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Abstract—Popular machine learning (ML) frameworks like
PyTorch and TensorFlow now allow to train ML models for
non-standard number representations thanks to quantization-
aware training (QAT). However, these models tend to perform
differently when deployed on their target hardware, due to
improper modeling of the actual hardware arithmetic. This work
introduces HATorch, a PyTorch-based training framework that
supports arbitrary quantization schemes and transparent model-
hardware co-design to reduce the hardware gap.

Index Terms—Quantization, Hardware Aware Training, Con-
volutional Neural Networks, ML Accelerators

I. INTRODUCTION

Quantization maps continuous numerical values to a finite
set of discrete values [1]. In deep learning, quantization
is widely used to reduce both the memory footprint and
computational cost of Neural Networks (NN) at inference by
replacing FP32 arithmetic with lower-precision formats (e.g.,
FP16, INT8, or INT4) for weights, activations and biases
without significantly impacting accuracy [2]–[6].

Two main strategies are used in practice. Post-Training
Quantization (PTQ) converts a trained full-precision model to
low precision. Quantization-Aware Training (QAT) incorpo-
rates quantization into the training process itself. This work
addresses QAT, which generally yields better accuracy [1] for
low bit-width quantization, although it requires access to the
training data and additional training time (QAT usually starts
with a network trained in FP32).

As quantization is essential in providing efficient inference
on hardware accelerators (GPUs, TPUs, FPGAs, ASICs),
popular machine learning frameworks such as PyTorch [7] and
TensorFlow [8] provide some QAT support.

One could assume that quantization to simpler formats
should simplify the original network. However, the opposite
is true. Indeed, FP hardware is popular because it simplifies
numerics by automatically managing the scaling of the data.
To lower an FP32 NN to an INT4 one, for example, QAT has
to introduce such scaling explicitly. The main QAT approach,
sometimes called fake quantization and detailed in [9] adds to
the network new FP32 parameters, such as scaling factors and
clipping boundaries. Actually most of QAT is about learning
these parameters. Later steps of lowering to hardware have
to manage this extra complexity, and this ironically includes
quantizing some of the FP32 scaling factors left by QAT.
There is therefore a difference between the model that has

The code is available at https://github.com/GrannyDev/hatorch/tree/hipeac.
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Fig. 1: Reducing the hardware gap on custom hardware
requires hardware-aware quantization.

been trained and the model that is actually deployed on
the hardware. This entails a difference in accuracy called
the hardware gap [10] (Figure 1). Here “model” means the
parameters of the network, but also the arithmetic that connects
them. This gap is even more significant when the hardware
target uses custom data formats and specialized arithmetic
units [11].

The objective of this paper is to reduce the hardware gap by
improving the hardware-awareness of QAT tools. The ultimate
goal is to train for what will be deployed, or conversely to
deploy exactly the model that has been trained. As research is
very active on hardware-friendly number systems, this work
generalizes existing QAT techniques so that they become
independent of the number system. A last objective is to
minimize the additional model complexity introduced by QAT
and remove irrelevant degrees of freedom.

These ideas motivate the development of HATorch, an
Hardware-Aware Training framework based on PyTorch. It is
demonstrated on standard fixed-point formats, and two non-
standard formats (logarithmic, and shift-and-add friendly).

https://github.com/GrannyDev/hatorch/tree/hipeac


The paper is organized as follows: Section II reviews the
foundations of quantization and the basic QAT technique.
Section III presents the interface of the proposed HATorch
framework, and Section IV details the transformations it
performs to lower an FP32 model to a hardware-aware model.
Section V reports empirical results obtained with HATorch on
standard benchmarks using custom number formats. Finally,
Section VI concludes and outlines future research directions.

II. QUANTIZATION OF NEURAL NETWORKS

Let Ω be a subset of R (quantization levels):

Ω = {qi} with qi < qj for i < j . (1)

An example is the set of 4-bit two’s complement integers
Ω = {−8,−7, . . . , 0, . . . , 6, 7} shown in Figure 2. This ex-
ample is a subset of Z, but all the approach presented here
works for any subset of R. For instance, a Logarithm Number
System (LNS) typically uses a finite number of real values.

