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Abstract—Quantization is a widely adopted tech-
nique to reduce memory footprint and computational
cost in neural networks. While quantizing pre-trained
models is effective, retraining is often required for ex-
treme quantization formats. Fine-tuning, on the other
hand, enables the adaptation of general-purpose mod-
els to specific domains, but quantization can signifi-
cantly degrade their performance.

In this work, we investigate the training cost of fine-
tuned and quantized language models. By formalizing
the computational trade-off between domain adapta-
tion and fine-tuning, we demonstrate that domain-
specialized checkpoints exhibit greater robustness to
quantization noise. Our findings establish a viable
blueprint for deploying high-performance biomedical
NLP models in resource-constrained, edge environ-
ments.

Index Terms—Quantization, QAT, Biomedical NLP,
BERT-based model

I. INTRODUCTION

Deploying Transformer-based language models in
privacy-sensitive domains such as healthcare or defense
presents a dual challenge: strict data governance re-
quirements that mandate on-premise execution, and the
high computational cost associated with standard high-
precision inference. Although generative Large Language
Models (LLMs) have demonstrated remarkable capabili-
ties [4], [9], heir deployment typically relies on large GPU
clusters or cloud APIs, making them incompatible with
privacy-first, low-latency edge environments. In contrast,
encoder-only architectures like BERT [5] remain attrac-
tive for Natural Language Processing (NLP) discrimina-
tive tasks like classification or Named Entity Recognition
thanks to their parameter efficiency and fine-tuning sta-
bility [21].

Embedded systems and edge accelerators offer a promis-
ing hardware substrate for such scenarios, providing deter-
ministic latency, on-premise deployment, and high energy
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efficiency [11]. However, porting Transformers to such
constrained devices requires aggressive model compression
to fit within limited on-chip memory and bandwidth re-
sources. While recent advances in extreme quantization,
notably binary and ternary formats [18], [24], show that
dramatic reductions in numerical precision are theoreti-
cally achievable, their impact on domain-specific language
models remains poorly understood. This is especially crit-
ical in biomedical NLP, where semantic precision, robust-
ness, and consistency are essential.

This work investigates the trade-off between unsuper-
vised domain adaptation and supervised fine-tuning under
quantization constraints. Full pre-training from scratch
is avoided due to computational costs, and simple Post-
Training Quantization is rejected as it is often destructive
at 2 bits. We therefore explore a Quantization-Aware
Continual Pre-training strategy that allocates a compute
budget parameter between domain adaptation and fine-
tuning, aiming to realign specialized models with a discrete
numerical grid without inducing catastrophic forgetting.

The remainder of this manuscript reviews hardware-
aware compression techniques in Section [T} presents the
co-design methodology in Section describes the ex-
perimental protocol on French biomedical corpora in Sec-
tion [[V] and analyzes the resilience of general versus
domain-specific models under extreme quantization in
Section% The tool and experiments are open-source and
availabl

II. RELATED WORK

This research is situated at the intersection of efficient
NLP, quantization algorithms, and hardware acceleration.

I The code is available on \GitHubl


https://github.com/XavierValeuriad/Quantization-Aware-Pre-Training
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Experimental Pipeline for Quantization—Aware Adaptation. The process integrates the a trade—off within a unified

quantization context. Blue: Datasets flow (General — Domain — Task). Peach: The Quantization scheme (QAT) spans both phases
to force the model to adapt its weights to the discrete grid (e.g., {—1,0,1}) during feature acquisition. Yellow: The « cursor modulates the
ratio between unsupervised recovery (DAPT) and supervised specialization (Fine-Tuning).

A. Hardware-Aware Model Compression

Early quantization efforts focused on 8-bit inference
for CPU and GPU acceleration [13], but research has
increasingly turned to sub-4-bit methods to overcome
memory and bandwidth limitations. Post-Training Quan-
tization (PTQ) [2] offers a low-cost solution but fre-
quently degrades performance below 4 bits. In contrast,
Quantization-Aware Training (QAT) simulates discretiza-
tion noise during forward passes, allowing the network
to learn robust weights. Techniques like LSQ [6] have
pushed the boundary of uniform integer quantization down
to 2 bits by making the quantization scale a trainable
parameter.

