In-Pipeline Integration of Digital In-Memory-Computing into
RISC-V Vector Architecture to Accelerate Deep Learning

Tommaso Spagnolo*

Riccardo Massal Filippo Grillottif

Thomas Boeschf

Cristina Silvano*
Giuseppe Desolif

*Politecnico di Milano, Milan, Italy
Email: tommaso.spagnolo@polimi.it, cristina.silvano@polimi.it
TSTMicroelectronics, Milan, Italy
Email: riccardo.massa@st.com, filippo.grillotti@st.com, giuseppe.desoli @st.com
iSTMicroelectronics, Geneva, Switzerland
Email: thomas.boesch@st.com

Abstract—Expanding Deep Learning applications toward edge com-
puting demands architectures capable of delivering high computational
performance and efficiency while adhering to tight power and memory
constraints. Digital In-Memory Computing (DIMC) addresses this need
by moving part of the computation directly within memory arrays,
significantly reducing data movement and improving energy efficiency.
This paper introduces a novel architecture that extends the Vector RISC-
V Instruction Set Architecture (ISA) to integrate a tightly coupled DIMC
unit directly into the execution stage of the pipeline, to accelerate Deep
Learning inference at the edge. Specifically, the proposed approach
adds four custom instructions dedicated to data loading, computation,
and write-back, enabling flexible and optimal control of the inference
execution on the target architecture. Experimental results demonstrate
high utilization of the DIMC tile in Vector RISC-V and sustained
throughput across the ResNet-50 model, achieving a peak performance of
137 GOP/s. The proposed architecture achieves a speedup of 217x over
the baseline core and 50x area-normalized speedup even when operating
near the hardware resource limits. The experimental results confirm the
high potential of the proposed architecture as a scalable and efficient
solution to accelerate Deep Learning inference on the edge.

Index Terms—AI Accelerator, RISC-V Architecture, Instruction Set
Extension, Digital In-Memory Computing, Vector Processors

I. INTRODUCTION

Artificial Intelligence continues to reshape technology and society,
driven by the rapid evolution of increasingly complex AI models.
Since the advent of modern Deep Learning with AlexNet in 2012
[1], Al model complexity, typically measured by parameter count, has
roughly doubled each year [2]. Conversely, hardware performance has
improved at a substantially slower pace, achieving only around 30%
annual growth in terms of FP32 TFLOP/s [3]. This widening gap has
made it clear that traditional computing architectures can no longer
rely solely on incremental improvements; instead, architectural inno-
vation is required to effectively manage the computational demands of
emerging Al workloads. Furthermore, contemporary Al models have
become increasingly diverse, encompassing various neural network
types, evolving inter-layer connectivity, distinct data-flow patterns,
diverse activation functions, and multiple numerical formats (e.g.,
quantization levels). These variations place significant emphasis on
computational flexibility, as fixed-function hardware accelerators,
though efficient, often lack the adaptability required to accommodate
such rapidly changing and heterogeneous workloads.

The widespread adoption of Al has highlighted significant draw-
backs in centralized cloud computing, especially regarding latency,
energy efficiency, and data security [4]. These challenges have driven
a shift toward edge computing, where Al inference occurs locally
on devices, providing lower latency, improved security, and reduced
dependency on network connectivity. However, edge deployment
imposes strict constraints on power, memory, and performance,

necessitating specialized hardware capable of high computational
throughput within tight energy and memory limits.

At the device level, the primary obstacle to efficiently executing
advanced Al workloads arises from excessive data movement rather
than computation itself. Modern Deep Learning architectures, such as
Convolutional Neural Networks (CNNs) and transformers, frequently
move large volumes of feature maps, weights, and intermediate
results across memory hierarchies, placing immense pressure on
memory bandwidth. Traditional digital accelerators often struggle
with significant latency and energy overheads, largely driven by
continuous data transfer between memory and compute units. Indeed,
transferring data from off-chip DRAM typically consumes orders of
magnitude more energy than performing actual Multiply-Accumulate
(MAC) operations [5], primarily due to interconnect capacitance.

Addressing this critical bottleneck requires improving data locality
and reducing the physical distance between memory and computation
(see Fig. 1). Near-memory computing has emerged as a promising
strategy, which involves placing small, high-speed memories, such as
scratchpads, close to compute units. By storing frequently accessed
data near the compute elements, these architectures significantly
minimize energy consumption and latency, promoting data reuse.

Building on the concept of near-memory computing, In-Memory
Computing (IMC) takes this paradigm even further by integrating
computational capabilities directly in memory.

IMC architectures are classified into Analog (AIMC) and Dig-
ital (DIMC). AIMC uses emerging Non-Volatile Memory (NVM)
technologies like ReRAM or PCM to perform analog MACs [6],
achieving energy efficiency over 1000 TOPS/W at low precision [7],
but suffers from reliability and accuracy issues [8], limiting adoption
in precision-critical tasks. DIMC, on the other hand, uses digital
SRAM arrays and offers deterministic behavior, high bit-precision,
and seamless CMOS integration. Though typically achieving lower
energy efficiency (10-300 TOPS/W) than AIMC, DIMC ensures
[Off—chip Memory] [Near Memory] [On—Chip Memory]

HW Host uP HW Host uP
Acc. Acc.

Von Neumann Heterogeneous
Architecture Architecture

Improved compute density and energy efficiency >

Host uP Host uP

Fig. 1. Architectural approaches to improve data locality: from von Neumann
designs to heterogeneous systems with near-memory and in-memory comp-
puting.

robustness and accuracy, making it ideal for fully-digital CNN
accelerators at the edge [9], [10].