A quantization operator Q is a monotonic function that maps
any real value to one of the discrete levels:

Q : R → Ω, Q(x) = qk with qk ∈ Ω . (2)

For all practical purpose in this work, R is identified to the
set of 32-bit floating-point (FP32) numbers1.

Two canonical quantizations to Ω = Z are defined by
basic mathematics and available in any computing systems:
the truncation function ⌊·⌋, and the rounding to nearest (with
ties up) ⌊x⌉ = ⌊x+ 1

2⌋. These are actually rounding functions:
a rounding function is a quantization with the additional
property that ∀q ∈ Ω round(q) = q.

Rounding to integers cannot be used directly as a quan-
tization to 4-bit integers since Z is an infinite set. Some
transformation is required to align the range of values to
be quantized (as shown at the top of Figure 2) with the
range {qmin, . . . , qmax} of representable numbers (shown at
the bottom). Usually, it is an affine transformation.

1Strictly speaking the set of FP32 number is iself finite and discrete.
Indeed, the IEEE-754 standard for floating-point arithmetic also defines five
quantification functions R → FP32.
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Fig. 2: Quantization involves clipping, scaling and rounding

A. Affine transformation

Given the finite quantization set Ω = {qmin, . . . , qmax}
and two real values xmin and xmax, an affine transformation
mapping a real number x ∈ [xmin, xmax] into [qmin, qmax] is
defined as:

scale(x) = (x− xmin)
qmax − qmin

xmax − xmin
+ qmin

=
x− z

s
(3)

where

s =
xmax − xmin

qmax − qmin
(4)

z = xmin − s · qmin. (5)

In neural networks, the scaling parameters s and z can be
defined either per-layer (using a single set of parameters for
the entire layer) or per-channel (using different parameters for
each output channel). This flexibility is particularly useful for
achieving better accuracy, especially under extreme quantiza-
tion (4 bits or less) [12].

B. Clipping (clamping, saturation)

For most activations, their range depends on the input, and
their distribution can only be estimated (Figure 2). A worst-
case bound would be too pessimistic to be practical, therefore
in such cases the values of xmin and xmax that give the best
scaling must be learnt [3]. Besides, it must be complemented
at runtime with some clipping (or clamping, also long known
as saturation in digital signal processing):

clip(x) = min(max(x, xmin), xmax) . (6)

Note that for the network parameters such as weights and
biases, it is possible to use the actual xmin and xmax of
the deployed weight tensor. Clipping is still necessary during
training, due to the weight updates, but disappears from the
deployed model.

C. Quantization and dequantization

Finally, a quantization function is defined as:

Q(x) = round (scale (clip(x))) (7)

and goes top to bottom of Figure 2. A quantized number can
be converted back to the original real domain by the dequan-
tization function Q, simply defined as Q(q) = scale−1(q)
since round is the identity on Ω and clip is the identity on
[xmin, xmax].

D. Linear (or symmetric) scaling

A useful special case of affine transformation is linear
scaling where xmin = −xmax, qmin = −qmax, z = 0 and
s = xmax/qmax. As the sequel will show, linear scaling
of weights and biases saves computations in the deployed
network: this simplification not only saves the addition of z,
it also enables merging the scaling factor in the convolution.
However, the set Ω may then be underused. Figure 4 shows
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Fig. 3: Computation graphs during QAT then lowering to hardware.

a source distribution living in [−0.95, 0.7], mapping it to
INT8 actually leads to the quantization interval [−127; 94],
thus not utilizing the rest of representable INT8 numbers
in [95; 127]. Also, two’s complement has one negative value
without positive symmetric (qmin = −qmax − 1) and for
symmetry this value is often ignored.