B. Ternary Networks and the BitNet Paradigm

Ternary weight networks (—1,0, 1) offer a more radical
form of compression than scalar quantization, eliminating
multipliers and enabling highly efficient integer datapaths.
The BitNet b1.58 architecture [18] demonstrated that even
large generative LLMs can retain strong capabilities with
1.58-bit weights when trained from scratch on massive cor-
pora. Existing studies on BitNet focus primarily on large-
scale generative models trained from scratch on trillions of
tokens. The applicability of this ternary paradigm to the
adaptation of existing medium-sized encoders (BERT [5])
for specialized domains remains an open research question.

C. Domain Adaptation in NLP

Domain specialization of language models is commonly
achieved via Domain-Adaptive Pre-Training (DAPT) [10],
which continues pre-training on in-domain text before
supervised fine-tuning. While effective for full-precision

models [14], the interaction between this adaptation phase
and extreme quantization is not well understood. Recent
work suggests that quantization acts as a regularizer [23]
that may require additional data to converge [25], no
prior work has formalized the tradeoff between unsu-
pervised DAPT and supervised fine-tuning when models
must adapt to discrete, low-precision numerical grids. This
tradeoff is central to quantizing domain-specific encoders
for constrained hardware.

III. METHODOLOGY: HARDWARE-AWARE
QUANTIZATION AND ADAPTATION

This study bridges the gap between NLP adaptation
strategies and Hardware-Software Co-Design for recon-
figurable architectures. The methodology is structured
around two axes: formalizing the compute budget trade-
off required to recover from quantization noise («), and
defining quantization schemes. The complete experimental
workflow is illustrated in Figure

A. The Adaptation Trade-off: The o Parameter

Our central hypothesis posits that the optimal compute
budget division between DAPT and FT is strictly depen-
dent on the severity of the quantization scheme. Whereas
fine-tuning adjusts decision boundaries for a specific task,
unsupervised adaptation leverages data scaling laws [7]
and has the potential to recover broader semantic repre-
sentations degraded by aggressive discretization, especially
under ternary weights.

The problem is formalized by defining a total compute
budget Brotal, measured in optimization steps. A hyper-
parameter « € [0,1) is introduced to govern the fraction



TABLE 1
THEORETICAL ESTIMATION OF MEMORY FOOTPRINT AND COMPUTATIONAL COMPLEXITY FOR THE CAMEMBERT ARCHITECTURE
(SEQLEN=512). MEMORY GAIN REFERS TO THE REDUCTION IN STORAGE RELATIVE TO FP32 BASELINE. BITOPS GAIN MEASURES THE
HARDWARE COST REDUCTION IN STANDARD ARITHMETIC COMPLEXITY.

. Precision Memory Arithmetic (BitOPs)
Configuration
E/W/A (bits) Size (MB) Gain Ops (T) Gain
Baseline
FP32 32/32/32 417.2 x1.0 44.53 x1.0
Homogeneous quantization
LSQ E8WSAS 8/8/8 104.3 x4.0 2.78 %x16.0
LSQ E4W4A4 4/4/4 52.1 x8.0 0.70 x64.0
LSQ E2W2A2 2/2/2 26.1 x16.0 0.17 %x256.0
Heterogeneous quantization
LSQ E6W2A6 6/2/6 37.4 x11.1 0.52 %x85.3
BitNet E6W1.58A6 6/1.58/6 37.4 x11.1 0.52 x85.3

of this budget allocated to the unsupervised adaptation
phase:

Bpapt = aBrotal, (1)

Brr = (1 — a)Brotal, (2)

where Bpapr denotes the DAPT budget and Bpgr
the downstream fine-tuning budget. The case @ = 0

represents the baseline (fine-tuning only), while @ — 1
prioritizes domain adaptation and quantization robustness
over task—specific specialization. As depicted in Figure
the quantization constraints remain active throughout
both phases to force the model to adapt its weights to the
discrete grid during feature acquisition.

