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Abstract—This paper presents a conflict-aware, Machine
Learning (ML)-guided workload optimization methodology for
FPGA-based Acceleration-as-a-Service (AaaS) platforms operat-
ing in dynamic cloud-edge environments. Traditional scheduling
techniques rely on static, design-time profiling, which is not well
suited to changing workloads and unpredictable interference
between hardware accelerators. To address this limitation, a
run-time scheduling strategy is proposed that uses incrementally
trained, lightweight ML-based models to characterize workload
behavior from execution traces. These predictions are then used
to drive a population-based metaheuristic search, implemented
with the Crow Search Algorithm, in order to select task con-
figurations and replication levels that reduce resource conflicts
and shorten workload execution time. Experimental results show
that the proposed methodology achieves significant reductions
in workload makespan compared to a baseline First come, first
served approach, even when the overhead of model training and
optimization is taken into account.

Index Terms—Machine Learning for Tuning Hardware,
Run-Time Workload Optimization, Conflict-Aware Scheduling,
Acceleration-as-a-Service, Cloud-Edge Continuum

I. INTRODUCTION

As cloud and edge computing infrastructures continue to
grow [1], the cloud-edge continuum is receiving increasing
attention [2]. In this setting, centralized cloud platforms and
distributed edge devices are combined into a unified computing
substrate, so that applications can exploit low latency and
improved data locality at the edge while still benefiting from
the scalability and large compute capacity of the cloud.

Field-Programmable Gate Arrays (FPGAs) are becoming
important components across this continuum, from edge
devices [3] to large cloud deployments [4]. They provide
high computational throughput with significantly lower power
consumption than general-purpose Central Processing Units
(CPUs) and Graphics Processing Units (GPUs), while preserv-
ing some flexibility thanks to Dynamic and Partial Reconfigu-
ration (DPR). In many systems, FPGAs are exposed as AaaS
devices [5], so that heterogeneous workloads can be offloaded
to reconfigurable accelerators.

Taking full advantage of these reconfigurable resources
in the cloud-edge continuum requires solving a challenging
scheduling problem. The system must decide which tasks are
offloaded to the FPGA fabric, how many replicas of each task
are instantiated (i.e., the level of parallelism), and when they

are executed [6]. This problem is NP-hard [7] and belongs to
the class of combinatorial optimization problems [8]. In slot-
based acceleration frameworks such as the one considered in
this work, the number of possible configurations grows rapidly
with the number of tasks and reconfigurable regions, making
exhaustive search infeasible under strict latency constraints.

Most existing approaches address this issue by relying on
design-time workload profiling [9]. Task characteristics, such
as execution time, power consumption, or communication
overhead, are measured in advance under controlled condi-
tions. The profiling data are then used either to build fixed,
precomputed schedules, or to guide run-time heuristics that
operate assuming static workloads that are known beforehand.

In contrast, workloads in the cloud-edge continuum are typ-
ically dynamic and often unpredictable [2]. Tasks can change
their behavior due to input or environmental variations and
may target heterogeneous platforms with different capabilities.
In this context, extensive design-time profiling is not only
impractical but may also fail to capture the variability of real
deployments, for instance the interaction between different
accelerator flavors that share the FPGA fabric.

This work proposes a data-driven workload optimization
methodology for reconfigurable multi-accelerator systems that
aims to reduce workload makespan and improve energy ef-
ficiency. Previous results have shown that conflicts between
tasks executed in parallel can increase execution time by
up to 500% due to resource contention [10]. Based on that
observation, a conflict-aware scheduling approach guided by
run-time ML-based workload characterization is introduced.
In particular, lightweight predictive models are leveraged,
which are trained incrementally using execution time mea-
surements collected during system operation, also capturing
the interaction between concurrently running accelerators [11].
These models provide online estimates of performance and
interference that the scheduler exploits to adapt its decisions
to changing workloads and operating conditions without prior
knowledge or manual tuning, effectively enabling a self-
adaptive behavior.

Efficient exploration of the scheduling solution space re-
mains a key difficulty. To tackle it, this work employs the
Crow Search Algorithm (CSA) metaheuristic [12] instead
of traditional heuristic-based strategies. Metaheuristics offer



high-level search schemes suitable for complex optimization
problems and are largely problem-independent [13], [14]. This
makes them attractive in cloud-edge scenarios, where schedul-
ing and resource management policies should be portable
across diverse platforms.