Integrating IMC units into processors involves choosing be-
tween tightly-coupled and loosely-coupled configurations. In loosely-
coupled designs, IMC tiles act as accelerators accessed via load/store
instructions through the processor’s I/O bus at specific memory-
mapped addresses. Although scalable and simple to integrate, this ap-
proach introduces significant communication overhead, causing stalls
and performance loss. Conversely, tightly-coupled designs embed
IMC units directly into the pipeline or nearby memory, leveraging
ISA extensions for direct access. This reduces communication latency
to single-digit cycles by avoiding memory hierarchy and interconnect
delays, though it adds complexity through extra pipeline ports, hazard
logic, tighter timing, and extensive verification. Despite this com-
plexity, tightly-coupled integration provides superior responsiveness,
efficiency, and flexibility for adapting to various neural network
topologies and dynamic data flows.

The RISC-V ISA, with its open and modular structure, provides an
ideal foundation for exploring these integration strategies. Its flexibil-
ity and modularity allow designers to introduce custom instructions
that support IMC operation, whether tightly integrated or offloaded,
while maintaining compatibility with existing toolchains.

Building on this modularity, the RISC-V vector extension [11]
introduces native support for data-parallel workloads such as CNN
inference, Digital Signal Processor (DSP), and computer vision
algorithms. By exploiting Data-Level Parallelism (DLP), vector pro-
cessors can achieve high throughput while maintaining energy and
area efficiency—key advantages for edge AIl. Unlike fixed-width
Single Instruction-Multiple Data (SIMD) models, the vector extension
supports variable-length registers, allowing developers to tailor vector
operations to different applications and hardware budgets.

This flexibility and efficiency position RISC-V vector units as
a strong alternative to traditional GPUs and multicore processors.
Compared to the latter, vector units offer improved power efficiency
and simpler programming models, while against GPUs, they deliver
better area utilization and lower energy consumption. These features
make vector architectures—especially in the RISC-V ecosystem—a
compelling choice for building general-purpose yet efficient acceler-
ators that integrate emerging paradigms like IMC.

Within this context, this work makes three main contributions:

First, we present an efficient method for tightly coupling a DIMC
unit within the vector processor pipeline. This integration enables
the DIMC to be fully exploited by extending workload mapping
flexibility at the assembly instruction level and an efficient utilization
across a wide range of current and emerging workloads.

Second, we propose a custom ISA extension to the RISC-V vector
standard, designed to manage the DIMC integration efficiently. Four
new vector instructions are proposed: two for loading data into the
DIMC and two for managing the computation start and write-back
operations. These instructions maximize the unit’s bandwidth and
throughput while maintaining compatibility with the RISC-V vector
instruction encoding, ensuring ease of reuse in future architectures.

Third, we prove the effectiveness of our integration on an
industrial-level RISC-V vector core. Experimental results on
ResNet50 show that embedding a single DIMC tile yields up to
137 GOPS and over 200x speedup compared to the baseline, even
under tight hardware constraints. This baseline-oriented comparison
highlights the substantial incremental benefit enabled by our proposed
integration method.

Paper Structure. Section II reviews state-of-the-art RISC-V archi-
tectures integrating IMC. Section III details the proposed architectural

design. Section IV introduces the ISA extension. Section V presents
the experimental setup and performance results. Section VI concludes
with a summary and future directions.

II. STATE OF THE ART

Recent research has explored the integration of In-Memory Com-
puting (IMC) into RISC-V-based processors to improve the efficiency
of Deep Learning inference. While both analog and digital IMC
architectures have demonstrated significant potential, their integration
within programmable processors, especially vector-capable ones, re-
mains limited. This section reviews representative works that integrate
IMC units into RISC-V general-purpose or vector processors, distin-
guishing between tightly and loosely coupled models. The analysis
emphasizes reported performance in terms of peak throughput (GOPS
or TOPS) and supported precision, and positions them with respect
to our approach.

A. Tightly Coupled IMC in RISC-V Cores

Tightly coupled architectures integrate IMC units directly into
the RISC-V pipeline, enabling low-latency communication and
instruction-level control. For instance, AI-PiM [12] extends the
RV64IMC ISA with custom PiM instructions, integrating compute-
in-memory units within the processor pipeline. This design achieves
speedups of up to 17.63x in matrix-vector multiplication and an
average improvement of 2.74x across MLPerf Tiny benchmarks.
However, AI-PiM targets scalar pipelines, and therefore lacks the
scalability required for highly parallel workloads.

A different approach is taken by Vecim [13], which integrates an
8T SRAM-based CIM architecture as a Vector Register File within a
RISC-V vector core. Supporting multiple precision formats including
INTS, BF16, and FP16, the architecture achieves a peak performance
of 31.8 GOPS at 250 MHz. Nevertheless, while Vecim benefits
from vector capabilities, its design primarily emphasizes register-file
integration rather than functional unit extension, limiting its flexibility
in supporting diverse computational patterns.

RDCIM [14] instead presents a fully digital CIM processor
tightly coupled with a RISC-V core through extended instructions
for fine-grained control. It incorporates techniques such as Adding-
on-Memory-Boundary (AOMB) and a Multi-Precision Adaptive Ac-
cumulator (MPAA) to reduce power and area overheads, support-
ing 4/8/12/16-bit precision with high energy efficiency. The design
demonstrates 66.3 TOPS/W in 4-bit mode and 16.6 TOPS/W in 8-bit
mode. Although RDCIM introduces valuable reconfigurable features,
it remains focused on scalar pipelines, limiting its applicability to
workloads requiring wide vector-level parallelism.

