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Abstract—Bayesian Neural Networks (BNNs) provide princi-
pled uncertainty quantification but suffer from substantial com-
putational and memory overhead compared to deterministic net-
works. While quantization techniques have successfully reduced
resource requirements in standard deep learning models, their
application to probabilistic models remains largely unexplored.
We introduce a systematic multi-level quantization framework for
Stochastic Variational Inference based BNNs that distinguishes
between three quantization strategies: Variational Parameter
Quantization (VPQ), Sampled Parameter Quantization (SPQ),
and Joint Quantization (JQ). Our logarithmic quantization for
variance parameters, and specialized activation functions to
preserve the distributional structure are essential for calibrated
uncertainty estimation. Through comprehensive experiments on
Dirty-MNIST, we demonstrate that BNNs can be quantized down
to 4-bit precision while maintaining both classification accuracy
and uncertainty disentanglement. At 4 bits, Joint Quantization
achieves up to 8 x memory reduction compared to floating-point
implementations with minimal degradation in epistemic and
aleatoric uncertainty estimation. These results enable deployment
of BNNs on resource-constrained edge devices and provide design
guidelines for future analog “Bayesian Machines” operating at
inherently low precision.

Index Terms—Robustness, Quantization, Bayesian Neural Net-
works

I. INTRODUCTION

Deep Neural Networks (DNNs) have become the dominant
modeling paradigm across vision, language, and scientific
domains, yet they still lack a principled mechanism to quantify
uncertainty in their predictions. Standard architectures produce
point estimates—often interpreted as probabilities through
functions such as softmax—even though these outputs do not
reflect true probabilities [1]. Consequently, neural networks
may remain overconfident when confronted with inputs that
lie outside their domain of competence (out-of-domain data).

Bayesian Neural Networks (BNNs) [2], [3] address this
limitation by placing probability distributions over model
parameters, allowing them to quantify uncertainty in their
predictions and to differentiate between uncertainty inherent
in the data (aleatoric uncertainty) and uncertainty that reflects
the model’s lack of knowledge or capacity (epistemic un-
certainty) [4], [5]. This probabilistic formulation provides a
mathematically grounded way for models to express limited
knowledge, which is crucial under distribution shift, scarce
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training data, or safety-critical decision-making [5]. Among
approximate inference techniques for BNNs, Stochastic Vari-
ational Inference (SVI) has emerged as a practical and scalable
approach due to its compatibility with modern deep learning
frameworks [6], [7].

Despite these advantages, BNNs suffer from substantial
computational and memory overhead. The need to maintain
and update distributions over parameters—for SVI typically
represented via floating-point distributional parameters such
as means and variances of Gaussians—results in significantly
higher memory and compute requirements than in standard
deterministic networks. This mismatch limits deployment on
resource-constrained hardware, where power, throughput, and
memory bandwidth are critical constraints.

Neural network quantization provides a powerful way to
reduce model size and compute cost by lowering numeri-
cal precision [8]. However, while quantization is well un-
derstood for deterministic models, applying it directly to
probabilistic models is non-trivial: quantization may distort
the distributional structure essential for calibrated uncertainty
estimates. Recent works have begun to explore low-precision
Bayesian neural networks, including post-training quantization
of variational BNNs [9]-[11]. However, these approaches treat
quantization as a single, post-hoc compression step and do
not analyze where and how quantization should be applied
within the SVI pipeline to preserve predictive uncertainty. In
particular, we are not aware of a multi-level, SVI-integrated
quantization framework that studies bit-width vs. uncertainty
fidelity (aleatoric and epistemic) across inputs, variational
parameters, and stochastic samples. Three fundamental gaps
persist:

1) No multi-level view of quantization in Bayesian in-
ference: existing work treats quantization as a single
operation, ignoring the different stochastic levels in SVI
(inputs, distributions, samples).

2) Lack of uncertainty-preserving precision reduction
methods: there are no quantization approaches explicitly
designed to preserve the statistical semantics of u, o, and
sampled weights in BNNs.

3) No systematic evaluation of bit-width vs. uncertainty
fidelity: prior studies mainly examine accuracy vs. bit-
width, but not the impact on aleatoric and epistemic
uncertainty, nor on uncertainty calibration.