B. Discretization Algorithms

To evaluate hardware efficiency, we implement two com-
plementary quantization paradigms.

Learned Step Size Quantization (LSQ): For inte-
ger arithmetic configurations, the LSQ algorithm [6] is
adopted. Unlike static methods, LSQ introduces a scaling
factor s as a trainable parameter, allowing the network
to dynamically adjust the quantization grid during the
DAPT phase. The operation is defined as:

2= {clip (gn,pﬂ - 8, (3)

where & is the quantized representation of z, n = —20~1
and p = 2°~1 — 1 define the integer range for bit-width b
and |-] indicates rounding to the nearest integer.

BitNet b1.58 (Ternary quantization): For extreme com-
pression regimes, the BitNet b1.58 approach [18] is im-
plemented. Weights are constrained to the ternary set
{-1,0,1} via absolute mean normalization:

T 1
7= |cli —-1,1 :—E Wil 4
x \‘Clp <’7+67 ) )“ y Y nm — ‘ ]‘ ( )

During inference, this scheme replace the fundamen-
tal Matrix-Multiply-Accumulate (MAC) operation into
XNOR-popcount operation, effectively eliminating the re-
quirement for energy-intensive multipliers.

C. Hardware-Aligned
Efficiency Nexus

Strategy: ~ The  Convergence-

The architectural framework of this study is predicated
on the structural alignment of quantization precision with
the limited resources of modern embedded architectures.
To facilitate the discussion, the notation ExWyAz is
adopted, where x, y, and z represent the bit-widths for
Embeddings (E), Weights of linear layers (W), and Acti-
vations (A), respectively.

The selection of 6-bit precision for activations (A=6)
is driven by the intersection of algorithmic stability and
memory efficiency. From an algorithmic perspective, pre-
liminary empirical observations indicate that reducing
activation precision to 4 bits frequently precipitates repre-
sentation collapse and divergence during domain adapta-
tion. Consequently, 6-bit precision emerges as the requisite
lower bound to preserve sufficient dynamic range.

Simultaneously, this precision optimizes the data move-
ment cost, which is the primary bottleneck in edge infer-
ence. Using 6-bit activations reduces the memory band-
width requirements compared to standard 8-bit integer
formats, while maintaining a higher representational ca-
pacity than 4-bit logic. Therefore, the E6/A6 configuration
constitutes a Pareto-optimal “sweet spot” for embedded
deployment and convergence.

Crucially, by combining this precision with ternary
weights, the BitNet architecture transforms the fundamen-
tal operation from Multiplication to Multiplexing and Ad-
dition. In constrained embedded processors with limited
hardware multiplier units, this allows for the offloading
of Matrix Multiplications entirely to the arithmetic logic
units (ALUs). This strategy enables higher energy effi-
ciency by bypassing energy-intensive multipliers, validat-



TABLE II
DETAILED STATISTICS OF THE DATASETS USED IN THIS STUDY. THE DOMAIN SOURCE, THE NUMBER OF TARGET LABELS (CLASSES), THE TOTAL
VOLUME, AND THE DOCUMENT DISTRIBUTION ACROSS TRAIN/VALIDATION/TEST SPLITS ARE REPORTED. HAL HOLDS FOR THE FRENCH HAL
OPEN ARCHIVE, HAS FOR THE FRENCH HIGH HEALTH AUTHORITY, AND FTP FOR FRENCH TREEBANK |[1].

