
Exploring the Potential of
Wireless-enabled Multi-Chip AI Accelerators

Emmanuel Irabor, Mariam Musavi, Abhijit Das and Sergi Abadal
Universitat Politècnica de Catalunya, Barcelona, Spain
emmanuel.onyekachukwu.irabor@estudiantat.upc.edu

Abstract—The insatiable appetite of Artificial Intelligence (AI)
workloads for computing power is pushing the industry to
develop faster and more efficient accelerators. The rigidity of
custom hardware, however, conflicts with the need for scalable
and versatile architectures capable of catering to the needs of
the evolving and heterogeneous pool of Machine Learning (ML)
models in the literature. In this context, multi-chiplet architec-
tures assembling multiple (perhaps heterogeneous) accelerators
are an appealing option that is unfortunately hindered by the still
rigid and inefficient chip-to-chip interconnects. In this paper, we
explore the potential of wireless technology as a complement to
existing wired interconnects in this multi-chiplet approach. Using
an evaluation framework from the state-of-the-art, we show that
wireless interconnects can lead to speedups of 10% on average
and 20% maximum. We also highlight the importance of load
balancing between the wired and wireless interconnects, which
will be further explored in future work.

Index Terms—AI Accelerators, Multi-Chiplet Accelerators,
Wireless Interconnects, Network-on-Package (NoP).

I. INTRODUCTION

AI has revolutionized a wide range of fields thanks to
its superhuman classification, discrimination, and generative
capabilities [1]–[3]. However, the continuous advancements
made in the different ML models that sustain such a revo-
lution also lead to a constant increase in their computational
requirements. Indeed, due to their evolving size and diversity,
modern ML models urgently call for faster, more efficient, and
more flexible computing platforms [4].

To address the speed and efficiency issues, a wide range of
specialized hardware accelerators have been presented in the
last decade [5]–[7]. These accelerators are typically composed
of a large array of processing elements (PEs, generally in the
form of multiply-accumulate units) implementing a given fixed
dataflow through a dense Network-on-Chip (NoC) [8]. These
architectures go beyond the performance and energy efficiency
of Graphical Processing Units (GPUs), yet at the cost of a loss
of generality or versatility. Indeed, it is extremely challenging
to scale and reconfigure such AI accelerators to execute ever-
growing and heterogeneous AI workloads without sacrificing
performance and efficiency [9], [10].

Chiplet technology is a promising approach that could
enable the creation of scalable and versatile AI accelerators,
by combining together multiple specialized (and potentially
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Figure 1: A schematic architecture of wireless-enabled multi-
chip AI accelerator with 3×3 chiplets and 4 DRAMs. An
antenna and transceiver are integrated at the center of each
DRAM and compute chiplet.

heterogeneous) AI accelerator chiplets in a single computing
platform, as illustrated in Figure 1. These chiplets are intercon-
nected among themselves and to memory via on-package links,
typically through silicon interposers or organic substrates, in
order to create a Network-on-Package (NoP) [11]–[13]. Hence,
chiplet-based architectures show a promising path to address
the scaling challenge of computing platforms, as hinted in
multiple works, including SIMBA [14] or WIENNA [15].

One of the main drawbacks of multi-chiplet architectures is
the reduction of the interconnect performance and efficiency,
which is crucial when serving workloads that imply significant
data movement across the architecture [16], [17]. This is not
only due to the limited speed of memory modules but, more
critically, the relatively slow chiplet-to-chiplet data transfers.
These data transfers often dominate the system energy as
they rely on traversing the long interconnects. The problem
is further intensified by the use of collective (i.e. multicast
and reduction) communication in many dataflows employed
by AI accelerators [4], [15], [18].