Addressing these gaps is essential to enable hardware-efficient
Bayesian inference that maintains the main benefit of BNNs:
reliable uncertainty estimation.

The objective of this work is to develop and experimentally
validate a hardware-aware, multi-level quantization frame-
work for SVI-based Bayesian Neural Networks that reduces
computational cost while preserving accuracy and calibrated
predictive uncertainty. Concretely, our contributions are:

1) Multi-Level Quantization Framework for SVI-BNN
Classifiers: we introduce a systematic decomposition
of quantization locations in SVI-based Bayesian image
classifiers—covering inputs, sampled weights, and vari-
ational distribution parameters—and analyze how each
level affects classification accuracy and predictive uncer-
tainty (aleatoric and epistemic) on Dirty-MNIST [12].

2) Quantization-Aware SVI Optimization: we design
and empirically study quantization-robust SVI config-
urations, including specialized activation functions, as
well as magnitude-based clipping and log-quantization
strategies that preserve the variance structure of latent
distributions under low precision.

3) Comprehensive Bit-Width Sensitivity Study: we per-
form an extensive analysis of classification accuracy, and
aleatoric/epistemic uncertainty decomposition across
multiple bit-widths. This yields practical guidelines for
selecting precision levels that balance efficiency and
uncertainty fidelity.

The ability to deploy Bayesian models on constrained
hardware unlocks applications where both low latency and
calibrated uncertainty are required, such as embedded medical
devices, autonomous robots, and safety-critical control sys-
tems. This work bridges the gap between reliable probabilistic
modeling and low-precision hardware efficiency, and provides
a first step toward principled design rules for quantized
Bayesian inference. The insights are directly relevant for future
BNN accelerators (called "Bayesian Machines”), for example
based on probabilistic photonic computing [13]-[15], FPGA
implementations, and mixed-signal/neuromorphic platforms
that naturally operate at low bit-widths or with stochastic
hardware primitives.

II. BACKGROUND

Bayesian Neural Networks are widely regarded as a princi-
pled approach to uncertainty-aware learning [7], [16]. They
aim to approximate the posterior distribution p(w|D) o
p(D|w) p(w) over parameters w. Since exact posterior in-
ference is intractable for modern neural architectures, a va-
riety of approximate methods have been developed, includ-
ing Variational Inference (VI) [6], [7], Markov chain Monte
Carlo (MCMC), Deep Ensembles [17], and Monte Carlo
dropout [18]. In VI, one introduces a parametrized family
go(w) over the model parameters w (see also Figure 1),
where © denotes the variational parameters, and optimizes
the evidence lower bound (ELBO) to minimize the Kullback—
Leibler divergence between ¢g(w) and the true posterior
p(w[D).
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Fig. 1: A Bayesian Neural Network can be viewed as a
straightforward extension of a standard neural network, where
the deterministic parameters are replaced by probability dis-
tributions.

In contrast to sampling-based methods such as Markov
chain Monte Carlo, which are computationally prohibitive for
large-scale data, VI casts posterior estimation as an optimiza-
tion problem that can be solved efficiently using stochastic gra-
dient updates [19]. In practice, one often assumes independent
Gaussian distributions parametrized by mean p and variance
o? for qeo (w), following the mean-field assumption [5].

A. BNN Quality Metrics

While general uncertainty assessments are useful, BNNs
often benefit from a more fine-grained view, separating un-
certainty into aleatoric and epistemic components. Aleatoric
uncertainty refers to variability arising from noise in the
underlying data-generating process. Because this uncertainty
is inherent to the observations, it cannot be reduced even
when additional data are collected. Epistemic uncertainty, in
contrast, reflects the modeling error and typically decreases
as more data become available. It captures aspects of model
capacity and learned knowledge, and is commonly assessed by
evaluating the model’s ability to detect out-of-domain (OOD)
data.

This decomposition of aleatoric and epistemic uncertainty
separates total uncertainty into two distinct scores:

o Softmax Entropy (E, . p)[H[y|z,w]]) represents the
aleatoric uncertainty component. It quantifies the average
predictive ambiguity conditioned on a specific model,
capturing the inherent noise or class overlap present in
the input.

e Mutual Information (I[y,w|x,D]) quantifies the epis-
temic uncertainty. It quantifies how much the predic-
tive distribution varies across posterior weight samples,
capturing uncertainty arising from insufficient data or
imperfectly learned models.