Dataset Task  Source Domain # Labels Total Size Train Val. Test
Pre-training Corpus
NACHOS (LARGE) MLM HAL (80%), HAS (20%) - 7.5 GB 2 B Tokens 5 M Tokens -
DrBenchmark Tasks (Downstream,)
ESSAI POS Clinical Trials ~30 (FTB) 7,247 docs 5,072 725 1,450
CAS POS Clinical Cases ~30 (FTB) 3,790 docs 2,653 379 758
QUAERO (Emea) NER  Drug Leaflets 10 103k words 429 389 348
QUAERO (Medline) NER  Scientific Titles 10 103k words 833 832 833

ing the heterogeneous E6W1.58 A6 configuration as the op-
timal trade-off for high-throughput biomedical inference.

We estimate the hardware cost of the different con-
figurations using the BitOPs metric, which accounts for
both the weight and activation bit-widths of each linear
layer in the model. This metric calculates the number of
bitwise multiplications performed in the linear layers. For
example, for a given linear layer, the BitOPs metric is
defined as:

BitOPs(l) = W - A - |wy], (5)

where [ is a linear layer and |w;| denotes the number
of weights in the linear layer [. Consequently, the total
BitOPs for a model is the sum of the BitOPs values for
all its linear layers.

IV. EXPERIMENTAL PROTOCOL

The experimental protocol is structured to examine
how quantization interacts with domain knowledge by
contrasting two adaptation pathways: 1) applying QAT to
an already biomedical-specialized encoder (DrBERT [14])
and 2) applying QAT to a generalist model (Camem-
BERT [19]) that must acquire both domain specialization
and quantization robustness within a unified training bud-
get.

A. Adaptation Grid and Optimization Hyperparameters

To capture the non-linear dynamics of quantization
recovery, a total computational budget of Brota = 30,000
steps is established. The adaptation ratio « is discretized
across the set {0.0,0.1,0.3,0.5,0.7,0.9} to investigate var-
ious regimes. The value o = 0.0 serves as the strict fine-
tuning baseline, while @ = 0.1 tests the hypothesis of
rapid statistical realignment. Intermediate values probe
the trade-off shift caused by quantization severity, and
a = 0.9 simulates an asymptotic regime where the model
is maximally adapted to the domain but minimally spe-
cialized for the task.

The goal is not only to compare quantization algo-
rithms but to expose the mechanisms through which model
robustness emerges when hardware constraints, training
budgets, and domain shift interact.

Optimization is governed by the AdamW algorithm
parametrized with 8; = 0.9, 2 = 0.98, and € = 1078 [17].
A learning rate of 5-107° is applied in conjunction with a
linear scheduler incorporating a 10% warm-up phase [5].
Regularization is enforced via a dropout rate of 10% [22]
and a weight decay of 0.01. To ensure stability, gradient
clipping is set to a maximum norm of 1.0 [8], and the
gradient batch size is fixed at 96. Task-specific heads are
initialized according to the standard BERT protocol with
a range of 0.02.

B. Biomedical NLP Datasets

This study leverages a specialized biomedical corpus for
pre-training and a comprehensive benchmark for down-
stream evaluation. Detailed statistics are provided in Table
I

The quantization-aware pre-training phase relies on the
NACHOS dataset |14], a large-scale French biomedical cor-
pus comprising 7.5 GB of text. The data is aggregated
from high-quality institutional sources, specifically 80%
from the French HAL Open Archive (scientific publica-
tions) and 20% from the French High Health Authority
(HAS) (clinical guidelines). Rigorous filtering was applied
to remove Optical Character Recognition noise and ensure
language exclusivity.

Downstream evaluation is conducted on the
DrBenchmark suite [15]. Part-of-Speech Tagging (POS) is
assessed on the ESSAT corpus (clinical trial protocols) and
the CAS corpus (clinical cases). Named Entity Recognition
(NER) is evaluated using the QUAERO corpus, subdivided
into Emea (drug leaflets) and Medline (scientific titles).
Due to the lack of official partitions for ESSAT and CAS,
a standard random split of 70% Train, 10% Validation,
and 20% Test was applied to facilitate reproducibility.
Nested entities in QUAERO were flattened to top-level
granularity following BigBio standards.