The rest of this paper is organized as follows. Section II
reviews related work. Section III summarizes the workload
management infrastructure and the run-time ML-based char-
acterization used in this study. The proposed conflict-aware
scheduling strategy is described in Section IV. Section V
presents the experimental evaluation, and Section VI concludes
the paper and outlines future work.

II. STATE OF THE ART

The predominant strategy to address workload optimization
in FPGAs is to perform an a priori characterization of the
tasks to be accelerated and then use this information at run
time to guide scheduling decisions [9]. Most existing proposals
focus on design-time knowledge of primarily Directed Acyclic
Graph (DAG)-based workloads and target objectives such as
makespan reduction [15]-[21], power minimization [22], or
fair resource allocation [23], [24].

Although makespan optimization is the most common goal,
the specific strategies differ. In [15] the authors apply re-
configuration prefetching, where the configuration of a future
task is overlapped with the execution time of the current
one [25]. They extend this idea to several DAGs, prefetching
tasks from future graphs while the current graph is running,
which requires prior knowledge of multiple DAGs but yields
an improvement of almost 22% in makespan. In [16], latency
information for each task in a DAG is used by a heuristic
that partitions the tasks into groups. Each group contains one
longer task that hides the execution time of the remaining
ones when they are executed together on the FPGA. In [17],
memory-related information per task (e.g., required bandwidth
and number of memory accesses) is exploited to identify
sets of tasks with complementary memory access patterns
that can run simultaneously in the FPGA fabric with reduced
interference. Their results report up to 65% improvement over
earlier approaches.

Other works focus on heterogeneous systems and the deci-
sion of whether a task should run on the FPGA or remain in
software. In [18], the scheduler offloads tasks to CPUs, GPUs,
or FPGAs depending on the expected benefit, using predefined
task profiles combined with run-time resource information.
Their strategy selects the set of computing nodes that best suits
each workload and achieves a speedup of 1.25x in workload
execution. A similar philosophy is followed in [19], where a
heuristic selects both the target device (e.g., FPGA or CPU)
and the number of parallel instances per task based on design-
time profiling, obtaining a 20% reduction in makespan with
respect to conventional scheduling techniques.

Varying the task capabilities has also been explored as a way
to improve performance. The work in [20] constructs, at design
time, a solution space that includes multiple configurations for
each task, which trade performance against Quality of Service

(QoS). At run time, if the application deadline is not satisfied,
the heuristic switches to versions with lower QoS (e.g., lower
video quality, since they target video processing) and faster
execution. Along the same line, the proposal in [21] uses task
configurations with different degrees of parallelism. Their goal
is to avoid starvation while maximizing overall performance.
To that end, tasks are initially executed with high parallelism,
but can be replaced by less parallel and less resource-intensive
variants when additional tasks need to be admitted. As before,
this approach relies on prior knowledge of task behavior and
requires profiling of all configurations.

Power optimization has also been considered. In [22],
design-time profiling is used to select, at run time, combina-
tions of tasks that maximize the number of parallel accelerators
per task while minimizing the overall power consumption
when those tasks run concurrently.

Several works address fairness in resource usage through
heuristic algorithms that explicitly consider the FPGA re-
sources consumed by each task at run time. In [23], the
scheduler tracks the utilization of the FPGA fabric per task
and assigns priorities inversely proportional to this utilization
metric, updating them periodically. This approach leads to
higher FPGA utilization and performance than round-robin
counterparts, while still promoting shared use of resources. A
similar idea is applied in [24], although the focus is placed on
different tenants rather than individual tasks, again obtaining
better utilization ratios.

In summary, most scheduling strategies for FPGAs, regard-
less of whether they target performance, power consumption,
or fairness, depend mainly on design-time information that is
later used at run time. While this can be sufficient in static
scenarios, it overlooks critical run-time aspects such as the
dynamic interaction between tasks that share the FPGA fabric.
For dynamic workloads, such as those found in the AaaS
paradigm, some form of run-time adaptivity is required.