To illustrate the point made above, we simulated multiple AI
workloads over a 144-TOPS accelerator broken down in 3×3
chiplets using the methods described later in Section III and
summarized in Table 1. We recorded, for each of the layers of
the workload, its execution time and which is the performance
bottleneck. Figure 2 summarizes the results, showing the
percentage of the time that each element of the architecture
is a bottleneck. The results clearly indicate that the chiplet
interconnects (i.e. the NoP) can be a very significant limiting
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Figure 2: Percentage of time where each of the elements of a
144-TOPS 3×3 multi-chip AI accelerator is the performance
bottleneck.

factor hindering the performance and efficiency of multi-chip
AI accelerator architectures.

Given that multicast traffic is one of the sources of ineffi-
ciency in this context [15], [18], wireless technology appears
as a promising candidate to complement existing chiplet inter-
connects due to its low latency, reconfigurability, and inherent
broadcast nature [19]. Antennas and transceivers operating
at millimeter-wave frequencies can occupy less than 1 mm2,
operate at ∼1 pJ/bit and reach speeds in excess of 100 Gb/s
[20]–[22]. In this context, building multi-chip AI accelerator
architectures with wireless interconnects is expected to relieve
the NoP bottleneck of existing accelerators in an effective
and versatile way [19]. However, state-of-the-art developments
either study how to improve a particular dataflow [23] or
optimize the architecture template [15] without making sure
that (i) the mapping of the workloads on the architectures are
optimal, and that (ii) the wireless link is used judiciously.

In this paper, we further delve into the study of cost-
effective scalable wireless-enabled multi-chip AI accelerators
with the aid of GEMINI [24], which allows finding optimal
mappings in multi-chiplet architectures. In particular, we mod-
ify the code of GEMINI to: (i) perform a brief study of the
bottleneck of several AI workloads optimally mapped in multi-
chiplet architectures, (ii) propose a reconfigurable wireless-
enabled architecture capable of alleviating the NoP bottleneck
across workloads, and (iii) assess the potential of our approach
to increase the performance of multi-chiplet AI accelerators.
We show an average (max) speedup of around 10% (20%) in
a 3×3 multi-chip architecture as well as the importance of
balancing the load between the wired and wireless planes.

The remainder of the paper is organized as follows. In
Section II we present the related work. Section III describes the
proposed architecture to mitigate the workload-specific data
movement bottleneck of existing architectures and outlines
the methodology to evaluate it. In Section IV, we discuss the
results and in Section V we conclude the paper.

II. RELATED WORK

A. Design space exploration in multi-chip AI accelerators
Multi-chip AI accelerators have been proposed in mul-

tiple works. In SIMBA [14], authors developed a multi-
chip AI inference accelerator with a hierarchical interconnect
architecture on a package. The objective was to enhance
the energy efficiency and reduce the accelerator’s inference
latency by partitioning the non-uniform workload, consider-
ing communication-aware data placement, and implementing
cross-layer pipelining.

In GEMINI [24], authors developed a scalable multi-chip
AI inference accelerator design framework that explores the
design space to deliver architectures for a particular workload
and minimizes the monetary cost and the Energy-Delay Prod-
uct (EDP). In more recent work, the authors in SCAR [25]
developed a multi-chip multi-model AI inference accelerator
that is scalable under heterogeneous traffic models (i.e., data
center and AR/VR) with the objective of minimizing the EDP
of the overall system.

Undoubtedly, these and similar multi-chip accelerator ar-
chitectures have demonstrated excellent scalability and effi-
ciency [26]. However, a significant gap remains in exploring
the performance improvements achievable through wireless in-
terconnects, which could address communication bottlenecks,
improve energy efficiency, and enable more versatile designs.

B. Wireless-enabled multi-chip AI accelerators
There are a few works that investigated wireless NoP to

achieve performance enhancements in multi-chip AI accel-
erators. In [23], the authors explored the use of wireless-
enabled NoP in chiplet-based DNN accelerators to address
the bottlenecks caused due to inter-chiplet communication.
By leveraging single-hop communication and broadcast ca-
pabilities, wireless-enabled NoP significantly reduces latency
and energy consumption, achieving superior EDP perfor-
mance compared to traditional wired NoP. In WIENNA [15],
the authors presented an NoP-based 2.5D DNN accelerator
that addresses the bandwidth and scalability challenges of
interposer-based designs. By utilizing wireless NoPs for high-
bandwidth multicasting, WIENNA demonstrated significant
improvements in both throughput and energy efficiency, pro-
viding a scalable solution for DNN acceleration. These works
illustrated the potential of wireless-enabled AI accelerators but
left several unexplored gaps in terms of optimal mapping or
load balancing between wired and wireless interconnection
networks.