B. Loosely Coupled IMC in RISC-V Cores

Loosely coupled architectures extend RISC-V cores with IMC
engines functioning as co-processors, communicating through buses
or custom synchronization schemes. VPU-CIM [15], for example,
integrates RRAM-based CIM with vector ISA extensions, achieving
33.98 TOPS/W with support for variable-bit precision (1-4 bits).
However, since its CIM operations are decoupled from the main
pipeline, this approach suffers from additional communication over-
head and reduced fine-grained control.

Similarly, CIMR-V [16] embeds a 10T SRAM-based digital CIM
engine alongside a convolution and pooling pipeline, controlled via
dedicated instructions. Fabricated in TSMC 28nm, it reaches 26.2
TOPS at 50 MHz for keyword spotting tasks, demonstrating the
potential of IMC for domain-specific acceleration. Yet, the offloading
model introduces latency and constrains flexibility in AI workloads.

In summary, prior works demonstrate either feasibility (scalar tight
coupling) or energy efficiency (vector loose coupling), but none
integrate a DIMC directly into the vector pipeline. Our approach
fills this gap by embedding DIMC as a functional unit, enabling
tight control, scalable vector processing, and efficient execution of
complex dataflows while preserving programmability through the
standard vector ISA.

III. PROPOSED DIMC INTEGRATION WITHIN THE RISC-V
VECTOR PIPELINE

The DIMC unit used in this work is the one presented in [9] and
shown in Fig. 2. It features a memory capacity of 32 KiB, organized
into 32 rows of 1024 bits each, typically used to store kernel weights
during convolution execution. In addition, a 1024-bit input buffer is
available to store the feature data used in the computation. The latter,
takes place directly between the input buffer and a selected row of
the memory, enabling in-memory execution of MAC operations and
minimizing data movement overhead.

Internally, the DIMC architecture is structured into multiple sub-
arrays, each consisting of 8T 1RIW bitcells and equipped with
independent read word lines (RWLs) and read bitlines (RBLs). These
sub-arrays can operate either as a unified array in memory-mapped
mode or as independent units in compute mode. During computation,
multiple RBLs are accessed in parallel within each sub-array, and the
resulting signals are sensed and routed through dedicated 10 paths
to interleaved MAC slices.

This setup supports 256 parallel signed or unsigned 4-bit MAC
operations per cycle, implemented as four parallel sub-arrays of
64 MACs each, all sharing a common accumulation pipeline. The
architecture also supports runtime reconfiguration, allowing the same
hardware to perform 512 2-bit or 1024 1-bit MAC operations per
cycle, offering flexibility in precision. This configurability enables a
scalable trade-off between accuracy and efficiency, making the DIMC
ideal for edge Al inference. The memory interface supports 256-
bit data transfers per cycle for both read and write operations. The
computation produces 24-bit partial results, which can optionally be
passed through a ReLU activation stage before being written back.

We integrate this DIMC as a dedicated execution lane in a RISC-
V core implementing the embedded vector extension profile Zve32x,
with architectural parameters VLEN = 64 and ELEN = 32, based
on the industrial RVV implementation described in [17] (Fig. 3).
The unit receives operands and decoded instructions like any other
FU, but is driven by new custom vector instructions introduced in
Sec. IV.These instructions orchestrate high-bandwidth data loading,
fine-grained configuration, and low-overhead result storage, all while
allowing the DIMC lane to run in parallel with standard vector FUs.

Why a vector core matters. Beyond raw MAC throughput,
overall performance hinges on how quickly feature maps and kernels
can be folded, packed, or transposed into the 256-bit stripes the
DIMC consumes. The RISC-V vector ISA already provides the
data-manipulation primitives needed, and the VRF exposes sufficient
read/write ports to match the DIMC bandwidth. These allow software
to reshape irregular, dilated, grouped, or highly quantized tensors
entirely within the VRF. Consequently, the vector core acts as a
flexible “data-manipulator” that feeds a high-performance DIMC
compute engine without extra glue hardware; the only cost is a
modest cycle overhead inside the VRE. This synergy vastly broadens
the range of convolution workloads the architecture can support.

This work concentrates on a single DIMC tile, with the primary
goal of defining efficient integration and control within a vector core.
Scaling to multiple tiles naturally follows as future work.

IV. PROPOSED RISC-V INSTRUCTION SET EXTENSION

Integrating a non-standard functional unit like the DIMC into a
RISC-V vector core requires dedicated custom instructions. While
a simple hardware connection may enable basic operation, fully

RWL<o0>

8T|| 8T |---| 8T
Sub-Array o $
8T|| 8T |---| 8T

row decoder
WWL<o0:J-1>

[sT[-[81] 'Z
Sub-Array 1 3
| 8T |---| 8T

row decoder
WWL<J:2J-1>

RWL<(P-1)J>

row decoder
WWL<(P-1)J:PJ-1>

Sub array recombination adder tree

[}

1

1

1

1
Sub-Array P-13 :
1

8T|| 8T |---| 8T||]
[}

RBLo_P-1
ionmmemet SesemsmommEomEAmEEee ~

Feature enable<P-1> =} computation 10 1nd MAC subvarray Py

RA Memory mapped : |
Control + Pre-decoder 10 sensing =]
WA CK IMC/read/write I

Feature input DM Q
<0:P-1><0:255> <0:255>

RWL<PJ-1>
RBL<255>_P-11 I
]