The approach proposed in this paper follows a different
direction and targets dynamic workloads. Instead of extensive
design-time profiling, which assumes deep prior knowledge
of the workload, it relies on ML-based models to characterize
the workload at run time. This characterization is then used
on the fly to guide the optimization process. The scheduler
explicitly focuses on reducing the interaction between kernels
running in parallel, which has been largely neglected by state-
of-the-art solutions even though its impact on performance is
significant [10]. Finally, the proposed method is built around
a metaheuristic algorithm rather than a heuristic one, since
metaheuristics provide problem-independent search strategies
that are more easily generalizable and therefore better suited
to the heterogeneous cloud-edge continuum [14].

III. BACKGROUND

The main contribution of this paper is the proposed work-
load optimization method. However, it relies on two pre-
existing components: a workload management infrastructure
that offloads tasks to the FPGA fabric and records their



behavior, and an incremental modeling methodology for run-
time workload characterization. Both are summarized in this
section to provide context. A detailed description can be found
in [10] and [11].

A. Workload Management Infrastructure

The infrastructure has two main roles: offloading tasks
from the workload to the FPGA and collecting power and
performance traces during system operation.

a) Workload Offloading: The workloads are handled as
collections of monolithic tasks rather than DAGs, although
DAGs could also be supported. A two-queue structure is used.
Incoming tasks are first placed in a waiting queue and then
moved to a scheduling queue when they become schedulable
according to the scheduling policy and resource availability.
Each schedulable task is implemented on the FPGA fabric
using the ARTICo? hardware acceleration framework [26],
which partitions the reconfigurable area of the device into
independent reconfigurable slots. This structure enables task-
level parallelism (different tasks in different slots), data-level
parallelism (several replicas of the same task mapped to
multiple slots), or a combination of both, thanks to DPR.

b) Workload Registration: While tasks are running in the
different reconfigurable slots, a monitoring process periodi-
cally records performance traces from the accelerators, for
example start and stop signals, similar in spirit to a Xilinx
Integrated Logic Analyzer (ILA) [27] but implemented on
device and without the need for an external host. In addition,
an external board with Analog to Digital Converter (ADC)
capabilities is used to measure power consumption during
operation. The result is a set of synchronized power and
performance traces that capture the behavior of the various
task combinations running concurrently on the FPGA.

B. Run-Time Workload Characterization

The traces provided by the workload management infras-
tructure serve as input to build predictive ML-based models.
These models are trained on the recorded power and perfor-
mance data and updated incrementally at run time. As tasks
are offloaded to the FPGA, new measurements are collected
and incorporated into the models, so that they follow possible
changes in the system or environment, which is common
in cloud-edge scenarios. The models implement lightweight
regression algorithms with specific learning procedures (de-
scribed in [11]) that keep training overhead low and make
run-time prediction of power and execution time feasible even
on modest platforms.

In this work, these two building blocks are combined as
follows. The workload management infrastructure offloads
tasks to the FPGA while incrementally feeding power and
performance traces to the data-driven models. On top of this,
a scheduler based on a metaheuristic algorithm is used to
close the loop. It queries the models at run time to obtain
predictions and uses them to guide task scheduling decisions
with the goal of reducing workload makespan and improving
energy efficiency. An overview of the complete methodology
is shown in Figure 1.
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Fig. 1: Overview of the workload optimization methodology.

IV. CONFLICT-AWARE SCHEDULING

This section describes the scheduling problem addressed in
this work, the proposed solution, and its implementation.

A. Optimization Problem Description

The goal is to schedule hardware acceleration tasks on the
FPGA. In particular, the scheduler must decide, at run time
and whenever new tasks arrive or resources become available,
which combination of tasks should be offloaded to the FPGA
fabric. In a slot-based reconfigurable architecture such as the
one used here, this is equivalent to selecting a configuration
of slots, i.e., choosing which tasks run together and how many
replicas of each task are instantiated, exploiting both data-level
and task-level parallelism through DPR.

Task execution on the FPGA is assumed to be non-
preemptive, since the overhead of preemption would generally
offset its benefits. Once a task starts, it runs until completion
before the corresponding slots can be reused. As a result, each
scheduling decision must take into account both tasks that are
already running and tasks in the waiting queue, and select a
subset of waiting tasks that yields a good long-term outcome.

The same procedure is repeated every time a new task
appears or a reconfigurable slot is freed in the FPGA fabric.

