. Des. Implement. (PLDI), 2020, pp. 393–407, doi:
10.1145/3385412.3385974.

[14] H. Ye, H. Jun, H. Jeong, S. Neuendorffer, and D. Chen, “ScaleHLS: A
scalable high-level synthesis framework with multi-level transformations
and optimizations,” in Proc. ACM/IEEE Des. Autom. Conf. (DAC), 2022,
pp. 1355–1358, doi: 10.1145/3489517.3530631.

[15] J. R. Hauser, “Berkeley HardFloat,” 2019. [Online]. Available:
https://github.com/ucb-bar/berkeley-hardfloat

[16] J. Duarte et al., “Fast inference of deep neural networks in FPGAs for
particle physics,” J. Instrum., vol. 13, no. 07, p. P07027, 2018, doi:
10.1088/1748-0221/13/07/P07027.

[17] AMD/Xilinx, “Vitis High-Level Synthesis User Guide,” Version 2023.2,
2023. [Online]. Available: https://docs.amd.com/r/en-US/ug1399-vitis-
hls.

[18] LLVM/torch-mlir contributors, “llvm/torch-mlir: A PyTorch front-
end for MLIR,” GitHub repository, 2025. [Online]. Available:
https://github.com/llvm/torch-mlir

[19] IREE Developers, “IREE: A unified compiler and runtime for ML
models built on MLIR,” GitHub repository, 2025. [Online]. Available:
https://github.com/openxla/iree