<0:255> PSOUT

Fig. 2. Architecture of DIMC Tile (P sub-arrays, J rows each) as presented
at ISSCC 2023 [9]

Scalar RISC-V

IF — ID

v 1

Register File

EX wB

Vector RISC-V

BN S
T -
|

,,Veéfor Redister File

P g

VEX~ i

DIMC tile

Feature Buffer

Partial

P> sun
Output
Final
RelU 1> sum

output

Kernel -1

data/address WErTEL U ETEmy

rowd

T
Partial Sum
Input

Fig. 3. Architecture overview with the DIMC tile Integrated in the Vector
Execution Stage as a Parallel Execution Lane

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 ©

DL.I [nvec | mask | vsl [width [sec] fun3] - | opcode |
DL.M [nvec [mask | sl [width [sec] fun3 [m_row | opcode |

3130 29 28 27 26 25 24 23 222120 19 18 17 16 1514 13121110 9 8 7 6 5 4 3 2 1 0
DC.P [shfdh[m_row [vsi [width [-] fun3 | vd [opcode |
DC.F [shfdh[m_row | vsl [width [bidx] fun3 | vd | opcode |

Fig. 4. Bit-level encoding of the proposed custom instructions for DIMC
accelerator integration. Customized bit fields are highlighted in blue.

leveraging the DIMC’s capabilities requires tight integration and
instruction-level customization. This includes fine-grained control of
data movement, execution order, and result handling to maximize
in-memory convolution efficiency.

Although physically integrated into the Execution Stage of the
pipeline, the DIMC unit operates under a specialized execution model
that differs from standard vector FUs:

1) Data loading: The DIMC must first be loaded with both weights
and input data before computation can begin.

2) Computation: The DIMC performs in-memory MAC operations
directly between the input buffer and selected memory rows,
and requires explicit control over the target rows, applied
masks, and computation precision.

3) Result Write-Back: Partial sums or final outputs of each row
are generated sequentially, one per cycle. If not properly
synchronized, these results can be lost, making precise timing
and control essential.

To support this model, the custom instructions must be carefully
designed. To this end, a custom RISC-V vector ISA extension has
been developed, comprising four vector-based instructions tailored to
optimize the integration of the DIMC unit into the execution pipeline.
These instructions enable:

o High bandwidth loading of feature and weights data from the
VREF to the DIMC;

o Seamless execution of MAC operations within the DIMC unit,
with full control over configuration parameters;

« Optimized handling and storage of partial and final results with
minimal memory overhead.

Isolating the DIMC as a functional unit enables parallelism with
vector units, avoids access conflicts, reduces memory traffic, and
removes coherence issues by routing all exchanges through the VRFE.

A. Proposed RISC-V Custom Instructions

To integrate the DIMC accelerator efficiently into the RISC-V vec-
tor pipeline, we propose a small set of specialized vector instructions.
These instructions are organized into two distinct functional groups
based on their roles:

o Data Load Instructions (DL.I, DL.M) — manage high-
bandwidth transfers respectively from the VRF to the Input
Buffer and DIMC Memory.

o Compute and Write-Back Instructions (DC.P, DC.F) — trigger
MAC operations inside DIMC, handle the associated configu-
ration signals, and manage the efficient write-back of partial or
final results to the VRFE.

The bit-level encoding of these custom instructions is detailed in
Fig. 4, where customized fields are highlighted in blue.
DIMC Input Buffer Load (DL.I). The DL. I instruction transfers
between 64 and 256 bits of data from the Vector Register File (VRF)
to the DIMC’s input buffer. It reads data from nvec consecutive
VREF registers, starting at vs1, using a valid-bit mask. The loaded

data is written into one of the four 256-bit sectors, specified by sec,
within the DIMC’s 1024-bit input buffer.

DIMC Memory Load (DL.M). The DL.M instruction operates
similarly to DL. I, but includes an additional field, m_row, which
specifies the DIMC memory row where the data should be loaded.
DIMC Compute & Partial Sum Store (DC.P). The DC. P instruc-
tion performs an in-memory MAC operation between the data in the
DIMC input buffer and the weights stored in the specified memory
row (m_row). It takes a 24-bit partial sum as input from the half
of the vs1 register selected by sh, and stores the resulting 24-bit
partial result into the half of the vd register specified by dh.
DIMC Compute & Final Sum Store (DC.F). The DC.F instruc-
tion performs the same in-memory MAC operation as DC.P, but
additionally applies the ReLU activation function and stores the final
quantized result in compact form. The result is written into a specific
byte of the half of the vd register in the VREF, selected by the dh
(half selector) and bidx (byte index) fields.

Partial sums generated by DPS are padded from 24 bits to 32
bits for VRF alignment, with possible future optimizations to reduce
overhead. Final outputs from DSS, quantized to 1-, 2-, or 4-bit
precision, are padded to 4 bits and efficiently packed into bytes—two
4-bit results per byte. In the case of an odd number of results, the last
half-byte remains unused, defining the maximum padding overhead.

These custom instructions collectively provide a concise yet pow-
erful ISA extension, enabling streamlined integration and operation
of the DIMC accelerator within a vector RISC-V core. From an
encoding perspective, the four instructions are mapped to the RISC-
V custom-0 space, which is explicitly reserved for non-standard
extensions. This guarantees that no conflicts arise with current
vector extensions, and sufficient encoding space remains available
to accommodate further custom instructions in future work.

