SlimSwin: Gradient-Based Window-Level Head
Pruning for Efficient Vision Transformers

Emir Mehmet Eryilmaz
Computer Science Department
Ozyegin University
Istanbul, Tirkiye
emir.eryilmaz@ozu.edu.tr

Abstract—Vision Transformers (ViTs) achieve competitive per-
formance across vision tasks, but their global self-attention mech-
anism is computationally expensive due to quadratic complexity.
Window-based or local-attention variants reduce this cost to near-
linear complexity, although many attention heads in these models
remain redundant and contribute little to the final prediction. In
this work, we propose a window-level attention head pruning
method that exploits the observation that only a subset of
heads within each window is truly informative. Unlike existing
magnitude-based pruning strategies, we introduce a gradient-
based importance estimation to measure each head’s contribu-
tion to the loss, enabling fine-grained removal of redundant
or unhelpful heads. Our approach preserves accuracy while
significantly reducing computation. Experiments on ImageNet-1K
demonstrate that SlimSwin achieves significant MAC reductions
up to around 60% in the attention blocks while incurring at
most about a 1.5% drop in top-1 accuracy at the highest pruning
levels, providing an effective avenue for improving the efficiency
of window-based vision transformers.

Index Terms—Vision Transformers, attention head pruning,
window-based attention, Swin Transformer, model compression,
efficient inference

I. INTRODUCTION

Convolutional neural networks (CNNs) have been central
to a wide range of computer vision tasks, including image
classification [1]-[3], object detection [4], [5], and object seg-
mentation [6], [7], following the breakthrough of AlexNet [8].
In parallel, the development of the self-attention mechanism
[9] drove substantial progress in natural language processing.
Although several studies have investigated integrating self-
attention into vision architectures [10]-[13], self-attention-
based models did not become competitive alternatives to
CNNs until the introduction of the Vision Transformer (ViT)
by Dosovitskiy et al. [14]. However, ViT exhibited two major
limitations. First, it was highly data-inefficient, requiring large-
scale datasets to achieve competitive performance. Second, its
computational complexity increased quadratically with image
resolution, making it unsuitable for processing high-resolution
images. While the data-inefficiency issue was largely ad-
dressed through improved training strategies and the use of
knowledge distillation with minimal architectural modifica-
tions [15], the resolution-scaling problem required substantial
architectural changes. To address this limitation, Liu et al. [16]
introduced the Swin Transformer, which employs local self-

Ismail Akturk
Computer Science Department
Ozyegin University
Istanbul, Tiirkiye
ismail.akturk @ozyegin.edu.tr

Others

MLP

Self Attention

Output Projection

Fig. 1. Component-wise FLOPs Breakdown of the Swin Transformer

attention instead of global attention. The core idea is to par-
tition feature maps into windows and compute attention only
among patches within each window. To capture cross-window
interactions, neighboring windows are merged hierarchically
after each stage, leading to a single window at the final stage.
The Swin Transformer not only scales linearly with image
resolution, but also outperformed contemporary ViT models.
Nevertheless, like other attention-based architectures, it still
incurs considerable computational cost.

Figure 1 shows the distribution of FLOPs across the dif-
ferent components of the transformer. Although MLP layers
appear to dominate the overall computational cost, the com-
pression of MLPs and convolutional layers is a well-studied
topic [17]-[24]. Furthermore, as shown in Figure 1, self-
attention and output projection also account for a substantial
proportion of the total FLOPs. Applying existing weight-
compression techniques to self-attention is not straightforward,
since the query, key, and value matrices are input-dependent,
rather than fixed parameters as in MLP layers. Therefore,
an alternative approach tailored to the characteristics of self-
attention is required.

Several recent works have attempted to reduce the compu-
tational complexity of self-attention in vision models. Rao et
al. [25] and Tang et al. [26] proposed pruning image patches

based on their estimated importance, achieving significant
sparsity with minimal accuracy degradation. However, because
these methods rely on fine-grained patch pruning, the resulting
sparsity patterns are difficult to exploit efficiently on existing
hardware. In contrast, Chen et al. [27] introduced a coarse-
grained strategy that prunes entire windows in the Swin Trans-
former, though this eliminates fine-grained control and risks
discarding informative regions along with uninformative ones.
These limitations highlight the need for pruning strategies that
reduce attention complexity while preserving useful structural
information.