E. Non-uniform quantization

Quantization to a sub-range of Z, using round to nearest
as the rounding function R, is called uniform quantization.
Non-uniform schemes can also be considered (an example is
given in Figure 8a), where quantization levels are not evenly
spaced, potentially better matching the source distribution [1],
or targetting a hardware-friendly Ω such as powers of two
[13], logarithm number systems [14] or shift-and-add-based
multipliers [15]–[17].

F. QAT with fake quantization

QAT methods stem from pioneering work on binary neural
networks [18], [19]. At its core, a QAT method (Figure 3)
consists in simulating a quantized version of the network
during training in the forward pass, while performing updates
on the full-precision network parameters. This is called fake
quantization because all the training is still performed in the

−0.95 −0.3 0.0 0.42 0.7 0.95

−127 −40 0 56 94 127

Fig. 4: Example linear quantization from [-0.95, 0.7] to INT8

original unquantized domain, for instance using the FP32
compute kernels found in GPUs.

Fake quantization essentially inserts quantization and de-
quantization operators in the computation graph (Figure 3b).
In these new nodes, only the rounding function is not dif-
ferentiable. It is therefore replaced with identity in the back
propagation. This turns the Q function into a Straight-Through
Estimator or (STE) [20], enabling schemes like Learned Step
Size quantization (LSQ) [4] to learn the scaling factor in
case of uniform quantization. LSQ+ [21] also learns the zero
point whereas other methods like PACT [3] learn the clipping
bounds for activations. The state ot the art is nuLSQ, a non-
uniform variant [22], which learns the quantization set Ω
(without favoring a hardware-friendly Ω).

This work identifies three main flaws with the existing
QAT approaches. First, fake quantization leaves a trail of
FP32 scaling factors in the computational graph (Figure 3c).
This leaves hardware lowering backends to deal in a some
undetermined way with those scalings, thus changing the arith-
metic and potentially impacting the accuracy of the deployed
inference. Second, the arithmetic of the deployed hardware is
not accurately simulated by the QAT framework. This is not
so much of a problem when deploying on standard GPUs,
but it adds to the gap with custom hardware deployed on
FPGAs using custom arithmetic. Finally, custom data formats
such as logarithmic number system (LNS) [14] or shift-
and-add friendly reconfigurable single constant multipliers
(RSCM) [15] have their own rules of quantization that, so
far, could not be captured during the QAT.
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Fig. 6: HATorch training workflow

III. HATORCH INTERFACE

A. Bird-eye view
Figure 6 illustrates the HATorch training workflow. The user

specifies the quantization configuration, and HATorch adapts
the model architecture accordingly ensuring the trained model
matches the deployment constraints. Ultimately, the quantized
model will be exported to ONNX format for hardware deploy-
ment, but this is still future work.

Similarly to Brevitas [23], HATorch implements quantized
tensors that encapsulate both the real-valued tensor and its
quantization parameters (scale, zero-point, bit-width). This
abstraction greatly simplifies the management of quantization
parameters throughout the model, most notably the sharing of
scaling factors across layers.

A core idea in HATorch is to regroup before training all the
scaling factors appearing in the standard QAT computational
graph (Figure 3b). This is illustrated in Figure 5 and will be
detailed in Section IV. Thus, the convolution and activation
operations can be performed purely in the target arithmetic
Ω, and the fused scaling factor can be constrained, during
training, to match the target hardware.

B. A generic approach to low-bit rounding
Another core idea is to make quantization as generic as

possible. In HATorch, a rounding function R is defined by
• an ordered list of N quantization values:

Ω = {qi} with qi ∈ R;
• another ordered list of N + 1 rounding limits:

L = {bi} such that bmin = −∞, bmax = +∞
such that

R(x) = qi iff bi ≤ x < bi+1 . (8)

Rounding to the nearest is defined by bi = 1
2 (qi−1 + qi),

but the list L allows the rounding itself to reflect the variation
of the spacing of the qi in case of non-uniform rounding, as
illustrated for LNS by Figure 7.