V. EXPERIMENTAL RESULTS

This section outlines the experimental setup and the approach used
to evaluate the performance of the DIMC-enhanced RVV processor
against the baseline core. The results of the comparison highlight
three key achievements: (1) the high utilization of the DIMC tile
enabling near-peak computational throughput, (2) the significant
speedup achieved with and without area normalization, and (3) the
robust performance sustained even when DIMC hardware capacity
limits are exceeded. We focus on comparison with the baseline
RVYV core because the objective of this work is to demonstrate the
incremental benefit that DIMC integration brings to an established
industrial-grade architecture. In other words, the emphasis is on
quantifying the performance gain achievable by directly embedding
DIMC into the vector pipeline, rather than on outperforming unrelated
accelerator designs.

A. Experimental Setup

The evaluation was conducted using a cycle-approximate simula-
tion framework developed specifically for the DIMC-enhanced RVV
processor. This custom simulator models instruction-level execution
with timing granularity sufficient to capture the interplay between the
core pipeline and the tightly coupled DIMC unit.

The simulation tool generates execution traces from custom in-
struction streams derived from deep learning models. Each instruction
is assigned a latency based on the hardware pipeline structure and
stall conditions. The simulator explicitly models:

« Instruction latencies, including vector loads, stores, and arith-

metic operations;

« Pipeline stalls and execution flow control;

o Custom DIMC instruction timing, which reflects the internal
datapath latency and tightly coupled access to the registers.

Area estimates for both the baseline and DIMC-enhanced archi-
tectures were obtained through RTL synthesis using Cadence tools,
targeting a P18 CMOS process node from STMicroelectronics. These
values are used to compute area-normalized performance metrics.
While energy measurements are not reported in this work, future
iterations may include RTL-based power estimates or model-based
energy approximations.

The benchmark used for evaluation is ResNet50, from which
individual convolutional and fully connected layers were extracted
and translated into instruction streams. Each layer is mapped to the
DIMC-enhanced RVV processor through a toolchain that:

1) Load kernel weights into the DIMC memory (up to 32 kernels).
2) Load one patch of feature data into the DIMC input buffer.
3) Trigger MAC operations using custom compute instructions.
4) Slide input window across the feature map and repeat 2-3.

5) Reload kernels if needed and continue the iteration.

All MAC operations are executed inside the DIMC, with the RVV
core orchestrating data movement and issuing compute instructions
via the extended ISA. The simulator itself is not publicly released
due to industrial confidentiality constraints.

Assumptions. The following assumptions were made in the sim-
ulations to simplify the analysis, clearly define experimental bound-
aries, and avoid the complexities associated with advanced data
mapping strategies and compiler modifications:

o Vector Instruction Issuing: Simulations did not consider double-
issue vector instruction execution, simplifying modeling at the
expense of capturing peak theoretical performance.

Memory Access Latency: Although memory access is not mod-

150
125

100
GOPS
7

90
5

50

25

83

132

107

91
83 86

88

81

95

11

CONVL CONV2_1 CONV2_2 CONV2_3 CONV3_1 CONV3_2 CONV3_3 CONV4_1 CONV4_2 CONVA_3 CONVS_1 CONVS_2 CONVS_3

100%

75%
67%

50%

UTILIZATION

25%

LAYERS

Fig. 5. GOPS Achieved per Layer in ResNet50

80%

9%

11%

[JComputing []Storing [JLoading

58%|

36%|

80%

9%

11%

59%

34%

56%) 53%) 54% 56%

71%

5%

8%
39% 41% 37%

21%

»
H

49%

47%

.
H

4a7%

FC

6%

93%

0%

CONVL CONV2_1 CONV2_2 CONV2_3 CONV3_1 CONV3_2 CONV3_3 CONVA_1 CONV4_2 CONV4_3 CONVS_1 CONVS_2 CONVS_3

LAYERS

Fig. 6. Operation Distribution (Computing, Loading, Storing) per Layer in

ResNet50

250

200
SPEEDUP
vs 150

BASELINE
100

x187

x112

[JSpeedup [JArea Normalized Speedup

x165

x140

x121 X113

= x210

x133

x106

x145

96 x93

eled cycle-by-cycle, a fixed-latency external memory is assumed.
This is sufficient for our analysis, since all data exchanges with
the DIMC are tightly coupled and do not involve DMA.

o Data Fetching and Reuse: Simulations involving DIMC assumed
that each feature map was loaded directly from memory, even
in cases where data reuse could reduce memory accesses. This
conservative assumption leads to sub-optimal results.

o Resolution Limitation: The baseline RVV architecture supports
a minimum data resolution of 8 bits, while the DIMC unit used
is limited to a maximum of 4 bits.

o DIMC Capacity Constraint: DIMC-supported convolutions were
limited to kernels where the total bits per single channel did not
exceed 1024 bits.

o Layer Type Acceleration: DIMC acceleration specifically targets
convolutional and fully connected layers. Operations such as
pooling, which rely on the standard RVV ISA, yield similar
performance across both baseline and DIMC-enhanced archi-
tectures and were thus excluded from simulations results.

Performance Evaluation Metrics. We evaluated the following
three performance metrics:

1) OPs (Operations Per Second): The total number of operations
executed per second, calculated based on a 500 MHz clock
frequency. This metric provides a direct measure of the system’s
computational throughput.