In this paper, we propose a window-wise head pruning
approach based on the hypothesis that, for a given window,
only a subset of attention heads contributes meaningfully while
others are redundant or uninformative. A key challenge is
accurately estimating head importance so that less informative
heads can be removed without degrading accuracy. Whereas
prior work [26], [27] typically relies on magnitude-based
importance measures, our method employs a gradient-based
criterion to obtain a more reliable estimate of each head’s
contribution.

The rest of the paper is organized as follows. Section II
reviews prior work related to our approach and highlights
the key differences between these methods and ours. Section
IIT provides background on the Swin Transformer, multi-
head self-attention, head redundancy, and the computational
cost of attention. Section IV introduces our methodology by
explaining how head importance is determined along with
our pruning algorithm. Section V presents the experimental
setup, including model configurations, training scheme, and
implementation details. Section VI reports and discusses the
results, and Section VII concludes the paper.

II. RELATED WORKS
A. Attention Head Pruning

Michel et al. [28] conducted one of the primary studies
showing that many attention heads can be removed with
minimal impact on Transformer accuracy. They demonstrated
that some layers can even be reduced to a single head, and that
moderate head pruning may improve accuracy in tasks, such as
machine translation. Their pruning criterion is gradient-based,
obtained by applying a head-wise binary mask to the attention
matrix and computing the gradient of this mask. While we
also employ a gradient-based importance metric, our approach
differs by estimating importance jointly for each window-head
pair rather than assuming that heads are uniformly important
or unimportant across all tokens.

Voita et al. [29] similarly showed that a large fraction of
attention heads can be removed without degrading translation
quality and provided an in-depth analysis of the functional
roles of individual heads. Using layer-wise relevance propa-
gation [30], they quantified how much each head contributes
to the final output logits at different layers, reinforcing the
idea that not all heads are equally valuable.

Wang et al. [31] proposed a unified framework combining
token pruning, head pruning, and quantization to accelerate

Transformer inference. Their method relies on attention prob-
abilities as importance scores and adopts a pruning pipeline
in which any token or head removed at one layer is perma-
nently eliminated in subsequent layers. They further enhance
efficiency through progressive quantization, in which attention
probabilities are initially computed using only the most sig-
nificant bits.

Although these works achieve notable efficiency gains,
they share two key limitations. First, they treat head impor-
tance as global, despite the evidence that the relevance of
a head may vary significantly across different tokens. This
suggests that a token-dependent or context-dependent head
pruning mechanism could more effectively preserve essential
computations. Second, these methods have been developed
exclusively for NLP tasks, and analogous strategies have not
been thoroughly explored in the vision domain, particularly
in architectures, such as Swin Transformer where locality
and window structure play central roles. Motivated by these
gaps, we propose a window-wise head pruning approach that
estimates head importance separately within each window.
This formulation captures the context-dependent utility of
attention heads, while aligning naturally with the hierarchical
design of vision transformers.

B. Pruning in Vision Transformers

Tang et al. [26] proposed a top-down patch pruning proce-
dure for vision transformers. Their method begins by retaining
only the classification token in the final layer and progressively
reintroducing patches in earlier layers by preserving only the
most important ones. To rank patches, they introduce a patch
saliency metric based on Lipschitz continuity [32], [33], which
estimates the contribution of each patch in a given layer to the
final output.

Rao et al. [25] introduced a dynamic patch pruning approach
in which the set of retained patches is determined at run time
by a prediction module. The module uses MLPs to extract
global and local features and outputs per-token probabilities
indicating which tokens should be preserved or pruned. To
enable differentiable sampling from these probabilities, they
adopt the Gumbel-Softmax technique [34], allowing end-to-
end training.

Chen et al. [27] were, to our knowledge, the first to
exploit window sparsity in local-attention vision transformers.
They employed a coarse-grained pruning strategy that removes
entire windows in Swin Transformer. A practical challenge is
that, although attention is computed window-wise, the subse-
quent MLP layers operate globally as standard fully connected
layers without window structure. To resolve this mismatch,
they modified the MLP and layer-normalization operations to
also operate in a window-wise manner. Window importance is
measured simply using L2 activation magnitudes.