B. Proposed Solution

To determine suitable configurations, this work exploits the
run-time workload characterization described in Section III.
Each candidate schedule (i.e., each configuration of tasks and
replicas) is evaluated using predictions provided by the ML-
based models. In particular, the models estimate the perfor-
mance degradation caused by resource contention among tasks
that run in parallel, which can significantly affect overall exe-
cution time [10]. The scheduler then seeks configurations that
reduce this interaction, with the expectation that consistently



choosing such configurations will lead to shorter workload
makespans in the long run.

The solution space, however, grows quickly with the number
of tasks and available slots. A greedy method that exhaustively
evaluates all possible configurations is therefore not feasi-
ble [8]. Instead, a metaheuristic optimization algorithm is used
to explore only a subset of the solution space. Among the many
metaheuristic families (e.g., population-based, evolutionary, or
physics-inspired algorithms), this work focuses on population-
based methods, which have shown good results in complex
scheduling problems of this type [28].

The specific metaheuristic selected is the CSA [12]. It has
been successfully applied to different optimization domains
and has shown competitive performance compared to alterna-
tives such as Particle Swarm Optimization (PSO) [29] and
Ant Colony Optimization (ACO) [30]. In addition, its im-
plementation is relatively simple and lightweight [31], which
is an important property in the target scenario, where run-
time scheduling optimization, workload characterization, and
hardware acceleration already coexist on the same platform.

C. Scheduler Implementation

The CSA is inspired by the behavior of crows [12]. Crows
hide food in specific locations and remember those locations.
They also observe other crows to locate their hiding places,
and may react by moving their own food if they notice that
they are being followed. A useful feature of the algorithm is
that it only requires two tunable parameters: the flight length
f1, which controls how far a crow can move in one iteration,
and the awareness probability AP, which determines how
likely a crow is to detect that it is being followed. Together,
these parameters control the exploration/exploitation ratio.

In qualitative terms, the algorithm works as follows. In
each iteration, each crow decides whether to follow another
crow based on the awareness probability. If it does not follow
any crow, it moves to a random position (exploration). If it
follows another crow, it moves to a position near the other
crow’s hiding place, visiting areas that are already known to
be promising (exploitation).

The pseudocode of CSA is shown in Algorithm 1 and can
be summarized as follows:

1) The initial positions of the crows are randomly generated
in a d-dimensional space, where d is the number of
variables to optimize (line 1).

2) Each initial position is evaluated, and the result is stored
as the crow’s memory (line 2). The memory m,; of crow
i keeps the best position that crow has found so far.

3) To update its position, each crow z; randomly selects
another crow z; to follow (line 5) and generates a
random number r;. If this random value is greater than
the awareness probability AP, crow x; moves towards
the hiding place m; of crow x; (line 6).

The new position of crow x; is computed as (line 7):

Ii,iter+
r; X fli,iter><
(mj,iter - wi,iter)

if r; > APjjer (1)

Ljiter+1 =

a random position otherwise

where iter is the iteration index, AP ji.r is the awareness
probability of crow x;, r; and r; are random numbers
that control, respectively, whether crow z; follows crow
x; and how close it lands to m;, and fl; j.r is the flight
length of crow z;.

4) The new position is then checked against the boundaries
of the search space (line 9), and the objective function
is evaluated (line 10). The objective or fitness function
is defined according to the optimization problem under
consideration.

5) Finally, the memory is updated (line 11) according to

if f(@iiter+1) < f(Miter)
otherwise

2

_ mi,iter—‘—l
My iter+1 =
My iter

where f(2;iter+1) and f(m; i) denote the fitness of
the new position of crow zx; and its current memory,
respectively.

Algorithm 1 CSA: Crow Search Algorithm

Input: n Number of crows in the population
itery.x Maximum number of iterations
Output: Best crow position found
1: Initialize positions of crows
2: Initialize crows’ memory
3: for iter = 1 to itery,, do
for each crow i in the population do
Choose a random crow j
Determine the awareness probability AP
Update ; jer41 using Equation 1
end for
Check solution boundaries
10:  Evaluate the fitness of each crow
11:  Update crows’ memory using Equation 2
12: end for

R AN

Exploration occurs when a crow moves to a random position
instead of following another crow. Exploitation happens when
a crow moves towards the hiding place of another crow. The
degree of exploitation depends on how close the new position
is to the other crow’s memory and is controlled by the flight
length parameter fI. This is illustrated in Figure 2. If fI < 1,
the new position lies between the current position (blue dot)
and the hiding place of the other crow (orange dot). If fI > 1,
the new position can be located beyond the other crow’s
memory. The random value 7; determines where the crow
lands along the green arrow in Equation 1. This introduces
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Fig. 2: Exploitation process of the crows.
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Fig. 3: Example of scheduling solution space (2 tasks, 3 slots).

a smooth transition between exploitation and exploration and
helps reduce the risk of getting trapped in local minima.