HATorch implements this universal step-driven quantizer,
with an interface that just consists of the two lists Ω and L.

This flexibility enables the implementation of various quan-
tization methods, including uniform, non-uniform, logarithmic,
and others.

The quantizer itself [15] is a non uniform derivation of
the Learned Step Size Quantization (LSQ) method [4] and
its affine counterpart LSQ+ [21]. The quantization function
rounds according to (8).

Figure 8 illustrates the step-driven quantizer configured for
the non-uniform quantization Ω = {−20, -13, -8, -6, -5, -3,
-2, -1, 0, 1, 2, 4, 5, 7, 12, 19} and the corresponding rounding
limits L = {−∞, -17, -10, -7, -5.5, -4, -2.5, -1.5, -0.5, 0.5,
1.5, 3, 4.5, 6, 9, 15, 20, ∞}. This Ω corresponds to the values
attainable by a shift-and-add circuit [15] shown in Figure 9.
With 4 configuration bits, it provides more range than INT4
altogether with cheaper multiplier hardware. With HATorch,
exploring the impact of such hardware-efficient quantization
schemes is smooth and automated.

IV. HATORCH DETAILS

A. Notations

Superscripts denote layer index. Subscripts in quantiza-
tion/dequantization functions describe the tensor. The quan-
tized version of a tensor T is written T .

For any tensor T (e.g., activations A, weights W , bias B)
in layer l let us denote

• slT ∈ R>0 the positive real-valued scale;
• zlT ∈ R the zero-point.
When quantization is simulated with real-valued (FP32)

arithmetic, the dequantized values are marked with a hat:

T̂ = Q(T ) = s · T + z, (9)

with z = 0 for symmetric quantization.
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Fig. 8: Comparison of INT4 and an shift-and-add friendly
values quantized using the step-driven quantizer. The scale and
zero-point have been set to 1 and 0 respectively for clarity.

B. From fake to hardware-aware quantization

Fake quantization leaves tensor storage in R, but deploy-
ment requires expressing inference purely with Ω arithmetic.
Consider a layer l computing

Al = ReLU
(
W l ∗Al−1 +Bl

)
(10)

where ∗ represents a convolution or a fully-connected linear
operation. The fake-quantized operation of the linear part is:

X̂ l = Ŵ l ∗ Âl−1. (11)

Expanding the fake-quantized terms using (9) gives:

X̂ l = (slw ·W l + zlw) ∗ (sl−1
a ·Al−1 + z l−1

a ). (12)

A common design choice is to use symmetric quantization for
the weights (i.e., z lw = 0) as they usually have a distribution
centered around zero [21]. Thanks to the linearity of ∗, it
allows for the combination of the weight- and activation-
related scaling factors into one:

X̂ l = (slw ·W l) ∗ (sl−1
a ·Al−1 + z l−1

a ) (13)

= (s lws
l−1
a )(W l ∗Al−1) + (slw ·W l) ∗ (zl−1

a 1). (14)

This gives a scaled convolution of quantized terms on the
left, and on the right a constant term. The latter may be added
to the original bias tensor Bl (unquantized) to get a new bias:

Cl = Bl + (W ls lw) ∗ (zl−1
a 1). (15)

Quantization of the original convolution + bias is therefore:

Ŷ l = (s lws
l−1
a )(W l ∗Al−1) + Ĉl (16)

= (s lws
l−1
a )(W l ∗Al−1) + (slc · Cl + zlc). (17)

To obtain a pure machine convolution + bias, a second
design choice is to use symmetric quantization for the new
bias C (z lc = 0) while fixing s lc = s lws

l−1
a . This yields:

Y l = W l ∗Al−1 + Cl, (18)

with:
Ŷ l = (s lws

l−1
a )Y l. (19)

Assuming a ReLU-like activation (positive-scale invariant),
the next activation in Ω is:

Al = Q(Ŷ l) = round
(

1

s la
· ReLU

(
Ŷ l

)
− z la

s la

)
(20)

= round
(
ml · ReLU

(
Y l

)
− z la

s la

)
(21)

where

ml =
s lws

l−1
a

s la
. (22)

and clipping is implicit for clarity.
Let us now review the two main strategies that can be used

to remove R arithmetic from (21).