Kong et al. [35] propose a fine-grained token pruning
framework, motivated by the observation that tokens exhibit
varying redundancy across attention heads. They first estimate
token importance for each head, then aggregate these per-
head scores with learned head weights to obtain a global

token importance score. Rather than discarding tokens that are
considered as redundant, they merge low-importance tokens
into a single package token to reduce information loss.

Although these methods can achieve higher sparsity, fine-
grained token pruning often leads to irregular computation
patterns that are difficult for existing hardware to exploit
efficiently, making it challenging to realize theoretical la-
tency improvements in practice. Coarse-grained, window-level
pruning offers a more hardware-friendly alternative. However,
Chen et al.’s [27] window pruning approach assumes that some
windows are entirely redundant. In practice, this assumption
rarely holds. Even visually uninformative background regions
can carry useful structural information. Moreover, coarse-
grained window removal can become overly aggressive when
layers contain very few windows. For instance, in the base
configuration of Swin Transformer, more than 90% of the
layers contain four or fewer windows, leaving little granularity
for safe pruning.

These observations suggest that a more balanced approach
is needed that maintains the hardware efficiency of window-
level operations while allowing selective pruning within each
window. Motivated by this, in the following we present our
window-level head pruning approach, which enables selective
pruning within each window without disrupting window-level
computation.

III. BACKGROUND

A. Swin Transformer Overview

The Swin Transformer improves upon the original ViT
design [14] by replacing global self-attention with window-
based self-attention, enabling the model to scale linearly with
increasing image resolution. Equation 1 shows the original
attention calculation in ViT where Q, K,V € REXHxNxC|
Here, B, H, N, and C are the batch size, the number of heads,
the number of patches and the head size, respectively.

T
Attention(Q, K, V) = SoftMax(%%) %4 (D

In window-based attention, the feature map is partitioned
into W non-overlapping windows, each containing N/W
patches. Attention is then computed independently within
each window by reshaping the tensors such that Q. K,V e
REBxHxNxC where B = B-W and N = N/W. This effec-
tively treats each window as an independent token sequence.

A limitation of fixed windows is that tokens in neighboring
windows cannot attend to one another, even when their content
is highly correlated. Swin Transformer addresses this by
applying a cyclic shift to the window partitioning in alternat-
ing layers, enabling cross-window information flow without
employing global attention. Additionally, Swin employs a hi-
erarchical design with patch merging, which gradually reduces
spatial resolution while increasing channel dimensionality. As
a result, deeper layers contain very few windows.

B. Multi-Head Self-Attention

The multi-head attention mechanism decomposes attention
into H parallel heads, each learning distinct patterns or rela-
tionships:

MHSA(X) = Concat(hy,...,hg)Wo, (2)

where
hi = Attention(X W<, XWX W))

The output projection W mixes information across heads.
Each head operates over the same window, but captures dif-
ferent types of dependencies (e.g., local structure, long-range
correlation, texture orientation). In principle, this diversity
enables richer representations.

C. Head Redundancy in Attention

Despite the intended specialization of attention heads, nu-
merous studies have shown that many heads contribute little
to overall model performance [28], [29]. Some layers can be
reduced to a single head, and moderate pruning may even im-
prove accuracy due to reduced overfitting or noise suppression.
These findings suggest that head importance is not uniform and
that head redundancy is common in Transformer architectures.

In vision transformers, similar redundancy is very likely,
particularly because window-based attention groups tokens
according to spatial locality. Windows dominated by uninfor-
mative regions (e.g., background) may require fewer heads,
whereas semantically rich windows (e.g., object boundaries)
may benefit from multiple heads. This indicates that head
relevance may vary across windows, not just across layers.

D. Computational Cost of Attention

The computational complexity of self-attention within a
window of size N is:

O(HN2C), @)

dominated by the QK7 matrix multiplication. The cost scales
linearly with the number of heads H and quadratically with
window size N. Since Swin Transformer uses the same
number of heads for every window, the runtime and FLOPs
are uniformly allocated, even though different windows may
require different representational capacity. Consequently, re-
ducing the number of active heads in less informative windows
has the potential to substantially reduce the computational cost
without sacrificing accuracy.