In practice, these uncertainty components can be estimated
using Monte Carlo sampling from the posterior distribution,
i.e., executing multiple forward passes of the Bayesian Neural



Network to obtain multiple predictions (samples) p(y =
¢|lx,wy). For brevity, let p denote p(y = clz,w,). With
N weight samples {w, }2_; from the approximate posterior
q(w), the Softmax Entropy (aleatoric) is computed as:

N C
Ep(wip) [ H [ylz, w]] ~ —% > > plogp (D

n=1c=1
This expression calculates the average entropy of the per-
sample softmax outputs. The total uncertainty is estimated
by first averaging the softmax probabilities across samples to
obtain the predictive distribution, then computing its entropy:

H(y|z,D) ~ —ZC: ((;f ZN:p) -log(% ip)) )

Finally, the Mutual Information (epistemic) is derived by
subtracting the aleatoric component from the total uncertainty:

I[yaw|$7D] = H(y\x,D) _Ep(w|D)[H[y|xawH (3)
B. BNN Evaluation Dataset

The primary community standard for evaluating a BNN
for epistemic and aleatoric uncertainty is Dirty-MNIST [12],
where the whole dataset is composed of a set of three sub-
datasets, as illustrated in Figure 2. The first set being standard
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Fig. 2: Examples from the Dirty-MNIST dataset as used for
assessment of in-domain prediction quality (MNIST), aleatoric
uncertainty (Ambiguous-MNIST) and epistemic uncertainty
(Fashion-MNIST), respectively.

MNIST [20] and Fashion-MNIST [21], where Fashion-MNIST
is used as the OOD test case. Additionally, Dirty-MNIST
introduces Ambiguous-MNIST [12], which is constructed such
that each image resembles two digits and thus classes simul-
taneously. Meaning, that it can be used to evaluate aleatoric
uncertainty, as the distinction between the two classes is
irreducible.

Training is then done on the training sets of both MNIST
and Ambiguous-MNIST, while evaluation is done using the
test splits of all three datasets. The resulting prediction quality
is judged using multiple metrics:

¢ In-domain prediction quality is evaluated using accuracy
evaluation on MNIST.

« Aleatoric uncertainty estimation quality is evaluated using
the Area Under the Receiver Operating Characteristic
Curve (AUROC) of MNIST against Ambiguous-MNIST.

« Epistemic uncertainty estimation quality is similarly eval-
vated using the AUROC of MNIST and Ambiguous-
MNIST against Fashion-MNIST.

« To investigate the disentanglement of aleatoric and epis-
temic uncertainty, we visually investigate how the three

datasets separate in a scatter plot of Mutual Information
over Softmax Entropy.

Using these metrics and factors one is able to concisely
investigate the prediction quality not only of the standard
quality metric for classification (accuracy), but also evaluate
how well uncertainty estimation and disentanglement work.
In a prototypical scatter plot (e.g. Figure 4), all samples from
Ambiguous-MNIST should cluster on the x-axis (increased
Softmax Entropy score but Mutual Information close to zero),
while the samples from Fashion-MNIST should cluster around
the y-axis (increased Mutual Information score but Softmax
Entropy close to zero). Samples from MNIST should have
low scores for both Mutual Information and Softmax Entropy,
thus should cluster in the bottom left of the figure.

III. RELATED WORK

Although there is a vast body of work on quantization
for standard Deep Neural Networks, BNNs have received
surprisingly little dedicated attention. While one might expect
that prediction accuracy under quantization behaves similarly
for BNNs and deterministic DNNs, the crucial open question
is how quantization impacts uncertainty estimates—the very
core reason for using BNNs in the first place.