C. Adaptation Strategy: DAPT vs. CPT

To isolate the effect of quantization on domain adap-
tation, a comparative strategy is implemented using two
distinct starting checkpoints that share the CamemBERT
architecture. CamemBERT [19] serves as the baseline for



DAPT, tasked with shifting from general web text to
biomedical jargon while adapting to the quantization grid.
Conversely, DrBERT |[14] represents the Continuous Pre-
Training (CPT) scenario, where the domain is constant
and the objective is solely to adapt pre-existing expert
weights to quantization.

A critical architectural distinction exists regarding pa-
rameter sharing. DrBERT employs weight tying between
the embedding layer and the Masked Language Modeling
(MLM) output head, a technique standardized by [12],
[20], whereas CamemBERT does not. It is hypothesized
that this mechanism may function as a regularization
prior, rendering the embeddings of pre-trained models
more resilient to aggressive quantization.

V. RESULTS AND DISCUSSION

Table [[I]] reports the full F; results across all quanti-
zation configurations. The discussion below analyzes how
precision level, model origin, and adaptation ratio ()
jointly modulate robustness in the biomedical domain.

A. Robustness Across Precision Regimes

In the high-precision regime (LSQ E8WS8AS), perfor-
mance remains near-lossless relative to the FP32 baseline
across all datasets for both studied models (DrBERT and
CamemBERT'). Convergence is smooth, confirming that
8-bit integer precision captures sufficient dynamic range
for biomedical semantics. As quantization becomes more
aggressive with LSQ E4W4A4, instability emerges, par-
ticularly for the generalist model on NER tasks. Camem-
BERT fails to converge on QUAERO-Medline without pre-
training (o« = 0), degrading to near-zero performance,
whereas DrBERT maintains 54.6%. However, introducing
a pre-training phase (o > 0.7) allows CamemBERT to
recover, reaching up to 73.4% on QUAERO-Emea with
«a = 0.3. This finding indicates that adapting a generalist
embedding space to a specialized domain under 4-bit
constraints is feasible but necessitates a mandatory warm-
up phase.

B. The 2-bit Collapse and the BitNet Anomaly

The transition to extreme compression (2-bit weights)
exposes the limitations of LSQ. In LSQ E2W2A2 and LSQ
E6W2A6 configurations, CamemBERT collapses system-
atically on NER tasks, regardless of the a value. Con-
versely, DPBERT maintains usability but suffers degrada-
tion compared to 4-bit configurations. This failure suggests
that the gradient-based learning of the step-size in LSQ
becomes unstable when the discrete space is too sparse.
This failure suggests that the gradient-based learning of
the step-size in LSQ becomes unstable when the discrete
space is too sparse. Moreover, standard LSQ enforces sym-
metric quantization intervals, which are suboptimal for
the asymmetric distributions of Transformer activations
(GeLU). This mismatch likely precipitates the collapse of
the generalist model, whereas BitNet’s magnitude-based

structural ternarization yields a smoother and more opti-
mizable landscape and the initial weights are far from the
target distribution.

Remarkably, the BitNet configuration (E6W1.58A6)
breaks this trend. Despite using fewer weight bits than
LSQ E2, ternary-constrained models remain substan-
tially more robust. DrBERT reaches 55.2% on QUAERO-
Medline, and CamemBERT—otherwise unusable under
LSQ—recovers to 64.4% on QUAERO-Emea at o = 0.7.
This inversion of expectations, where 1.58-bit ternary
weights outperform 2-bit LSQ, supports the hypothe-
sis that structural ternarization yields a smoother and
more optimizable landscape than scale-learned quanti-
zation when adapting pretrained Transformers to new
domains.