C. Deployment with Look-Up Tables (LUTs)

This technique, used by backends like FINN [24], builds
hardware implementing the scaled and shifted ReLU described
in (21). This constrains the deployment as this hardware
will be specialized to a layer (or channel). It is for instance
appealing if the network is small enough to be fully unrolled
in hardware.

The idea is to tabulate the possible activation outputs Al as a
function of the accumulator result Y l [25]. For a b-bit encoder
there are 2b output levels {qi}; thresholds {τi} satisfy:

qi = round(mlτi + zla). (23)

or

τi =
qi − zla
ml

. (24)

Inference must perform a search over intervals:

Al =


q0 Y l < τ0,

qi τi−1 ≤ Y l < τi, i ∈ [1, 2b − 2],

q2b−1 Y l ≥ τ2b−1.

(25)

The τi are actually rounded to the same format used in Y l

in the deployed network. With proper care, this method is
arithmetically equivalent to the fake-quantized training graph,
preserving the accuracy.

Note that there is an alternative method where some generic
hardware implements (25). Its overhead is to replace, in the
deployed network, the 3 parameters in (21) with the |Ω|
parameters τi. For very low-bit quantization the overhead is
minimal.



D. Deployment with a scaling multiplier

Another approach is to have, in the deployed network, a
multiplier by the fused scaling factor ml in (21). It must be
approximated to remove R arithmetic: fixed-point approxima-
tion is a common choice [9], among others (power-of-two, log,
...). In fixed-point, ml is a scaled n-bit integer: ml ≈ ml

Z2
−n

with n ∈ N. Then

Al ≈
⌊
ml

Z · ReLU
(
Y l

)
× 2−n

⌋
− z la

s la
(26)

≈
⌊
ml

Z · ReLU
(
W l ∗Al−1 + Cl

)
× 2−n

⌋
−
⌊
z la
s la

⌉
(27)

where the floor operation is actually a constant right shift.
Here only Ω arithmetic remains.

Table II studies how the accuracy of the network depends
on the bit-size n used for the scaling factor ml.

E. Batchnorm folding

A batch normalization layer [26] is generally placed be-
tween the linear operation and the activation function during
training:

Al = ReLU(BN(W l ∗Al−1 +Bl)) (28)

= ReLU
(
γl · W

l ∗Al−1 +Bl − µl√
(σl)2 + ϵ

+ βl
)

(29)

where γl and βl are learnable parameters, µl and (σl)2 are
the batch statistics (mean and variance respectively) and ϵ is a
small constant added for numerical stability. This is problem-
atic for quantization, as the batch normalization parameters are
in R and cannot be directly mapped to Ω. A common practice
is to fold the batch normalization into the weights and biases
[9], [12], [27]:

Al = ReLU(W l
fold ∗Al−1 +Bl

fold) (30)

W l
fold =

γl√
(σl)2 + ϵ

·W l (31)

Bl
fold =

γl√
(σl)2 + ϵ

· (Bl − µl) + βl (32)

Note that:

γl√
(σl)2 + ϵ

·W l ̸=
(
W l

fold

)
Ω

(33)

because of the quantization operation. The same applies to
the biases. Instead of normalizing the quantized weights, the
normalized weights must be quantized: this is not equivalent
and requires the network to train with the folded weights and
biases. This is an expensive operation, as it requires two linear
operations to be computed during training in order to get
the batch statistics [9], [12]. Note that the batch statistics σl

(variance) and µl (mean) are replaced after a certain number
of steps by running averages [12], which are the constants
used when deploying the model.