2) Speedup: The ratio of clock cycles executed by the baseline
RVV processor compared to the DIMC-enhanced version,
quantifying the relative performance improvement:

ClockCyclesg,.jine Rvv
ClockCyclespyc ryy

Speedup =

Ix83 X85
x73
x54

50 s | [P xas x50 (27 [il
e DA ARV s

CONVI CONV2_1 CONV2_2 CONV2.3 CONV3_1 CONVS_2 CONVS_3 CONVA4_1 CONV4_2 CONV4_3 CONVS_1 CONVS_2 CONVS_3 FC

LAYERS

x62

Fig. 7. Speedup and Area-Normalized Speedup per Layer in ResNet50

3) Area-Normalized Speedup: The speedup metric normalized
with respect to the baseline RVV area, allowing performance
improvements to be evaluated in the context of increased
hardware complexity.

f4 aseline
ANS = Speedup * _{T€4Bascline
AreaprMcRrvv

B. Efficient Utilization of the DIMC Tile

To evaluate the computational throughput achieved by the DIMC
accelerator, simulations were performed on each convolutional and
fully connected layer in ResNet50 [20]. As shown in Fig. 5, the
DIMC-enhanced processor reaches peak throughput values close to
its theoretical limit (based on MAC unit performance and assuming
no loading or storing penalties), achieving over 100 GOPS in many
layers and peaking at 137 GOPS.

This high performance is explained by the efficient scheduling and
utilization of the DIMC tile, thanks to the new custom instructions
obtained through the extension of the instruction set architecture.
The breakdown of operations per layer in Fig. 6 confirms that the
DIMC spends the majority of execution time on computation rather
than data loading or result storing, validating its ability to exploit
hardware resources effectively. This result highlights the value of

TABLE I

COMPARISON OF IMC-INTEGRATED RISC-V ARCHITECTURES

Scalar/Vector Integration Memory type Memory size Freq. [MHz] Reported Perf. Norm. GOPS'
CIMR-V [16] Scalar Loose 10T SRAM [18] 64 KB 50 26.2 TOPS @INT1 ~2.6 TOPS @INT4, 500 MHz*
AL-PIM [12] Scalar Tight (In-Pip.) | 8T SRAM [19] 500 B - - -
VPU-CIM [15] Vector Loose RRAM 8 KB 25 - -
Vecim [13] Vector Tight 8T SRAM - 250 31.8 GOPS @INT8 ~063.6 GOPS @INT4, 500 MHz*
RDCIM [14] Scalar Tight 8T SRAM 64 KB 200 — -
This Work Vector Tight (In-Pip.) 8T SRAM 4 KB 500 137 GOPS @INT4 137 GOPS @INT4
the In-Pipeline integration design in a Vector RISC-V core, which 260 A ss 98
enables a high compute operation ratio. e x180
C. Speedup over Baseline RVV Core SPEEDUP 150 E
The integration of DIMC leads to a substantial speedup over vs ; x110 X114
the baseline RVV core. As shown in Fig. 7, across all ResNet50 BASELINE 100 g o
layers, the DIMC-enhanced architecture consistently outperforms the E
baseline, with raw speedup values exceeding 200x in some layers and 50 E
area-normalized speedup maintaining values well above 50x. These
results demonstrate that even when accounting for the additional :
768 896 960 1024 1152 1280 1344

hardware cost, the tightly integrated DIMC provides significant
performance advantages for edge Al workloads.

D. Analysis of the Accelerated Workload

To assess flexibility and generalization, we analyzed over 450
convolutional layers from models including AlexNet [1], VGG16
[21], ResNet [20], Inception [22], DenseNet [23], EfficientNet [24],
and MobileNet [25]. Covering a broad range of feature maps and ker-
nel dimensions, these configurations represent real-world scenarios.
Across them, the DIMC-augmented system consistently outperforms
the baseline, demonstrating high versatility.

While Table I compares representative architectures, our evaluation
focuses on the baseline RVV core to isolate the impact of DIMC
integration. Unlike prior works limited to layers fitting architectural
constraints, our analysis includes configurations that exceed system
limits. This stresses the flexibility of the system in scenarios requiring
frequent kernel switching and sub-optimal memory mapping. The two
primary architectural constraints are:

« a maximum single-kernel bitwidth of 1024 bits (requires tiling);

o a limit of 32 kernel in DIMC memory (requires grouping).

Fig.8 shows how tiling is employed when the kernel size exceeds
the 1024-bit threshold. While this incurs a performance drop due to
serial loading and computation, the DIMC architecture still maintains
a strong advantage over the baseline. Similarly, Fig.9 evaluates the
case of grouping. Despite the forced segmentation of compute, the
architecture sustains notable speedup.

These results underline not just the high baseline throughput of
the DIMC tiles, but more importantly, the architectural strategy
introduced in this work. The combination of a streamlined custom
instruction set (DL.I, DL.M, DC.P, and DC.F) and its tight integration
with the RISC-V Vector Extension enables precise control over
kernel loading, compute scheduling, and data reuse. This coordination
is what allows the system to adapt dynamically to sub-optimal
scenarios—such as fragmented kernel shapes or frequent weight
switching—without losing efficiency. Rather than tailoring workloads
to fit static hardware constraints, the proposed architecture adapts to
the workload, sustaining high tile utilization and acceleration across
diverse conditions. This makes it a practical and robust solution for
applications with variable and unpredictable inference patterns.

'Normalized GOPS values with our work’s precision and frequency.