D. Adaptation of CSA

To apply CSA to the considered scheduling, a few adapta-
tions to the original formulation are required:

o The optimization variables correspond to the tasks that
can be accelerated. For each task, the variable value is
the number of parallel replicas to instantiate. This value
ranges from zero to the total number of reconfigurable
slots in the FPGA. Figure 3 illustrates a simplified exam-
ple with two tasks and at most three available slots. In
this case, the crows move in a two-dimensional solution
space whose points represent all possible distributions of
the three slots between tasks A and B.

« In contrast to the continuous formulation in the original
CSA, the solution space here is discrete, since the number
of replicas per task must be an integer. To deal with this,
the boundary check step (line 9 in Algorithm 1) rounds
each coordinate of the new crow position to the nearest
integer. Furthermore, the sum of all replicas cannot ex-
ceed the number of available slots, so the boundary check
also enforces this constraint by decrementing the largest
variable until the total number of replicas fits within the
available slots.

The scheduling process on the FPGA operates as follows.
For clarity, the description starts from an arbitrary instant

in which some tasks are already executing, some others are
waiting, and a set of slots is free:

1) If there are free slots available in the FPGA fabric, the
scheduler inspects the waiting queue to identify the tasks
that can be offloaded and starts the scheduling process.

2) The tasks in the waiting queue define the optimiza-
tion variables, and thus a d-dimensional solution space,
where d is the number of waiting kernels.

3) The CSA runs for a fixed number of iterations with a
given population size, exploring a subset of the solution
space. Each crow position is evaluated by means of a
fitness function, described in the next subsection.

4) The crow position that yields the best fitness value is
selected, and the corresponding configuration of tasks
and replicas is implemented on the FPGA.

5) The same procedure is re-executed every time a new
task arrives or a slot becomes free.

E. Fitness Function

The fitness function quantifies the quality of the solutions
found by CSA and is central to the effectiveness of the
scheduler. In this work, a multi-objective fitness function is
defined to capture two goals commonly addressed in the liter-
ature: reduction of workload makespan (and, indirectly, energy
efficiency, given its direct relation to execution time) and fair
allocation of resources. Lower fitness values correspond to
better solutions.

a) Workload Makespan Optimization: As outlined in
Section III, the scheduler uses the run-time ML-based work-
load characterization to predict the execution time of different
combinations of tasks. When a crow position is evaluated, the
models provide for each task in the waiting queue: (i) the
predicted execution time if offloaded to the FPGA under the
current configuration, and (ii) the predicted execution time if
executed in isolation. The relative difference between these
two values captures the expected impact of interaction on
execution time for that task. This interaction is computed for
all waiting tasks, assuming the scenario defined by the crow
position (running tasks and number of accelerators per task).
Since several waiting tasks may be scheduled simultaneously,
the mean interaction across all scheduled tasks is used as a
scheduling conflict term.

Scheduling no tasks would trivially result in no interaction.
To avoid such degenerate solutions, an activity reward term is
introduced that favors configurations using a higher fraction
of available accelerators. The global conflict term is defined
in Equation 3. Larger values correspond to worse fitness.

N e :
1 T§hdred _ Tfilone Slots,, . d
Conflict= = > (" —mw — |~ oo, O
onflic N - ( Tialone ) Slotstotal ®
i=1 —

. Activity Reward Term
Average Interaction Impact

b) Fair Resource Allocation: The second term in the
fitness function captures how evenly resources are distributed
among tasks. For each crow position, the standard deviation



of the vector of assigned replicas per task is computed, as
shown in Equation 4. A high standard deviation indicates that
some tasks receive significantly more replicas than others,
which represents an unbalanced situation. Again, higher values
correspond to worse fitness.