E. Motivation for Window-Level Head Pruning

Although attention is computed independently within each
window, all windows share the same number of heads.
This uniform allocation overlooks spatial variation in token
complexity. We hypothesize that attention head relevance is
window-dependent, i.e., some windows contain rich seman-
tic features that require multiple heads, while others are
sufficiently represented with only a subset of heads. This
motivates a pruning strategy that preserves the hardware-
favoring window structure while selectively reducing heads
within individual windows, leading directly to our proposed
window-level head pruning approach.

M=1T
e o W
/, H, 5= H,
N T EL ol |
M oL
" r_)lj aMij Binary Window-Head
/p & 4=) Saliency Masks

l A

TopK, (w x i1y (M)

Hfé%)

Fig. 2. Overview of the training pipeline used to learn window-level head
saliency. Given an input image, we compute gradients with respect to the 17
tensor M, aggregate saliency scores, and iteratively update the pruning masks.
In the mask, grey heads indicate pruned heads, while blue heads correspond

to the remaining heads.
. W R - W
‘@0 B0
BN 1 CREaCAN |
(Binary Window-Head

Saliency Masks
Fig. 3. Overview of the inference process, where the pruning masks learned
during training are applied to remove redundant window-head pairs and
reduce the computational cost of attention. Likewise, grey heads in the
matrix show the pruned heads while the green ones are the remaining ones.

IV. METHODOLOGY
A. Determining Head Importance

Most existing pruning approaches for Transformers [27],
[31] rely on magnitude-based criteria. Although intuitive,
magnitude alone is a poor proxy for importance; the as-
sumption that small weights contribute little to performance
has been questioned extensively [36]. In contrast, gradient-
based methods provide a more principled measure of saliency
by capturing the sensitivity of the loss to perturbations of
individual weights. A larger gradient magnitude indicates
that modifying the corresponding parameter produces a larger
change in the loss, and thus reflects its true contribution to the
optimization landscape.

B. Global Pruning Rate and Layer-Wise Allocation

Unlike prior work, we do not specify fixed layer-wise
pruning ratios. Instead, we define a global pruning ratio
that determines the total number of window-head pairs to be
pruned across the entire network. This design choice is moti-
vated by two challenges. First, it is difficult to predict layer-
wise importance a priori. A layer may appear critical overall
while being dominated by only a few important window-head
pairs, leaving the remainder safe to prune. Second, brute-
force search over layer-level ratios is infeasible, since even
the smallest Swin Transformer contains 16 layers, leading to
a prohibitively large combinatorial space.

To address this, we compute gradients for all window-head
pairs across all layers in a single backward pass. This yields a
global set of saliency scores that implicitly allocates pruning

ratios per layer based on actual gradient magnitudes rather
than heuristic assumptions.

C. Gradient-Based Saliency Estimation

Our pruning strategy proceeds iteratively, as described in
Algorithm 1. Each iteration begins by sampling two subsets
of the training dataset: one for saliency estimation and another
for fine-tuning after pruning. To estimate head importance, we
multiply the query (Q), key (K), and value (V) tensors by a
learnable binary gating tensor of shape W x H, where W is
the number of windows and H the number of heads. During
the saliency backward pass, this gating tensor is set to an all-
ones mask so that the gradients reflect the contribution of each
window-head pair. We average the gradients across all samples
in the saliency batch to obtain a stable estimate.

Let g, », denote the gradient magnitude associated with win-
dow w and head h. To prevent re-pruning during subsequent
iterations, previously removed pairs are assigned a saliency of
+00. We sort all saliencies in ascending order and select the
i-th smallest value as the threshold ¢, guaranteeing that exactly
i currently active pairs fall below the threshold. A binary
pruning mask is then constructed by marking all window-head
pairs with saliency less than ¢. These pairs are excluded from
the computation for the current iteration.