In [27], authors explore the potential of in-package wireless
communication as a scalable solution for multi-chiplet designs,
reducing design complexity and freeing package resources by
eliminating physical chiplet-to-substrate connections. Through
simulations, it demonstrates that wireless interconnects can
match or outperform wired alternatives, particularly for work-
loads like Convolutional Neural Networks (CNNs), with per-
formance influenced by the wireless protocols and application
mapping strategies. In this case, however, the AI workloads
were mapped in general-purpose architectures.
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Figure 3: Overall methodology. GEMINI is augmented with a
wireless communication model and a wireless interface model.
This allows to assess the impact of wireless interconnects on
optimally mapped workloads in multi-chip AI accelerators.

C. Workload Mapping on multi-chip AI accelerators

The mapper in SIMBA employed a layer-sequential
mapping-first approach to reduce memory access overheads
and data replication, with workload partitioning handled by
Timeloop [28] for latency estimation and Accelergy [29] for
energy evaluation. The mapper employed in GEMINI [24]
uses spatial-temporal mapping and inter-layer pipelining using
SET [30] mapper tool, and a cost model was customized
to evaluate the cost of architecture. These enhancements
significantly improved the overall performance of the system
compared to the baseline mapping variants. The mapper used
in SCAR is also based on SET [30], and the hybrid cost
model is customized using MAESTRO [31]. These works,
particularly GEMINI, are leveraged in this paper to study
the impact of wireless interconnects in optimally mapped AI
workloads in multi-chip AI accelerators.

III. METHODOLOGY

In this work, we extend the GEMINI framework [24]
by integrating wireless communication channels to alleviate
the NoP load and improve the overall latency. This section
outlines the modifications that have been made to the GEMINI
simulator and the decision criteria to opt for the wireless
channel, as illustrated in Figure 3. Also, Table 1 summarizes
the values of the main simulation parameters.

A. Architecture

GEMINI is a mapping and architecture co-exploration
framework for DNN inference chiplet accelerators. The orig-
inal GEMINI architecture consists of multiple chiplets, each
containing a mesh of PEs, and DRAM modules connected
through wired communication links. Data transfer between
chiplets and DRAM modules is done via the Die-to-Die (D2D)
links, which can become a bottleneck for large-scale DNN
workloads due to high communication overhead. On top of
this architecture, illustrated in Figure 1, we integrate wireless
communication capabilities as described in the subsequent
text.

Table 1: Simulation Parameters

Number of Chiplets 3× 3
DRAM Configuration 4 Chiplets, 16 GB/s per chiplet
NoP Configuration XY Mesh, 32 Gb/s per side
NoC Configuration XY Mesh, 64 Gb/s per port
Wireless Bandwidth 64 Gb/s, 96 Gb/s
Distance Threshold 1, 2, 3, 4 NoP hops
Injection Probability 10% to 80% with step-size of 5%
AI Workloads Darknet19, DenseNet, ZfNet, GNMT, Vgg,

LSTM, ResNet50, ResNet101, ResNet152,
ResNeXt50, PNasNet, Transformer,
Transformer Cell, iRESNet, GoogleNet

B. Integration of Wireless Communication

To address the communication bottleneck, we introduce a
wireless communication channel into the GEMINI framework.
Specifically, a wireless antenna and transceiver are placed on
each chiplet as well as all DRAM modules. The antennas
enable direct communication among chiplets and between
chiplets and DRAMs, potentially reducing the number of
hops required for message transfer and, consequently, the
communication latency.