Quantization for standard Deep Neural Networks has been
extensively studied in the context of resource-efficient infer-
ence on embedded and general-purpose hardware. Surveys
and system studies such as Roth et al. [8] and Gholami
et al. [22] provide overviews of compression techniques—
especially Post-Training Quantization (PTQ), Quantization-
Aware Training (QAT), and mixed-precision schemes—and
document that 48 bit inference is often achievable with mini-
mal accuracy loss on standard benchmarks. Foundational work
by Jacob et al. [23] introduced the now-standard integer-
arithmetic-only 8-bit quantization with scale and zero-point,
forming the basis of many mobile and edge deployments,
while Banner et al. [24] demonstrated that, with careful activa-
tion clipping and bias correction, even 4-bit PTQ can be prac-
tical for convolutional networks without retraining. Beyond
uniform bit-widths, methods such as HAQ [25] or Galen [26]
treat quantization as a hardware-aware optimization problem,
automatically selecting layer-wise bit-widths under latency,
energy, or model-size constraints for specific accelerators.
System-focused frameworks like DeepChip [27] integrate low-
precision arithmetic with sparsity and optimized kernels to
achieve multi-x speedups and substantial memory savings
on constrained hardware. Together, these works underscore
the maturity and effectiveness of low-bit quantization for
deterministic DNNs.

Ferianc et al. [9] conduct a broad empirical investigation
into how low-precision quantization affects both predictive ac-
curacy and uncertainty quality in BNNs. They evaluate several
Bayesian inference schemes—including Bayes-by-Backprop,
MC Dropout, and SGHMC—under uniform quantization of
weights and activations down to sub-8-bit precision across a
range of datasets and architectures. Their main finding is that
BNNss are surprisingly robust to standard low-bit quantization:



predictive performance, calibration, and uncertainty measures
remain largely stable even at aggressive bit-width reductions.
However, their study focuses on generic uniform PTQ and
does not analyze how quantization interacts with the internal
structure of variational inference or task-specific pipelines,
leaving open questions about where quantization most strongly
affects uncertainty propagation in SVI-based Bayesian classi-
fiers.

Subedar et al. [10] present one of the first empirical in-
vestigations into the quantization of SVI-BNNs, focusing on
PTQ of pretrained mean-field variational models on MNIST
and CIFAR-10. Their method quantizes the learned posterior
parameters by applying INT8 PTQ to the mean and a uniform
low-bit quantizer to the standard deviation, while also quan-
tizing sampled noise for Monte Carlo inference. Their study
demonstrates that even aggressive variance quantization (down
to 1bit) preserves predictive accuracy and calibration, and
does not substantially degrade uncertainty quality, even under
dataset shift. However, their approach is limited to a single-
level, post-hoc quantization of the trained posterior and does
not modify the SVI training process, the stochastic sampling
pathway, or the input representation.

Lin et al. [11] extend the line of work on quantized Bayesian
deep learning by proposing a PTQ workflow for BNNs
built on Bayesian-Torch and targeting INTS8 inference on 4th
Gen Intel Xeon (Sapphire Rapids). Their framework mirrors
standard PyTorch static PTQ: observers are inserted, calibra-
tion is performed on representative data, and full-precision
Bayesian models (e.g., variational ResNet-50 on ImageNet)
are converted into quantized BNNs with INT8 weights and
activations that exploit Intel AMX instructions. They then
characterize low-precision BNN workloads at system level,
reporting up to 6.9x inference throughput speedup and 4x
memory reduction over FP32 BNNs while preserving top-1
accuracy and uncertainty calibration on ImageNet. Beyond
ImageNet, they evaluate a medical histology classifier and
OOD detection (Camelyonl7-WILDS), showing that robust-
ness to data drift and the quality of predictive uncertainty are
essentially unaffected by INT8 quantization.

Taken together, the studies by Ferianc et al., Subedar et al.,
and Lin et al. demonstrate that Post-Training Quantization of
pretrained Bayesian models—including INT8 quantization of
weights and activations and even sub-8-bit quantization of o—
can preserve accuracy and aggregate uncertainty metrics on
standard vision benchmarks. These methods, however, all treat
quantization as a single-step, post-hoc compression procedure
applied to a fixed Bayesian model, and primarily consider
uniform or INT8 schemes. In contrast, our work performs a
multi-level, intra-SVI quantization analysis for Bayesian image
classification on Dirty-MNIST. Rather than quantizing p and
o alone, we explicitly quantize distribution parameters, and
stochastic samples, while additionally introduce quantization-
aware SVI adjustments to examine how different quantization
locations and bit-widths affect predictive uncertainty (aleatoric
and epistemic). Furthermore, unlike Lin et al., we do not
target one specific INT8 hardware pipeline but instead develop

hardware-aware yet hardware-agnostic guidelines for sub-8-bit
Bayesian classification.