Figures 2 and 3 illustrate how the masks are generated
during training and applied during inference. For the sake of
illustration, the masks are shown as being applied after the
Q/K/V projections. In practice, this is inefficient because it
prevents any computation savings during /K /V generation.
In our implementation, we instead decompose the projection
weights into per-head blocks before the attention operation and
selectively apply these head-specific weights to each window
according to the saliency mask.

D. Iterative Pruning and Fine-Tuning

After each pruning step, the model is fine-tuned using the
small training subset D for one epoch to recover from the
structural change. Once the global pruning ratio is reached,
the model undergoes a final fine-tuning stage on the full
training dataset for 15 epochs. This two-stage fine-tuning
scheme significantly stabilizes training and mitigates accuracy
degradation caused by pruning.

V. EXPERIMENTAL SETUP
A. Vision Transformer Models

We evaluated our approach on two configurations of the
Swin Transformer: Swin-Tiny and Swin-Base. These mod-
els differ primarily in two aspects. First, their embedding
dimensions are 96 and 128 for Swin-Tiny and Swin-Base,
respectively. Second, although both models share the same
number of layers in stages 1, 2, and 4, they differ substantially
in stage 3, which contains 6 layers in Swin-Tiny and 18 layers
in Swin-Base.

We selected these two variants to assess the effectiveness of
our method across architectures of varying capacity and com-
putational complexity. For both models, we do not prune the

Algorithm 1 Pruning Algorithm

Input: Training dataset D, initial model V with L layers,
global pruning ratio r, number of pairs pruned per iteration
1.
Output: The pruned Swin Transformer.
1: Initialize mask M < 1r; current pruning ratio 7¢y, < 0.
2: while 7., < r do
3: Randomly sample a large subset D C D for training;

4: Randomly sample a small subset d C D for saliency
estimation;

5 Compute window-head gradients G using d;

6 for w=0to W —1 do

7: for h=0to H—1 do

8 glw, h] ‘—(11' »ed Gl w, hl;

9 end for

10: end for

1: P+ {(w,h)| Mw,h] =0}

122 glw, h] < +oo for all (w, h) € P; // avoid re-pruning
13: (indices, vals) + Sort(g);
14: t < vals[i];

15: mask[w, h] < (g[w, h] < t);
16: MJw,h] < 0 for all (w,h) with mask[w, h] = 1;
17: Fine-tune V on D for one epoch;

18: Teur € Teur T 4

19: end while

20: Fine-tune V on D for 15 epochs;

// pruning threshold

layers in the final stage, as these layers contain only a single
window, making window-level head pruning inapplicable.

B. Training Setup

All experiments were conducted on the ImageNet-1K clas-
sification dataset [37], using the standard training split for
optimization and the validation split for evaluation. During
iterative pruning and fine-tuning, we apply knowledge dis-
tillation [24], where the teacher model is the corresponding
unpruned counterpart. The total loss is a weighted combination
of the cross-entropy loss and the distillation loss. We set the
distillation weight to a@ = 0.7 and the temperature to 7' = 2.
Optimization is performed using AdamW [38] with a learning
rate of 5 x 107 and a weight decay of 1 x 104,

For the final fine-tuning stage, we maintain the same base
learning rate and weight decay, but introduce a cosine learning
rate schedule with a 10% warm-up period. The learning rate
increases linearly from 1 x 107° to the base value during
warm-up, and then follows a cosine decay back to 1 x 1076
for the remainder of training. This schedule is implemented
using the CosineLRScheduler [39].

VI. RESULTS AND DISCUSSION

We first report the classification accuracies achieved by
the two model configurations under different global pruning
ratios r, shown in Figures 4 and 5. For both Swin-Tiny and
Swin-Base, we evaluate four uniformly spaced pruning ratios
between r ~ 0.33 and r =~ 0.67 (inclusive). Due to divisibility

Accuracy vs. Sparsity Ratio

81.0 4
80.5 1
g
<. 80.01
o
s
=1
v
£ 795
79.0 4
—8— Pruned model
78.5 1 --- Baseline (81.18%)
T T T T T T T
0.35 0.40 0.45 0.50 0.55 0.60 0.65
Sparsity ratio
Fig. 4. Swin-Tiny Classification Accuracies
Accuracy vs. Sparsity Ratio
83.5 1
83.0 1
g
< 82.5 1
o
s
=1
|9)
1)
<L
82.0 1
81.5 1
—8— Pruned model
=== Baseline (83.42%)
T T T T T T T
0.35 0.40 0.45 0.50 0.55 0.60 0.65

Sparsity ratio

Fig. 5. Swin-Base Classification Accuracies

constraints, the exact pruning ratios differ slightly between the
two configurations (except at the endpoints), but are matched
as closely as possible to ensure fair comparison.