1) Antenna Placement and Configuration: The GEMINI
simulator has been modified to include an antenna module rep-
resenting wireless transceivers. We have strategically placed
antennas at the center of each chiplet and DRAM module.
The coordinates of the antennas are calculated based on the
chiplet and DRAM positions to accurately model the physical
layout. Therefore, the total number of antennas is equal to the
sum of chiplets and DRAM modules. If a message needs to
be wirelessly transmitted, it is routed through the NoC to the
central routers of the chip, which are connected to the wireless
interface.

2) Wireless Communication Decision Criteria: To decide
whether to use wireless or wired communication for a given
message, we implemented multiple configurable decision func-
tions that consider the following factors:

• Multi-chip Multicast: First, the network interface an-
alyzes the destinations of a particular message. If the
message is a multicast and there is at least one destination
in a different chiplet than the source, wireless communi-
cation is used to exploit the broadcast nature of wireless
channels.

• Distance Threshold: Second, a distance threshold is set
to assess the minimum number of NoP hops required
to consider wireless communication beneficial. If the
number of chip-to-chip hops between the source and
destination(s) exceeds this threshold, wireless communi-
cation is preferred.

• Injection Probability: Finally, a configurable probability
is implemented to prevent a potential overuse of wireless
channels. This probabilistic parameter ensures that the
wireless channel is not saturated and became a source of
bottleneck for workloads with a higher number of multi-
chip and long-range multicasts.



3) Wireless Communication Modeling: When a message
is designated for wireless transmission, it is loaded onto the
source antenna and sent directly to the destination antennas,
thereby inherently implementing broadcast or multicast func-
tionality by virtue of wireless. The simulator updates the total
wireless transmission and reception volumes. The impact on
latency and energy consumption is computed based on these
parameters.

C. Simulator Modifications for Performance Evaluation

GEMINI is not a cycle-accurate simulator rather employs
certain approximations to speed up the simulation and allows
fast mapping and exhaustive design space explorations. In
particular, GEMINI calculates, layer by layer, computing time
for each PE, the memory times for each DRAM chiplet,
and interconnect times for each link i.e., NoC and NoP in
an aggregated form. Then, it analyzes which element is the
bottleneck for each layer. The total execution time is the sum
of the maximum latency (i.e., that of the bottleneck) across all
the layers of the workload. We also note that, GEMINI is not
cycle-accurate, it does not take into consideration factors such
as the contention in the NoP/NoC routers or in the DRAM
chiplets.

To evaluate the benefits of wireless communication without
altering the original simulation and mapping strategy of GEM-
INI, we simulate both wired and wireless communication paths
for each message that qualifies for wireless transmission. We
calculate the NoC and NoP hops for both cases and compute
the difference to assess the performance improvements of
having wireless, as described in subsequent section.

1) Wired Communication Path Simulation: For messages
that are sent via wireless channels, we also simulate the
wired communication path to determine the number of hops
and latency that would have occurred without wireless com-
munication. This involves calling the standard unicast or
multicast functions and accumulating the total hops and la-
tency. This approach allows us to quantify the benefits of
wireless communication by comparing against the baseline
wired communication.

2) Wireless Communication Path Simulation: We simu-
late the wireless communication by updating the wireless-
specific counters and latency calculations. This includes the
total wireless transmission and reception volumes, as well
as the wireless NoC hops. The simulator tracks the data
sent and received via each antenna and models the wireless
communication time by dividing the total volume of traffic by
the wireless link bandwidth, similar to how GEMINI handles
NoP/NoC times.

IV. PERFORMANCE EVALUATION

A. Experimental Setup

We conducted experiments by varying key parameters af-
fecting wireless communication to evaluate its impact on the
overall performance. The simulation parameters are summa-
rized in Table 1. The additional parameters introduced for
the wireless communication are the wireless bandwidth, with
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Figure 4: Speedup of the proposed approach over a wired
baseline in a 3×3 multi-chip accelerator across the different
evaluated AI workloads and for two different wireless band-
widths.

values that commensurate with state-of-the-art transceivers
[20], [22], the distance threshold, which is swept from 1 to 4
NoP hops, and the injection probability, which is swept from
10% to 80% with step-size of 5% to assess the importance of
load balancing in this scenario.