IV. MULTI-LEVEL QUANTIZATION OF BAYESIAN NEURAL
NETWORKS

Compared to the quantization of deterministic Deep Neural
Networks, Bayesian Neural Networks require more than just
straightforward quantization of weights and activations. For
these one must distinguish between values which are sampled
from probability distributions and those which are not. Since
probability distributions in SVI are always parametrizable
distributions, there are two points at which quantization can
occur, resulting in three types of possible quantization strate-
gies:

1) Variational Parameter Quantization (VPQ): Quantiz-
ing the parameters of the variational distribution, such
as the mean and variance in a Gaussian, reduces the
memory footprint of the model. The sampled values
themselves, however, remain in floating-point format,
meaning that the resulting computations are not inher-
ently more efficient than those of standard variational
inference.

2) Sampled Parameter Quantization (SPQ): Instead of
quantizing the variational parameters, this approach
quantizes the samples drawn from the variational distri-
bution, enabling integer computations when activations
are quantized as well.

3) Joint Quantization (JQ): This approach combines both
VPQ and SPQ to simultaneously reduce memory con-
sumption and computational cost. It therefore constitutes
the primary method investigated in this work.

For the standard implementation of BNNs, in which weights
are probabilistic this means the following: activations can be
quantized just as in deterministic DNNs, but weights need to
be taken into special consideration, given the points above.

For the implementation of the investigated BNN we use
Pyro [28], a probabilistic programming language (PPL), based
on the widely-used deep learning framework PyTorch [29].
Pyro splits an SVI model into two parts:

o Model: it contains the main computational graph, of the
probabilistic model, for BNNs these are layers like fully-
connected layers or activation functions. It additionally
specifies in which places probabilistic distributions are
sampled. For each distribution, a prior in the sense of
Bayes’ theorem needs to be given.

o Guide: it represents the variational distributions of SVI,
i.e. the approximated Bayesian posterior. This means that
the guide contains information about the structure of all
probability distributions, whose parameters are learned
during training.

During training this means that special attention needs to be
paid to the guide in particular, as it contains the primary
parameters of interest. While some PPLs, such as Bayesian-
Torch and TensorFlow Probability, do not do this explicit
model/guide splitting. All PPLs implement a representation



of the Bayesian prior and posterior, meaning that conclusions
drawn from our Pyro implementation apply similarly.
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Fig. 3: JQ as implemented in Pyro: uniform quantization is
applied in general, while logarithmic quantization is applied
specifically to standard deviation parameters. This approach
allows for the more precise representation of a wide range of
standard deviation values.

Figure 3 shows the quantization process used in this work
for both the guide and model. Notably we do not quantize
activations, as we are primarily interested in the extension
of quantization to BNNs, less the general interaction with
DNN components. As all parameters of the model live in the
guide, the quantization is accordingly implemented there. Each
variational distribution is then equipped with three distinct
quantizers:

o Uniform quantizer A (SPQ): Quantizes the results of the
sampling process

o Quantizers B (VPQ): One for each parameter of the given
variational distribution, here a Gaussian

— Uniform quantizer B;: quantizes the mean parameter
of the Gaussian distribution

— Logarithmic quantizer Bs: quantizes the variance
parameter of the Gaussian distribution

All quantizers are implemented as straight-through-gradient
estimators, allowing for high-precision quantization-aware
training. From an implementation standpoint all uniform
quantizers were implemented using the quantization library
Brevitas [30], while the logarithmic quantizers are a custom
implementation using PyTorch.

V. CHALLENGES OF QUANTIZED BAYESIAN NEURAL
NETWORKS

As already touched upon in section IV: Quantization
approaches in BNNs differ significantly from deterministic
DNNs, due to the introduction of distributions over weights
instead of point estimates. To further complicate things, BNNs

are even in their non quantized form very sensitive to hyper-
parameters.