Overall, Swin-Base exhibits slightly higher robustness to
pruning, likely due to its larger representational capacity. Nev-
ertheless, Swin-Tiny also maintains competitive accuracy, with
only a ~1.5% drop at the highest pruning level r ~ 0.67. At
smaller pruning ratios, such as r = 0.33, both configurations
retain most of their accuracy, with drops of only 0.5% for
Swin-Tiny and 0.2% for Swin-Base.

Figures 6 and 7 visualize the resulting layer-wise pruning
ratios for Swin-Tiny under various global pruning ratios. At
r =~ 0.67, the pruning ratio generally decreases with network
depth. One might be tempted to conclude that a monotonically
decreasing, depth-dependent pruning schedule would suffice.
However, the pattern at » ~ 0.33 deviates substantially from

100

80

(=)}
o

39.6% 39.6%

o
o

Pruning Ratio (%)

20

Stage 1 Stage1l Stage2 Stage2 Stage3 Stage3 Stage3 Stage3 Stage 3 Stage 3
Layer 1 Layer2 Layerl Layer2 Layerl Layer2 Layer3 Layer4 Layer5 Layer6

Fig. 6. Layer-wise Pruning Ratios (r =~ 0.33)

100

80

76.6% 76.0%

62.5% 62.5%

60 58.3% 58.3% 56.2%

40

Pruning Ratio (%)

20

Stage 1 Stagel Stage2 Stage2 Stage3 Stage3 Stage3 Stage3 Stage 3 Stage 3
Layer 1 Layer2 Layerl Layer2 Layerl Layer2 Layer3 Layer4 Layer5 Layer6

Fig. 7. Layer-wise Pruning Ratios (r ~ 0.67)

this behavior: the layer-wise pruning ratios are markedly more
irregular. This discrepancy underscores the difficulty of design-
ing hand-crafted, layer-wise pruning rules, and highlights the
need for data-driven allocation of pruning across layers.

Table I reports the MAC reductions for the entire attention
computation, including the query/key/value projections, the
self-attention computation, and the output projection. Because
our pruning mask is learned offline, no additional inference
overhead is introduced, unlike methods that require prediction
modules or dynamic mask generation. The total MAC reduc-
tion does not exactly match r because the final stage of Swin,
which contains a single window, is not pruned. Swin-Base
achieves larger relative MAC reductions at equivalent pruning
ratios, owing to its third stage containing 18 layers, which
dominates its total computational cost.

We additionally evaluate latency to assess the practicality
of our approach for real-time applications. Note that these
measurements do not correspond to end-to-end latency, as
a full evaluation would require an optimized implementation
that efficiently maps the irregular, pruned computations with
varying window sizes onto the GPU; we leave this system-
level optimization to future work. Instead, we measure the
attention latency separately for each window and then aggre-
gate the per-window latency over the network for both the

TABLE I
MAC REDUCTION UNDER DIFFERENT PRUNING RATIOS.

T Swin-Base Swin-Tiny
(pruning ratio) | # of MACs Red. (%) | # of MACs Red. (%)
unpruned 5.24x10° - 2.61x10° -
0.33 3.63x109 30.7 1.88x109 28.0
0.44 3.10x10° 40.9 1.63x10° 37.3
0.55 2.56x10° 51.1 1.39%10° 46.6
0.67 2.03x109 61.3 1.15x109 56.0

pruned and unpruned models to enable a fair comparison.
On Swin-Base, we observe latency reductions ranging from
2243% at r ~ 0.33 to 51.39 % at r ~ 0.66, demonstrating
the potential of our method to substantially reduce attention
latency in latency-sensitive deployments.