Fairness = std ({Slotsr,, Slotst,, ..., Slotstn}) (4)

c) Weighted Combination: The final fitness value is
obtained as a weighted linear combination of the normalized
conflict and fairness terms, controlled by parameter «, as
shown in Equation 5. Normalization enables a meaningful
combination of both terms and allows the user to tune the
relative importance of each objective. Larger values of «
emphasize minimization of conflict, while smaller values give
more weight to fairness.

Fitness = « - Conflict + (1 — «) - Fairness )

V. EXPERIMENTAL EVALUATION

This section evaluates the proposed conflict-aware scheduler
using a set of hardware acceleration benchmarks. First, the
experimental setup is described, then the configuration of the
scheduler parameters, and finally the main results.

A. Experimental Setup

The proposed system is deployed on an AMD Zynq Ul-
traScale+ ZCU102 board (XCZU9EG-FFVB1156-2-1), with
the Programmable Logic (PL) running at 100 MHz and the
Processing System (PS) at 1.2 GHz. Hardware accelerators are
implemented using the workload management infrastructure
described in Section III, with up to 8 simultaneous acceler-
ators mapped to the FPGA fabric. The evaluation uses the
MachSuite benchmark suite [32], which provides 19 algorithm
variants across 12 Dwarf patterns [33]. Due to resource
limitations, 8 kernels are excluded, but 9 of the 12 Dwarfs
remain represented.

A synthetic workload of 60,000 acceleration requests is
generated in three phases. The first 20,000 requests involve
4 MachSuite benchmarks, the next 20,000 involve 8 bench-
marks, and the last 20,000 include all 11 selected benchmarks.
Each phase contains an equal number of requests per bench-
mark, and the sequence of phases exercises the ability of the
scheduler to adapt to evolving workloads. Task arrival times
are drawn from a Poisson distribution, and the job size (i.e.,
the number of executions) is chosen as a power of two in the
range from 512 to 2,048, with all sizes equally represented.

B. Scheduler Parameter Selection

The scheduler described in Section IV depends on several
parameters that affect both the convergence of the optimization
and the quality of the scheduling decisions. These parameters
are the population size (number of crows), the maximum
number of iterations, and the internal CSA parameters, namely
the awareness probability AP and the flight length fI, which
control the exploration and exploitation balance.

TABLE I: CSA parameter selection

CSA Parameter Selected Value

Number of Crows 4
Number of Iterations 4
Awareness Probability (AP) 0.6
Flight Length (fI) 1.5

To select these parameters, a software simulation environ-
ment was developed that replays workload executions using
the predictions produced by the run-time workload character-
ization models introduced in Section III. Since the goal is to
tune CSA rather than to perform on-line scheduling, an already
trained model is used. The simulator reconstructs an execution
timeline for each kernel, taking into account overlaps and in-
teraction. Whenever a kernel starts or finishes, the completion
times of other running kernels are updated using the predictive
models. This reproduces resource contention in a realistic way
and allows different parameter combinations to be compared
under similar conditions.

Using this simulator, a brief sensitivity analysis was carried
out to identify robust configurations. Different combinations
of AP and fl, together with several population sizes and
iteration counts, were tested in terms of convergence speed and
resulting fitness. As an illustrative example, Figure 4 shows
the trajectory of a single crow during the optimization process.
In this scenario, the scheduler must assign accelerators to
three pending tasks (CRS, MERGE, and STENCIL2D) on an
FPGA with eight available slots. The upper plots show, for
different AP values, how the number of accelerators assigned
to each task evolves per iteration, while the lower plots show
the corresponding fitness values (only a representative case is
depicted). High AP values such as 0.9 (Figure 4a) encourage
exploration, since crows are more likely to avoid being fol-
lowed, whereas low AP values such as 0.1 (Figure 4b) favor
faster convergence. This behavior directly affects the ability of
the scheduler to find good configurations, which justifies the
preliminary parameter analysis.

Table I summarizes the parameter values selected after eval-
uating several alternatives. The number of crows and iterations
is kept small to limit the overhead introduced by the scheduler.
In addition, to keep the optimization cost manageable, each
CSA run only considers the first three tasks in the waiting
queue. This choice, also explored in the sensitivity analysis,
represents a trade-off between search depth and overhead.