We tested the modified GEMINI simulator using a set of
representative DNN workloads that stress different aspects of
the communication infrastructure. We choose benchmark mod-
els that contain multi-branch classic residual (e.g. ResNet50,
ResNet152, GoogleNet, Transformer (TF), TF Cell) and incep-
tion (e.g. iRES) structures with more intricate dependencies
which are prevalent and widely used in various scenarios
such as image classification and language processing. These
workloads differ in size and communication requirements,
ensuring that the evaluation captures a wide range of realistic
scenarios.

B. Results

We compare the performance of the original GEMINI ar-
chitecture with the wireless-enhanced version by analyzing the
reduction in communication latency and energy consumption.
The updated total hops and latency are computed by subtract-
ing the wired communication metrics that were replaced by
wireless communication. In our exploration, we sweep the
distance threshold and injection probability parameters until
finding a near-optimal value for each workload; this way, we
assess the acceleration potential of the proposed approach.

Figure 4 shows the exploratory results for the two assumed
wireless bandwidths. In particular, we plot the improvement
of the hybrid wired-wireless architecture with respect to the
wired baseline. There are several observations to be made from
this figure:

• The proposed approach improves performance across the
board, except in the case of resnet152, which is mostly
compute and NoC bound, as observed in Figure 2.

• The average speedups are around 7.5% and 10% for a
wireless bandwidth of 64 Gb/s and 96 Gb/s, respectively,
with maximum values of almost 20%.
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probability on the performance of the proposed approach for
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• In some cases, an increase in wireless bandwidth does
not directly translate to an increase in the speedup. This
could be due to the coarse exploration of the distance
threshold and injection probability values, leading to a
sub-optimal result for higher bandwidth values. This also
suggests that the maximum attainable speedups might be
higher than the ones shown here.

To illustrate the importance of preventing the wireless
network from becoming the bottleneck and the role of the
distance threshold and injection probability in this regard,
Figure 5 shows the performance improvement (positive values)
or degradation (negative values) in the zfnet workload as a
function of the wireless configuration parameters. Looking
from left to right and top to bottom, the figure shows how
increasing the load on the wireless link (by maintaining a low
distance threshold and increasing the injection probability) can
lead to a higher reward. However, the advantage is negated and
turns into performance degradation for injection probabilities
over 50%. In that scenario, increasing the distance threshold
can reduce the pressure on the wireless link and help regain
the advantage of the wireless approach. This result, which
changes from workload to workload, underscores the need
for a mechanism to balance the load between the wired and
wireless planes of the accelerator.

V. CONCLUSION

In this paper, we have showcased the potential of wireless
interconnects for improving the performance and flexibility
of multi-chip AI accelerators. We have first seen how the
NoP can become a bottleneck in these scenarios. Based on
our previous works, this is due to multicast patterns leading
to congested bisection links, a situation that an overlaid
wireless can help prevent. We have then seen how speedups
of 20% are achievable but contingent on finding a suitable
load-balancing mechanism to prevent the wireless link from

becoming saturated. In future work, we will investigate ways
to proactively configure the wireless interface based on offline
profiling of AI workloads and investigate alternative mapping
methods capable to optimally exploit the advantages of the
wireless interconnects.
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puting graph neural networks: A survey from algorithms to accelerators,”
ACM Computing Surveys (CSUR), vol. 54, no. 9, pp. 1–38, 2021.

[8] P. Chatarasi, H. Kwon, A. Parashar, M. Pellauer, T. Krishna, and
V. Sarkar, “Marvel: A data-centric approach for mapping deep learning
operators on spatial accelerators,” ACM Transactions on Architecture
and Code Optimization (TACO), vol. 19, no. 1, pp. 1–26, 2021.