F. Custom quantized layers

To allow the user to control the scaling transformations
and accomodate the different lowering techniques, HATorch
implements a dedicated quantization layer merged with the
batch normalization and activation function, as shown in
Figure 5. Thus, the scaling factors are fused together during
training, this allows the user to train the network with the
scaling approximation of its choice (fixed-point scaling with
b bits, rounding to a power-of-two, LUTs, ...), reflecting the
actual deployed behavior. A practical side-effect is that the
convolution/linear operations are now computed directly in
the target number format (Ω) at inference. This can ever be
emulated by FP32 operations (which are exact if Ω ⊂ Z) or
the user can provide a custom kernel computing directly in Ω
domain [28].

G. Quantization of residual connections

Networks with residual connections like ResNet [29] and
MobileNetv2 [30] use an addition operation between the layer
convolution output and the previous layer’s activation. When
quantized, this addition requires both operands to use the
same scale [9]. HATorch therefore rescales the skip-branch
activation to match the scale of the convolutional branch before
the addition. In order to preserve inference in the Ω domain,
this rescaling uses the user-specified approximation method
(typically fixed-point scaling).

V. EXPERIMENTS

Two simple experiments are conducted to validate the
proposed approach using HATorch. The first one, in V-A,
demonstrates that the step-driven quantizer can be used to train
CNN models with hardware-friendly quantization levels. The
second one, in V-B, shows the importance of matching training
and deployment arithmetic to avoid accuracy degradation (the
hardware gap).

A. Training with hardware-friendly quantization levels

To demonstrate HATorch’s step-driven quantizer flexibility
on arbitrary number formats, 3 networks are trained on 3 for-
mats at very low bit widths. The networks are a VGG11 [31]
with batch normalization, and ResNet-20 and ResNet-56 [29]
(10 million and 300/900 thousand parameters respectively),
trained on CIFAR-100. The formats are small integers, and
two non uniform formats: the Logarithmic Number System
(LNS) in base 2, and the format shown in Figure 8. These
formats are chosen as attractive for custom hardware: LNS
converts multiplications to additions (±2x representation), and
the Shift-and-Add [17] replaces multipliers entirely with the
architecture of Figure 9.

All experiments are performed on a single NVIDIA RTX
4080 GPU with 16GB of GDDR6X. The first and last layers
are quantized to 8-bit integers if the rest of the model is
quantized to 4 bits or higher, and to 4 bits otherwise. Models
were trained with a batch size of 128 using stochastic gradient
descent with momentum 0.9 and weight decay 5× 10−4. The
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Fig. 9: Example 2-adder RSCM for an 8-bit input, with a target
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first and last layers were quantized to 8 bits. Weights em-
ployed symmetric per-channel quantization, while activations
used asymmetric per-tensor quantization. Data augmentation
consisted of random 32×32 crops on 4 pixels padded images
and horizontal flips. Batch-normalization statistics were frozen
starting epoch 5. VGG11 training started from pretrained FP32
weights from our own training and used a cosine annealing
learning rate schedule [32] over 100 epochs, with a starting
learning rate of 5 × 10−3. Calibration was performed over 1
epoch at a learning rate of 1 × 10−4. For ResNets, training
started from the weights of a pretrained model [33] and used
a multi-stage learning rate schedule. A calibration phase of
2 epochs was performed with a learning rate of 1 × 10−4,
except for INT3 (1 × 10−5), followed by 40 epochs with a
cosine annealing schedule [32], decaying from 1 × 10−3 (or
5 × 10−3 for INT3) to 1 × 10−5, and finally 10 epochs of
fine-tuning with a linear decay to 1× 10−6.

Table I shows that the step-driven quantizer alows the
Shift-and-Add format to achieve comparable accuracy to stan-
dard integer quantization at equivalent bit-widths, validating
HATorch’s flexibility in supporting custom number formats
without accuracy penalty. The LNS formats used in this table
are from [14], and are used as an example where the qi are
real numbers with a non-uniform distribution. Note that the
LNS format was simulated using floating-point arithmetic as
a specialized kernel is yet to be implemented.