A. Activation functions for BNNs

In particular activation function choice is a significant
concern for BNNs [31], [32]. This is in stark contrast to
deterministic networks, where especially for tasks such as
classification only small changes, if any, have been made to
the well-established baseline of the ReLU activation function.
To highlight this issue, Figure 4 shows the same BNN from
section VI with different activation functions, while being
otherwise quantized to seven bit, using SPQ quantization. At
this level of quantization a good separation of aleatoric and
epistemic uncertainty is still expected, meaning that the three
datasets should cluster into distinct regions of the scatter plot
(also see Section II-B): MNIST on the bottom left, Fashion-
MNIST on the top left and Ambiguous-MNIST on the bottom
right. While this works as expected for the SoftPlus activation
function (Fig. 4b), the standard ReLLU shows strong deficien-
cies in Fig. 4a. Notably, ReLU can still separate MNIST
from the other datasets, but Fashion-MNIST and Ambiguous-
MNIST become strongly entangled with each other. Resulting
in substandard uncertainty separation. An additional benefit of
SoftPlus is that the in-domain accuracy also slightly increases.

B. Quantization of probability distributions

When switching from simple SPQ to include the variational
parameters with VPQ and JQ, further challenges become ap-
parent. While uniform quantization works well for parameters
mirroring the point estimates of deterministic NNs, such as
mean for a Gaussian distribution, the same is not true for
more complex parameters, such as the standard deviation of
a Gaussian. In probabilistic programming languages, these
parameters are represented in log-space to avoid numerical
instabilities. As a result, uniform quantization can discard
substantial information when the parameter values are small.
Figure 5 illustrates this issue visually. We thus opted for
a custom logarithmic quantization for these parameters, as
highlighted in Fig. 3.

Additionally, we find that clipping the weights to a pre-
defined range (we recommend —1 to 1) can significantly help
in producing high quality uncertainty estimates. This is in par-
ticular noticeable, when a model contains no bias in their linear
or convolutional layers. Here, it leads to improved in-domain
classification, as well as better uncertainty calibration. The
optimization has particular importance for quantized BNNs,
as the quantization of the bias is in some cases tricky.

All in all, we identify three key points to watch out for
when quantizing BNNs: The activation function must be
well-chosen, we recommend SoftPlus for classification tasks.
Parameters that are typically handled in log-space—such as
the standard deviation of a Gaussian—should be quantized in
log-space as well. For BNNs without bias terms, the weights
should be clipped to a fixed range.
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Fig. 4: Scatter plots comparing the relationship between Softmax Entropy and Mutual Information for Dirty-MNIST using
different activation functions under 7-bit SPQ quantization. SoftPlus (b) demonstrates superior uncertainty calibration compared
to ReLU (a), showing more distinct clustering patterns for each dataset variant and maintaining clearer separation between

different levels of aleatoric and epistemic uncertainty.
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Fig. 5: Comparison of quantization error between linear
(uniform) quantization and logarithmic quantization of the
standard deviation parameter at different scales when running
backward propagation. Due to the involvement of 1/02 term
in log-probability calculations, quantization errors are signif-
icantly amplified for small values. Linear quantization shows
substantially higher relative errors in this scenario.

VI. EXPERIMENTAL RESULTS

So far we have set up a comprehensive framework for the
quantization of BNNs (Section IV), with optimizations for
practical deployments (Section V). We will now investigate
how a BNN reacts to increasingly aggressive bitwidths. The
results shown here are for the Joint Quantization of both
variational parameters and sampling results, as this is the most
complex and difficult case. We expand on the result of VPQ
and SPQ further below.

The evaluation is done using the Dirty-MNIST benchmark.

We train an MLP with two hidden layers of 100 neurons
each and SoftPlus activation functions. The model is first
pretrained as a deterministic floating point model for 1500
epochs and learning rate of 1073, The resulting parameters
are then transferred into the quantized BNN model of same
structure, as a starting point for the Gaussian means (u).
Finally, the quantized BNN is then trained for 1000 epochs.
We additionally regularize the loss using KL-annealing using
a linearly increasing schedule from 0O to 0.25 over the BNN
training, as described in [32]. Final evaluation is done with
100 samples per test image.

Figure 6 highlights four different quantization bit-widths.
Starting with the floating point baseline in Fig. 6d, one can
observe that the BNN starts out with very strong capability
to distinguish ID and OOD data, as well being able to
successfully disentangle aleatoric and epistemic uncertainty,
while exhibiting good in-domain accuracy. This performance
is reasonably well maintained down to 4 bits, as can be seen
in Fig. 6¢c. At 3 bits the BNNs performance starts deteriorating
significantly. While the in-domain accuracy is only marginally
affected, this is not the case for the uncertainty estimation.
In general one can still observe high uncertainties for both
Fashion-MNIST and Ambiguous-MNIST, however the two
types of uncertainties are now partially entangled with each
other and no clear separation is possible anymore. At 2 bit
quantization the BNN breaks down completely. Predictions
collapse to a very narrow space of MI and SE and in-domain
accuracy deteriorates to random guessing. These results are
mirrored in both the Accuracy and AUROC results presented
in Table I.