[9] H. Kwon, A. Samajdar, and T. Krishna, “Maeri: Enabling flexible
dataflow mapping over dnn accelerators via reconfigurable intercon-
nects,” ACM SIGPLAN Notices, vol. 53, no. 2, pp. 461–475, 2018.

[10] J. Yang, H. Zheng, and A. Louri, “Versa-dnn: A versatile architecture
enabling high-performance and energy-efficient multi-dnn acceleration,”
IEEE Transactions on Parallel and Distributed Systems, 2023.

[11] N. Beck, S. White, M. Paraschou, and S. Naffziger, “‘Zeppelin’: An
SoC for multichip architectures,” in 2018 IEEE International Solid-State
Circuits Conference-(ISSCC). IEEE, 2018, pp. 40–42.

[12] A. Kannan, N. E. Jerger, and G. H. Loh, “Enabling interposer-based
disintegration of multi-core processors,” in Proceedings of the 48th
international symposium on Microarchitecture, 2015, pp. 546–558.

[13] P. Vivet, E. Guthmuller, Y. Thonnart, G. Pillonnet, G. Moritz, I. Miro-
Panadès, C. Fuguet, J. Durupt, C. Bernard, D. Varreau et al., “2.3 a
220gops 96-core processor with 6 chiplets 3d-stacked on an active inter-
poser offering 0.6 ns/mm latency, 3tb/s/mm 2 inter-chiplet interconnects
and 156mw/mm 2@ 82%-peak-efficiency dc-dc converters,” in 2020
IEEE International Solid-State Circuits Conference-(ISSCC). IEEE,
2020, pp. 46–48.

[14] Y. S. Shao, J. Clemons, R. Venkatesan, B. Zimmer, M. Fojtik, N. Jiang,
B. Keller, A. Klinefelter, N. Pinckney, P. Raina et al., “Simba: Scaling
deep-learning inference with multi-chip-module-based architecture,” in
Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture, 2019, pp. 14–27.

[15] R. Guirado, H. Kwon, S. Abadal, E. Alarcón, and T. Krishna, “Dataflow-
architecture co-design for 2.5D DNN accelerators using wireless
network-on-package,” in 2021 26th Asia and South Pacific Design
Automation Conference (ASP-DAC). IEEE, 2021, pp. 806–812.

[16] A. Boroumand, S. Ghose, Y. Kim, R. Ausavarungnirun, E. Shiu,
R. Thakur, D. Kim, A. Kuusela, A. Knies, P. Ranganathan et al., “Google
workloads for consumer devices: Mitigating data movement bottle-
necks,” in Proceedings of the Twenty-Third International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2018, pp. 316–331.

[17] A. Das, M. Palesi, J. Kim, and P. P. Pande, “Chip and package-scale
interconnects for general-purpose, domain-specific and quantum com-
puting systems-overview, challenges and opportunities,” IEEE Journal
on Emerging and Selected Topics in Circuits and Systems, 2024.



[18] M. Musavi, E. Irabor, A. Das, E. Alarcon, and S. Abadal, “Commu-
nication characterization of ai workloads for large-scale multi-chiplet
accelerators,” arXiv preprint arXiv:2410.22262, 2024.

[19] S. Abadal, R. Guirado, H. Taghvaee, A. Jain, E. P. de Santana, P. H.
Bolı́var, M. Saeed, R. Negra, Z. Wang, K.-T. Wang et al., “Graphene-
based wireless agile interconnects for massive heterogeneous multi-chip
processors,” IEEE Wireless Communications, 2022.

[20] X. Yu, J. Baylon, P. Wettin, D. Heo, P. P. Pande, and S. Mirabbasi,
“Architecture and design of multichannel millimeter-wave wireless noc,”
IEEE Design & Test, vol. 31, no. 6, pp. 19–28, 2014.