C. Specialization as a Robustness Factor

A consistent pattern is the superior resilience of Dr-
BERT compared to CamemBERT at low precision. In
the failing LSQ E6W2A6 configuration, where Camem-
BERT collapses, DrBERT retains significant capabilities
(~ 63.9% F1 on QUAERO-Emea). This resilience is
attributed to the domain alignment of DrBERT’s pre-
trained embeddings and its weight-tied architecture, which
likely induces a more cohesive embedding geometry resis-
tant to quantization noise.

D. The Stabilizing Effect of Continuous Pre-Training

The adaptation ratio o emerges as a decisive factor in
preventing divergence and maximizing recoverability. Even
minimal unsupervised adaptation (a = 0.1) consistently
improves stability across quantization schemes. In LSQ
E2W2A2, for example, DrBERT improves from 53.8%
at @ = 0 to 59.4% at o = 0.1. These results support
a two-stage interpretation of QAT under domain shift,
where the model must first realign its weights to the
quantized manifold through low-variance MLM signals
(unsupervised phase), and only then can it reliably absorb
the high-variance gradients associated with downstream
supervision (fine-tuning phase). Thus, increasing « does
not simply provide more data—it creates a *structurally
safer optimization trajectory* under extreme quantization.

VI. CONCLUSION AND FUTURE WORK

This work introduces a hardware—aware quantization
framework that unifies domain adaptation and discretiza-
tion. Across all experiments, three findings consistently
characterize the interaction between quantization severity,
model provenance, and the allocation of the adaptation
budget.

First, the architectural superiority of structural con-
straints over learned precision is demonstrated in extreme
compression regimes. The BitNet E6W1.58A6 configura-
tion, tailored for low-precision embedded constraints, con-
sistently outperforms the learned LSQ E2W2A2 baseline.
This confirms that at very low bit-widths, the stability



TABLE III
EVALUATION METRICS ON THE TEST SET FOR QUANTIZED DRBERT & CAMEMBERT ACROSS DIFFERENT TRAINING-FINETUNING RATIOS
(v =0.3). NOTATION E-W-A REPRESENTS THE BIT-WIDTH FOR EMBEDDINGS, WEIGHTS, AND ACTIVATIONS. CELLS WITH “~” INDICATE
MODEL DIVERGENCE OR COLLAPSE (F1-SCORE < 20%). BOLD SCORES DENOTE THE HIGHEST PERFORMANCE FOR EACH FINE-TUNED TASK
WITHIN A QUANTIZATION SCHEME.

CAS-POS ESSAI-POS QUAERO-emea QUAERO-medline
Quantization a (%) | DrBERT Camem. | DrBERT Camem. | DrBERT Camem. | DrBERT  Camem.
F1-score 1 (%) Fy-score 1 (%) Fy-score 1 (%) Fy-score 1 (%)
Baseline
FP32 o | 973 97.9 | 985 98.9 | 6L8 76.7 |  55.5 58.0
Homogeneous Quantization
0 97.3 97.4 98.5 98.4 62.9 49.6 55.4 53.0
10 97.1 97.6 98.5 98.7 63.7 67.4 56.4 56.6
LsQ 30 97.4 97.8 98.5 98.8 62.2 76.4 55.4 55.9
ESWSAS 50 97.3 97.7 98.6 98.9 63.2 76.2 55.2 56.5
70 97.5 97.7 98.5 98.8 64.2 74.6 55.5 57.3
90 97.5 97.6 98.6 98.8 61.8 73.2 55.6 55.3
0 97.0 97.2 98.3 95.6 60.0 25.7 54.6 -
10 97.2 97.2 98.5 98.5 63.8 53.2 55.6 42.2
LsSQ 30 97.2 97.1 98.5 98.4 60.7 73.4 55.3 42.0
EAWAAL 50 97.3 97.5 98.5 98.7 63.3 71.3 55.7 50.2
70 97.5 97.3 98.4 98.7 64.0 71.5 55.4 51.8
90 97.4 97.1 98.6 98.3 62.3 69.2 56.1 44.5
0 95.9 - 98.0 - 53.8 - 47.1 -
10 96.9 - 98.4 - 59.4 - 50.8 -
LsSQ 30 96.9 - 98.3 - 58.0 - 52.3 -
E2W2A2 50 97.1 - 98.3 — 60.5 - 50.4 -
70 97.1 - 98.3 - 60.5 - 51.6 -
90 97.2 - 98.4 - 58.8 - 52.7 -
Heterogeneous Quantization
0 97.0 - 98.3 - 59.2 - 53.2 -
10 97.1 - 98.5 - 63.5 - 53.8 -
30 97.0 - 98.5 - 63.2 - 52.8 -
LSQ E6W2A6 50 97.1 - 98.5 - 61.6 - 52.6 -
70 97.1 - 98.5 - 62.2 - 55.4 -
90 97.4 - 98.6 - 63.9 - 54.7 -
0 96.6 97.5 98.3 98.4 55.2 51.7 48.8 48.1
10 97.2 97.6 98.5 98.6 62.2 62.7 53.3 53.0
) 30 97.0 97.6 98.4 98.6 59.2 60.9 53.6 53.3
BitNet E6WL.58A6 97.2 97.6 98.5 8.6 61.7 63.4 54.2 53.8
70 97.2 97.6 98.5 98.6 63.5 64.4 53.6 54.5
90 97.3 97.5 98.6 98.5 64.2 63.5 55.2 53.6