For VPQ these observations are generally the same, as
shown in table I. Both ID-Accuracy and uncertainty disen-
tanglement degrade from four to three bit and collapse at two
bit. SO however is more resistant. Here the degradation of
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Fig. 6: Scatter plots of Softmax Entropy versus Mutual Information across multiple MNIST variants using the Joint Quantization
method. Each subplot corresponds to a different bit-width configuration, ordered from left to right such that quantization artifacts
are strongest on the left and full 32-bit precision is shown on the right. While both in-domain accuracy and uncertainty
disentanglement degrade under more aggressive quantization, uncertainty disentanglement already deteriorates substantially at

3-bit precision.

TABLE I: Quantization performance across different bit-
widths and quantization methods. Crossed out cells indicate,
that prediction performance had collapsed.

Metric [%] [ 2-bits  3-bits  4-bits  Full-precision
Joint Quantization (JQ)

Accuracy 96.80 97.34 97.55

AUROC: F-MNIST 74.66  86.41 84.70

AUROC: A-MNIST 9494  96.16 97.01

Variational Parameter Quantizaiton (VPQ)

Accuracy 96.51 97.39 97.55

AUROC: F-MNIST 93.12 8455 84.70

AUROC: A-MNIST 94.14  96.50 97.01
Sample Quantization (SQ)

Accuracy 96.35 9726  97.66 97.55

AUROC: F-MNIST | 5991 7793 7536 84.70

AUROC: A-MNIST | 9470 9591  96.20 97.01

both metrics continues down to two bits, where uncertainties
mix similarly to 6b, without fully collapsing. We attribute
this increased resistance to the fact, that the actual variational
parameters are still represented at high-precision and are thus
able to approximate a complex posterior distribution.

While these experiments were done only on Dirty-MNIST,
they show a general trend and guideline, for initial experiments
on more complex datasets.

VII. SUMMARY AND OUTLOOK

We proposed a multi-level quantization framework for SVI-
based Bayesian Neural Networks and instantiated it with
Variational Parameter Quantization (VPQ), Sampled Parameter
Quantization (SPQ), and Joint Quantization (JQ).

This separation of quantization locations shows that BNNs
can tolerate aggressive precision reduction while maintaining
useful uncertainty estimates: 4-bit joint quantization largely
preserves accuracy and the separation of aleatoric and epis-
temic uncertainty on Dirty-MNIST, whereas at 3 bits this
separation deteriorates and at 2 bits both accuracy and un-
certainty collapse. These findings complement prior work on

Post-Training Quantization of Bayesian models by revealing
that the location and structure of quantization within the SVI
pipeline are as important as the nominal bit-width. As such
this work, as a first, enables multi-level quantization using
Quantization-Aware-Training.

Our results yield compact design rules for low-precision
BNNSs: (i) smooth activations such as SoftPlus improve uncer-
tainty disentanglement compared to ReLU under quantization;
(i1) parameters represented in log-space, in particular standard
deviations, should use logarithmic rather than uniform quantiz-
ers; and (iii) simple magnitude clipping stabilizes training and
improves calibration in bias-free architectures. These choices
together enable uncertainty-aware BNNs at 4-bit precision.

From a systems perspective, the observed robustness sug-
gests that SVI-based BNNs can be compressed by roughly an
order of magnitude in parameter memory with modest loss in
quality, making Bayesian inference more attractive for edge
and accelerator-based platforms, including analog Bayesian
machines [13]-[15] that naturally operate at low precision and
exploit stochastic primitives.

Future work includes extending the study to convolutional
and transformer-based BNNSs, integrating activation quantiza-
tion and full-integer inference, and validating the approach on
FPGA or analog prototypes, ideally coupled with automated,
hardware-aware bit-width allocation, forming a promising path
toward truly resource-efficient, uncertainty-aware learning.
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