The results demonstrate that window-level head pruning
is an effective strategy for reducing attention computation
while preserving accuracy across differently sized Swin Trans-
former configurations. Notably, the learned pruning patterns
reveal that redundancy is not uniformly distributed across
layers, nor does it follow simple depth-dependent trends.
This validates our choice of a global, gradient-driven saliency
measure, rather than manually prespecified layer-wise pruning
ratios. Furthermore, the substantial MAC reductions achieved,
particularly in Swin-Base configuration, indicate that our
method scales favorably with model depth and complexity.
Importantly, because the pruning mask is static and requires
no runtime prediction, the approach retains the hardware
efficiency of window-level attention and avoids irregular com-
putation patterns associated with fine-grained token pruning.
These findings suggest that selective head pruning within
windows offers a promising direction for designing efficient
vision transformers that maintain accuracy while substantially
reducing computational overhead.

VII. CONCLUSION

In this work, we introduced SlimSwin, a gradient-based
window-level head pruning method for Swin Transformer,
founded on the observation that different windows require dif-
ferent amounts of attention capacity. By applying a learnable
mask tensor over window-head pairs and using gradients of
this mask as saliency scores, our approach applies pruning
globally across all layers without relying on manually specified
layer-wise pruning ratios. The resulting pruning masks are
static and window-aligned, preserving the hardware-friendly
structure of window-based attention while selectively remov-
ing redundant computation within each window.

In future work, we aim to extend this method to dynamically
determine pruning masks during inference, with the potential
to further improve accuracy. In addition, we plan to comple-
ment our attention-level reductions by applying pruning to the
MLP layers, enabling additional computational savings.

REFERENCES

[1] K. Simonyan, “Very deep convolutional networks for large-scale image
recognition,” arXiv preprint arXiv:1409.1556, 2014.

[2]

[3

=

[4]

[5]

[6]

[7

—

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770-778.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 1-9.

S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” Advances in neural
information processing systems, vol. 28, 2015.

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 779—
788.

K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask r-cnn,” in
Proceedings of the IEEE international conference on computer vision,
2017, pp. 2961-2969.

J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2015, pp. 3431-3440.

A. Krizhevsky, 1. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Advances in neural informa-
tion processing systems, vol. 25, 2012.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, L. Kaiser, and 1. Polosukhin, “Attention is all
you need,” in Advances in Neural Information Processing Systems,
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, Eds., vol. 30. Curran Associates,
Inc., 2017. [Online]. Available: https://proceedings.neurips.cc/paper_
files/paper/2017/file/3t5ee243547dee91fbd053c1c4a845aa-Paper.pdf

X. Wang, R. Girshick, A. Gupta, and K. He, “Non-local neural net-
works,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2018, pp. 7794-7803.

P. Ramachandran, N. Parmar, A. Vaswani, I. Bello, A. Levskaya,
and J. Shlens, “Stand-alone self-attention in vision models,” in
Advances in Neural Information Processing Systems, H. Wallach,

H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, Eds.,, vol. 32. Curran Associates, Inc., 2019.
[Online]. Available: https://proceedings.neurips.cc/paper_files/paper/

2019/file/3416a75f4cea9109507cacd8e2f2aefc-Paper.pdf

H. Wang, Y. Zhu, B. Green, H. Adam, A. Yuille, and L.-C. Chen,
“Axial-deeplab: Stand-alone axial-attention for panoptic segmentation,”
in Computer Vision — ECCV 2020, A. Vedaldi, H. Bischof, T. Brox, and
J.-M. Frahm, Eds. Cham: Springer International Publishing, 2020, pp.
108-126.

N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and
S. Zagoruyko, “End-to-end object detection with transformers,” in
European conference on computer vision. Springer, 2020, pp. 213—
229.

A. Dosovitskiy, “An image is worth 16x16 words: Transformers for
image recognition at scale,” arXiv preprint arXiv:2010.11929, 2020.
H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and
H. Jégou, “Training data-efficient image transformers & distillation
through attention,” in International conference on machine learning.
PMLR, 2021, pp. 10347-10357.

Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and
B. Guo, “Swin transformer: Hierarchical vision transformer using shifted
windows,” in Proceedings of the IEEE/CVF international conference on
computer vision, 2021, pp. 10012-10022.