TABLE I: HATorch ’s accuracy on CIFAR-100 for standard
integer quantization and custom hardware-friendly formats
(S&A for Shift-and-Add). Best of 3 runs reported.

Model FP32 INT4 INT3 S&A
(W4A4)

LNS
(W4A3)

LNS
(W3A2)

VGG11 70.46 70.30 69.03 70.23 70.00 66.85

ResNet20 70.37 69.61 68.09 69.61 66.86 61.36

ResNet56 75.09 73.45 72.69 73.66 71.85 63.86

TABLE II: Comparison of accuracy when the FP32 scaling
factors are rounded to FxP at deployment, versus training the
model directly with fixed-point scales, or fine-tuning it on a
few more epochs with fixed-point scales. Average best of 3
runs reported.

Model Method 16-bit FxP 8-bit FxP 7-bit FxP 6-bit FxP

VGG11
W3A3
(69.03)

rounded 68.82 68.00 66.34 19.64
trained 68.77 68.67 68.55 68.79
fine-tuned 68.96 68.64 68.34 68.24

ResNet20
W4A4
(69.61)

rounded 69.42 1.62 1.09 1.01
trained 69.50 68.62 67.47 64.48
fine-tuned 69.22 68.15 66.27 62.93

ResNet56
W4A4
(73.45)

rounded 72.84 32.45 17.28 0.88
trained 73.40 73.01 72.43 56.83
fine-tuned 73.43 72.79 72.37 43.67

B. Reducing the hardware gap

To demonstrate the necessity of matching training and de-
ployment arithmetic, Table II considers the same three models
as in V-A with the same training recipe as in Table I. As it
makes little sense to use 32-bit scaling factors ml in the de-
ployment of such low-precision networks, this table compares
three alternatives for the quantization of these scaling factors
in deployed networks. The first technique is to simply round
them to fixed-point (16, 8, 7 and 6 bits), after training. The
second technique is to train the model with fixed-point scaling
factors using HATorch. The third technique is to first train
the model with floating-point scaling factors, then fine-tune
it for 15 additional epochs with fixed-point scaling factors.
Table II reports the accuracy degradation between the trained
and deployed models.

As expected, the first technique leads to accuracy degra-
dation that increases with lower precision scaling factors,
from a negligible 0.21% loss at 16-bit to catastrophic non-
convergence at 8, 7 or 6-bit, depending on the model. Training
with fixed-point ml allowed to recover the catastrophic loss in
every cases and significantly reduce the accuracy degradation
at 6, 7 and 8-bit, but did not bring significant improvement at
16-bit. Fine-tuning is then explored, it is similar to how QAT
starts from a pre-trained floating-point model. Fine-tuning
the FxP16 converted model slightly outperforms both the
converted and trained models, without bringing improvement
at other bitwidths. This is likely because the trade-off between
scale quantization noise and fixed-point conversion is less
favorable at high precision.

These preliminary results validate that matching training and
deployment arithmetic is important to close the hardware gap,
here due to low-precision scales.

VI. CONCLUSION & PERSPECTIVES

This work presented HATorch, a novel framework for
hardware-aware training of quantized CNNs, supporting ar-
bitrary number formats and scaling methods. The framework
addresses the hardware gap prevalent in simulated QAT ap-
proaches by transparently aligning training and deployment



arithmetic, ensuring reliable deployment on custom acceler-
ators. Experimental results demonstrate HATorch’s effective-
ness in bridging this gap with fixed-point scales while main-
taining flexibility for custom formats like LNS and Shift-and-
Add without compromising accuracy. Future developments
includes exploring additional number formats and interfacing
with actual deployment frameworks through QONNX. Inte-
grating more computation kernels for direct Ω arithmetic will
improve efficiency in handling quantized models. This will
enable testing on larger-scale datasets and architectures to
validate the framework’s broader applicability and scalability.
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