of the analytical ternary distribution ({—1,0,1}) provides
a more robust inductive bias than the noisy gradient-
based optimization of 2-bit scalar quantization. Second,
the domain provenance of the model proves critical: spe-
cialized checkpoints (DrBERT) exhibit significantly higher
resilience to quantization noise than their generalist coun-
terparts (CamemBERT'), which succumb to the “double
burden” of simultaneous domain adaptation and weight
discretization. Third, the introduction of a continuous
pre-training phase (a > 0) is identified as a necessary
condition for convergence in aggressive regimes, allowing
the model to realign its internal representation on the
discrete grid prior to task-specific fine-tuning.

These results suggest several concrete research direc-
tions. A first extension is the translation of ternary-
aligned architectures to general-purpose CPUs leveraging
AVX/NEON instructions, enabling efficient biomedical in-
ference beyond specialized accelerators. Further reductions
in computational footprint may be obtained by integrating
structured sparsity with SIMD-friendly tensor formats.

Additionally, extending the study to asymmetric quanti-
zation schemes (e.g., LSQ+ [3]) could resolve the collapse
observed in 2-bit scalar baselines by better capturing
the rectified distribution of activations. Beyond encoders,
assessing whether the synergy between domain special-
ization, hardware-constrained quantization, and adapta-
tion strategies generalizes to larger generative models
remains an open and compelling question. Finally, a the-
oretical characterization of adaptation under quantiza-
tion—particularly the interplay between «, domain shift,
and discrete optimization—may yield principled guidelines
for budget allocation in low-precision training regimes.
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VIII. ETHICAL AND IMPACT STATEMENT

A. Datasets and Bias

Experiments rely exclusively on anonymized open
data [15], in strict adherence to their respective licenses.
While focusing on computational efficiency, this study
does not audit potential social biases present in pre-
training corpora. Although crucial, analyzing the specific
interplay between extreme quantization and model fair-
ness remains outside the scope of this work.

B. Environmental Impact (Green Al)

This research aligns with Frugal Al principles by pro-
viding heuristics to minimize computational costs. Consis-
tent with transparency, the cumulative carbon footprint
for all 175 experimental runs was tracked via CodeCar-
bon |16]. The total computing duration of 869 hours
consumed 435 kWh, resulting in an estimated emission
of 1.0 kg COgeq. This low footprint benefits from the
Jean-Zay (IDRIS/CNRS) supercomputer’s decarbonized
energy mix. By identifying optimal training regimes and
flagging divergent low-bit configurations, this study di-
rectly contributes to preventing resource wastage in future
hardware-aware NLP research.
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