SINGLE KERNEL SIZE (bits)

Fig. 8. Speedup Degradation due to tiling (OCH=32, KH=2, KW=2)

x124 x124
125 x116 2 x114
x106 : x107 []
100 x95 : _X99_
SPEEDUP i
Vs 75 i
BASELINE £
50 it
H-
=
25 :
16 20 25 32 33 40 50 64

OUTPUT CHANNEL (OCH)

Fig. 9. Speedup Degradation due to grouping (ICH=32, KH=2, KW=2)

E. Summary and Comparison with Prior Architectures

Finally, to contextualize the achieved results, Table I compares the
proposed architecture against representative IMC-integrated RISC-V
processors, highlighting differences in integration strategy, core type,
and peak performance.

Unlike prior works, this is the first design to tightly integrate a
DIMC unit within a vector core pipeline as an FU. It achieves the
highest reported performance (137 GOPS at INT4) while operating at
500 MHz with only 4 KB of DIMC memory. Compared to scalar or
loosely coupled designs, our architecture offers superior throughput
and control with minimal memory overhead.

VI. CONCLUSIONS

This work demonstrates the first in-pipeline integration of a DIMC
unit within a RISC-V vector processor, supported by a custom ISA
extension for fine-grained control of dataflow and computation. By
extending an industrial-grade vector core with a single DIMC tile, we
show that the proposed integration model reaches up to 137 GOPS
and more than 200x speedup over the baseline, with over 50x gain
even when area-normalized. Focusing on a single tile allowed us to
precisely define how a vector core can efficiently manage and exploit

DIMC units, laying the foundation for future scaling to multiple tiles.
Unlike prior designs that require workload tailoring, our architecture
maintains high performance across diverse computations, making it
a scalable and adaptive accelerator for next-generation edge Al

[1]

[6]

[7]

[8]

[9]

(10]

(11]

[12]

[13]

[14]

REFERENCES

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification
with Deep Convolutional Neural Networks,” in Advances in Neural
Information Processing Systems, vol. 25. Curran Associates, Inc., 2012.
“Data on Notable AI Models,” Jun. 2024. [Online]. Available:
https://epoch.ai/data/notable-ai-models

“Data on Machine Learning Hardware,” Oct. 2024. [Online]. Available:
https://epoch.ai/data/machine-learning-hardware

C. Silvano, D. Ielmini, F. Ferrandi, L. Fiorin, S. Curzel, L. Benini,
F. Conti, A. Garofalo, C. Zambelli, E. Calore, S. F. Schifano,
M. Palesi, G. Ascia, D. Patti, N. Petra, D. D. Caro, L. Lavagno,
T. Urso, V. Cardellini, G. C. Cardarilli, R. Birke, and S. Perri, “A
Survey on Deep Learning Hardware Accelerators for Heterogeneous
HPC Platforms,” Jul. 2024, arXiv:2306.15552. [Online]. Available:
http://arxiv.org/abs/2306.15552

M. Horowitz, “l1.1 Computing’s energy problem (and what we
can do about it),” in 2014 IEEE International Solid-State Circuits
Conference Digest of Technical Papers (ISSCC). San Francisco,
CA, USA: IEEE, Feb. 2014, pp. 10-14. [Online]. Available:
http://ieeexplore.ieee.org/document/6757323/

S. Kim and H.-J. Yoo, “An Overview of Computing-in-Memory
Circuits With DRAM and NVM,” IEEE Transactions on Circuits and
Systems 1I: Express Briefs, vol. 71, no. 3, pp. 1626-1631, Mar. 2024.
[Online]. Available: https://ieeexplore.ieee.org/document/10320372/
J.-M. Hung, Y.-H. Huang, S.-P. Huang, F.-C. Chang, T.-H. Wen, C.-1.
Su, W.-S. Khwa, C.-C. Lo, R.-S. Liu, C.-C. Hsieh, K.-T. Tang, Y.-D.
Chih, T.-Y. J. Chang, and M.-F. Chang, “An 8-Mb DC-Current-Free
Binary-to-8b Precision ReRAM Nonvolatile Computing-in-Memory
Macro using Time-Space-Readout with 1286.4-21.6TOPS/W for Edge-
Al Devices,” in 2022 IEEE International Solid- State Circuits
Conference (ISSCC). San Francisco, CA, USA: IEEE, Feb. 2022, pp.
1-3. [Online]. Available: https://ieeexplore.ieee.org/document/9731715/
D. Ielmini and H.-S. P. Wong, “In-memory computing with resistive
switching devices,” Nature Electronics, vol. 1, no. 6, pp. 333-343, Jun.
2018. [Online]. Available: https://www.nature.com/articles/s41928-018-
0092-2

G. Desoli, N. Chawla, T. Boesch, M. Avodhyawasi, H. Rawat,
H. Chawla, V. Abhijjith, P. Zambotti, A. Sharma, C. Cappetta,
M. Rossi, A. De Vita, and F. Girardi, “16.7 A 40-310TOPS/W SRAM-
Based All-Digital Up to 4b In-Memory Computing Multi-Tiled NN
Accelerator in FD-SOI 18nm for Deep-Learning Edge Applications,”
in 2023 IEEE International Solid-State Circuits Conference (ISSCC),
Feb. 2023, pp. 260-262, iSSN: 2376-8606. [Online]. Available:
https://ieeexplore.ieee.org/document/10067422/7arnumber=10067422