Y. LeCun, J. Denker, and S. Solla, “Optimal brain damage,” Advances
in neural information processing systems, vol. 2, 1989.

B. Hassibi and D. Stork, “Second order derivatives for network pruning:
Optimal brain surgeon,” Advances in neural information processing
systems, vol. 5, 1992.

S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and con-
nections for efficient neural network,” Advances in neural information
processing systems, vol. 28, 2015.

H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning
filters for efficient convnets,” arXiv preprint arXiv:1608.08710, 2016.
M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Training
deep neural networks with binary weights during propagations,” Ad-
vances in neural information processing systems, vol. 28, 2015.

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

(32]

(33]

[34]

(35]

[36]

[37]

[38]

[39]

M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net:
Imagenet classification using binary convolutional neural networks,” in
European conference on computer vision. Springer, 2016, pp. 525-542.
B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko, “Quantization and training of neural networks for
efficient integer-arithmetic-only inference,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2018, pp. 2704—
2713.

G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” arXiv preprint arXiv:1503.02531, 2015.

Y. Rao, W. Zhao, B. Liu, J. Lu, J. Zhou, and C.-J. Hsieh, “Dynam-
icvit: Efficient vision transformers with dynamic token sparsification,”
Advances in neural information processing systems, vol. 34, pp. 13937—
13949, 2021.

Y. Tang, K. Han, Y. Wang, C. Xu, J. Guo, C. Xu, and D. Tao,
“Patch slimming for efficient vision transformers,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2022, pp. 12165-12174.

X. Chen, Z. Liu, H. Tang, L. Yi, H. Zhao, and S. Han, “Sparsevit: Revis-
iting activation sparsity for efficient high-resolution vision transformer,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2023, pp. 2061-2070.

P. Michel, O. Levy, and G. Neubig, “Are sixteen heads really better
than one?” Advances in neural information processing systems, vol. 32,
2019.

E. Voita, D. Talbot, F. Moiseev, R. Sennrich, and I. Titov, “Analyzing
multi-head self-attention: Specialized heads do the heavy lifting, the rest
can be pruned,” arXiv preprint arXiv:1905.09418, 2019.

Y. Ding, Y. Liu, H. Luan, and M. Sun, “Visualizing and understanding
neural machine translation,” in Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long
Papers), R. Barzilay and M.-Y. Kan, Eds. Vancouver, Canada:
Association for Computational Linguistics, Jul. 2017, pp. 1150-1159.
[Online]. Available: https://aclanthology.org/P17-1106/

H. Wang, Z. Zhang, and S. Han, “Spatten: Efficient sparse attention
architecture with cascade token and head pruning,” in 2021 I[EEE
International Symposium on High-Performance Computer Architecture
(HPCA). 1IEEE, 2021, pp. 97-110.

P. Dupuis and H. Ishii, “On lipschitz continuity of the solution mapping
to the skorokhod problem, with applications,” Stochastics: An Interna-
tional Journal of Probability and Stochastic Processes, vol. 35, no. 1,
pp. 31-62, 1991.

K.-i. Funahashi and Y. Nakamura, “Approximation of dynamical systems
by continuous time recurrent neural networks,” Neural networks, vol. 6,
no. 6, pp. 801-806, 1993.

E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with
gumbel-softmax,” arXiv preprint arXiv:1611.01144, 2016.

Z. Kong, P. Dong, X. Ma, X. Meng, W. Niu, M. Sun, X. Shen, G. Yuan,
B. Ren, H. Tang et al., “Spvit: Enabling faster vision transformers via
latency-aware soft token pruning,” in European conference on computer
vision. Springer, 2022, pp. 620-640.

J. Ye, X. Lu, Z. Lin, and J. Z. Wang, “Rethinking the smaller-norm-
less-informative assumption in channel pruning of convolution layers,”
arXiv preprint arXiv:1802.00124, 2018.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE Conference on
Computer Vision and Pattern Recognition, 2009, pp. 248-255.

I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
arXiv preprint arXiv:1711.05101, 2017.

, “Sgdr: Stochastic gradient descent with warm restarts,” arXiv
preprint arXiv:1608.03983, 2016.