[21] K. K. Tokgoz, S. Maki, J. Pang, N. Nagashima, I. Abdo, S. Kawai,
T. Fujimura, Y. Kawano, T. Suzuki, T. Iwai et al., “A 120gb/s 16qam
cmos millimeter-wave wireless transceiver,” in 2018 IEEE International
Solid-State Circuits Conference-(ISSCC). IEEE, 2018, pp. 168–170.

[22] C. Yi, D. Kim, S. Solanki, J.-H. Kwon, M. Kim, S. Jeon, Y.-C. Ko, and
I. Lee, “Design and performance analysis of thz wireless communication
systems for chip-to-chip and personal area networks applications,” IEEE
Journal on Selected Areas in Communications, vol. 39, no. 6, pp. 1785–
1796, 2021.

[23] M. Palesi, E. Russo, A. Das, and J. Jose, “Wireless enabled inter-
chiplet communication in dnn hardware accelerators,” in 2023 IEEE
International Parallel and Distributed Processing Symposium Workshops
(IPDPSW). IEEE, 2023, pp. 477–483.

[24] J. Cai, Z. Wu, S. Peng, Y. Wei, Z. Tan, G. Shi, M. Gao, and K. Ma,
“Gemini: Mapping and Architecture Co-exploration for Large-scale
DNN Chiplet Accelerators,” in 2024 IEEE International Symposium on
High-Performance Computer Architecture (HPCA). IEEE, 2024, pp.
156–171.

[25] M. Odema, L. Chen, H. Kwon, and M. A. A. Faruque, “SCAR:
Scheduling Multi-Model AI Workloads on Heterogeneous Multi-Chiplet
Module Accelerators,” arXiv preprint arXiv:2405.00790, 2024.

[26] A. Das, E. Russo, and M. Palesi, “Multi-objective hardware-mapping
co-optimisation for multi-dnn workloads on chiplet-based accelerators,”
IEEE Transactions on Computers, 2024.

[27] R. Medina, J. Kein, G. Ansaloni, M. Zapater, S. Abadal, E. Alarcón,
and D. Atienza, “System-level exploration of in-package wireless com-
munication for multi-chiplet platforms,” in Proceedings of the 28th Asia
and South Pacific Design Automation Conference, 2023, pp. 561–566.

[28] A. Parashar, P. Raina, Y. S. Shao, Y.-H. Chen, V. A. Ying, A. Mukkara,
R. Venkatesan, B. Khailany, S. W. Keckler, and J. Emer, “Timeloop: A
systematic approach to DNN accelerator evaluation,” in 2019 IEEE in-
ternational symposium on performance analysis of systems and software
(ISPASS). IEEE, 2019, pp. 304–315.

[29] Y. N. Wu, J. S. Emer, and V. Sze, “Accelergy: An architecture-
level energy estimation methodology for accelerator designs,” in 2019
IEEE/ACM International Conference on Computer-Aided Design (IC-
CAD). IEEE, 2019, pp. 1–8.

[30] J. Cai, Y. Wei, Z. Wu, S. Peng, and K. Ma, “Inter-layer scheduling space
definition and exploration for tiled accelerators,” in Proceedings of the
50th Annual International Symposium on Computer Architecture, 2023,
pp. 1–17.

[31] H. Kwon, P. Chatarasi, V. Sarkar, T. Krishna, M. Pellauer, and
A. Parashar, “Maestro: A data-centric approach to understand reuse,
performance, and hardware cost of DNN mappings,” IEEE micro,
vol. 40, no. 3, pp. 20–29, 2020.


	Introduction
	Related Work
	Design space exploration in multi-chip AI accelerators
	Wireless-enabled multi-chip AI accelerators
	Workload Mapping on multi-chip AI accelerators

	Methodology
	Architecture
	Integration of Wireless Communication
	Antenna Placement and Configuration
	Wireless Communication Decision Criteria
	Wireless Communication Modeling

	Simulator Modifications for Performance Evaluation
	Wired Communication Path Simulation
	Wireless Communication Path Simulation


	Performance Evaluation
	Experimental Setup
	Results

	Conclusion
	References