C. Experimental Results

This subsection evaluates the conflict-aware workload op-
timization methodology and compares it with a baseline.
The scheduler is configured with the parameters in Table I
and integrated into the workload management infrastructure
described in Section III. The synthetic workload defined in
the experimental setup is executed on the ZCU102 platform,
and the scheduler operates as described in Section IV, using
run-time predictions from the ML-based models to guide its
decisions. In this experimental campaign the fitness function
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posed workload optimization and the baseline approach.

(see Equation 5) is configured with @ = 1 in order to focus
on makespan reduction.

The proposed method is compared with a First come, first
served (FCFS) baseline. In this baseline, tasks are scheduled
strictly in order of arrival, and the number of replicas for each
task is chosen randomly from a uniform distribution between
1 and the maximum number of available slots (8 in this setup).

Figure 5 presents a graphical comparison of the workload
makespan obtained with the proposed methodology and with
the baseline, normalized to the baseline values. For the pro-
posed method, the reported makespan includes not only the
execution time of the workload on the FPGA fabric but also the
time spent on run-time workload characterization and on the
optimization process itself, which are absent in the baseline.

The results show that the proposed methodology achieves
a total workload makespan equal to 89.40% of the baseline,
which corresponds to a 1.12x speedup. If a steady-state situa-
tion is considered where the workload is already characterized
and no further changes occur, i.e., excluding characterization
overhead and counting only pure execution plus scheduling
optimization, the makespan is reduced to 85.15% of the base-
line (1.17x speedup). In practice, workloads in cloud-edge
environments will eventually change, so re-characterization
will be needed from time to time, but the frequency of these
updates depends on the specific deployment.

If the focus is placed only on the execution of the workload,

ignoring both characterization and optimization overheads, the
makespan drops to 81.99% of the baseline, which corresponds
to a 1.22x speedup. These values indicate that task interaction
has a significant impact on the total makespan. In this exper-
imental setup, that impact accounts for at least 18.01% of the
baseline execution time and is effectively mitigated by the
proposed conflict-aware scheduler. Since energy consumption
is proportional to execution time and power is not significantly
affected by interaction [10], this improvement in performance
also translates into better energy efficiency.

Even when characterization and optimization overheads are
included, the proposed methodology still reduces workload
makespan by 10.60%. At the same time, it provides an up-
to-date run-time workload characterization free of extra cost,
which can be used not only by the local scheduler but also by
higher level orchestrators in the cloud-edge continuum to per-
form global workload distribution and resource management
based on local ML-derived models.

VI. CONCLUSIONS

This work has presented a conflict-aware workload opti-
mization methodology for FPGA-based acceleration in dy-
namic environments such as the cloud-edge continuum. In
contrast to traditional design-time strategies based on static
profiling and fixed heuristics, the proposed approach intro-
duces a data-driven scheduler that operates at run time. By
incrementally training lightweight predictive ML-based mod-
els on real execution traces, the system is able to capture
and exploit dynamic effects such as task interaction without
requiring prior knowledge of the workload.

To explore the large scheduling solution space, the method-
ology relies on the CSA, a population-based and lightweight
metaheuristic suitable for complex optimization problems. The
scheduler uses the predictions provided by the run-time work-
load characterization models to guide its decisions, targeting
configurations that reduce interference between tasks and,
when required, promote a fair allocation of FPGA resources.



The experimental evaluation shows that the proposed work-
load optimization methodology reduces workload makespan
significantly with respect to a FCFES baseline, even when the
overhead introduced by run-time modeling and optimization is
included. Under steady-state conditions, where the workload
is already characterized, the improvement is even more pro-
nounced, which confirms the benefit of explicitly accounting
for conflicts between parallel accelerators. Since execution
time reductions directly translate into energy savings and
power is not strongly affected by interaction, the approach
is particularly attractive for energy-constrained edge deploy-
ments running dynamic workloads.

Future work will consider porting and evaluating the
methodology on a broader set of platforms and application
domains, in order to assess its generality and scalability.
Another line of work will explore hierarchical workload
management, where information derived from local run-time
characterizations is propagated to higher-level managers to en-
able continuum-wide optimization. In that context, techniques
such as federated learning could be used to aggregate local
models while preserving autonomy and privacy and limiting
communication overhead.
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