H. Fujiwara, H. Mori, W.-C. Zhao, M.-C. Chuang, R. Naous, C.-K.
Chuang, T. Hashizume, D. Sun, C.-F. Lee, K. Akarvardar, S. Adham,
T.-L. Chou, M. E. Sinangil, Y. Wang, Y.-D. Chih, Y.-H. Chen, H.-J.
Liao, and T.-Y. J. Chang, “A 5-nm 254-TOPS/W 221-TOPS/mm?
Fully-Digital Computing-in-Memory Macro Supporting Wide-Range
Dynamic-Voltage-Frequency Scaling and Simultaneous MAC and
Write Operations,” in 2022 IEEE International Solid- State Circuits
Conference (ISSCC). San Francisco, CA, USA: IEEE, Feb. 2022, pp.
1-3. [Online]. Available: https://ieeexplore.ieee.org/document/9731754/
“riscv-v-spec/v-spec.adoc at master riscvarchive/riscv-v-
spec.” [Online]. Available: https://github.com/riscvarchive/riscv-v-
spec/blob/master/v-spec.adoc

V. Verma and M. R. Stan, “Al-PiM—Extending the RISC-V processor
with Processing-in-Memory functional units for Al inference at the edge
of IoT,” Frontiers in Electronics, vol. 3, Aug. 2022, publisher: Frontiers.
Y. Wang, M. Yang, C.-P. Lo, and J. P. Kulkarni, “30.6 Vecim:
A 289.13GOPS/W RISC-V Vector Co-Processor with Compute-
in-Memory Vector Register File for Efficient High-Performance
Computing,” in 2024 IEEE International Solid-State Circuits Conference
(ISSCC). San Francisco, CA, USA: IEEE, Feb. 2024, pp. 492-494.
[Online]. Available: https://ieeexplore.ieee.org/document/10454387/

W. Yi, K. Mo, W. Wang, Y. Zhou, Y. Zeng, Z. Yuan, B. Cheng, and
B. Pan, “Rdcim: Risc-v supported full-digital computing-in-memory
processor with high energy efficiency and low area overhead,” IEEE

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Transactions on Circuits and Systems I: Regular Papers, vol. 71, no. 4,
pp. 1719-1732, 2024.

C. M. J, V. Rayapati, N. Rao, and M. Suri, “VPU-CIM: A 130nm, 33.98
TOPS/W RRAM based Compute-In-Memory Vector Co-Processor,” in
2024 IEEE International Symposium on Circuits and Systems (ISCAS).
Singapore, Singapore: IEEE, May 2024, pp. 1-5. [Online]. Available:
https://ieeexplore.ieee.org/document/10558155/

Y.-C. Guo, T.-S. Chang, C.-S. Lin, B.-C. Chiou, C.-M. Lai, S.-S. Sheu,
W.-C. Lo, and S.-C. Chang, “CIMR-V: An End-to-End SRAM-based
CIM Accelerator with RISC-V for Al Edge Device,” in 2024
IEEE International Symposium on Circuits and Systems (ISCAS).
Singapore, Singapore: IEEE, May 2024, pp. 1-5. [Online]. Available:
https://ieeexplore.ieee.org/document/10558177/

L. Bordonaro, E. Rapuano, S. Bocchio, and L. Fanucci, “Integration
of the Open-Source RISC-V Formal Verification Framework into the
STMicroelectronics Toolchain and Its Application to the STRiVe2.4
CPU,” in Applications in Electronics Pervading Industry, Environment
and Society, M. Ruo Roch, F. Bellotti, R. Berta, M. Martina, and
P. Motto Ros, Eds. Cham: Springer Nature Switzerland, 2025, pp.
48-55.

C.-S. Lin, E-C. Tsai, J.-W. Su, S.-H. Li, T.-S. Chang, S.-S. Sheu, W.-C.
Lo, S.-C. Chang, C.-I. Wu, and T.-H. Hou, “A 48 tops and 20943 tops/w
512kb computation-in-sram macro for highly reconfigurable ternary cnn
acceleration,” in 2021 IEEE Asian Solid-State Circuits Conference (A-
SSCC), 2021, pp. 1-3.

Q. Dong, M. E. Sinangil, B. Erbagci, D. Sun, W.-S. Khwa, H.-J. Liao,
Y. Wang, and J. Chang, “15.3 a 351tops/w and 372.4gops compute-in-
memory sram macro in 7nm finfet cmos for machine-learning appli-
cations,” in 2020 IEEE International Solid-State Circuits Conference -
(ISSCC), 2020, pp. 242-244.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 770-778.

K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks
for Large-Scale Image Recognition,” Apr. 2015, arXiv:1409.1556 [cs].
[Online]. Available: http://arxiv.org/abs/1409.1556

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going Deeper with
Convolutions,” Sep. 2014, arXiv:1409.4842 [cs]. [Online]. Available:
http://arxiv.org/abs/1409.4842

G. Huang, Z. Liu, L. v. d. Maaten, and K. Q. Weinberger, “Densely
Connected Convolutional Networks,” Jan. 2018, arXiv:1608.06993 [cs].
[Online]. Available: http://arxiv.org/abs/1608.06993

M. Tan and Q. V. Le, “EfficientNet: Rethinking Model Scaling for
Convolutional Neural Networks,” Sep. 2020, arXiv:1905.11946 [cs].
[Online]. Available: http://arxiv.org/abs/1905.11946

A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “MobileNets:
Efficient Convolutional Neural Networks for Mobile Vision
Applications,” Apr. 2017, arXiv:1704.04861 [cs]. [Online]. Available:
http://arxiv.org/abs/1704.04861

