
Optimized XGBoost Architecture on FPGA for
High-Performance and Seamless Deployment

Rodrigo Olmos
Centro de Electrónica Industrial

Universidad Politécnica de Madrid
Madrid, Spain

E-mail: rodrigo.olmos@upm.es

Andrés Otero
Centro de Electrónica Industrial

Universidad Politécnica de Madrid
Madrid, Spain

E-mail: joseandres.otero@upm.es

Abstract—This paper presents an accelerated implementation
of the XGBoost algorithm optimized for FPGA platforms, de-
signed to enhance performance in applications demanding real-
time processing and high inference speeds. The proposed archi-
tecture is implemented on an FPGA and interfaces with a host
CPU via PCIe. Performance is optimized through intermediate
memories and a DMA subsystem for high-speed data transfer,
enabling rapid access to model parameters and efficient inference
execution while minimizing latency and maximizing hardware
concurrency. To simplify usability, a set of automation scripts
is developed to facilitate the seamless deployment of pre-trained
XGBoost models, leveraging compatibility with the Python-based
LightGBM library. This approach removes the need for extensive
hardware expertise, enabling users to deploy FPGA-accelerated
models directly from Python environments. Experimental results
include a comparative analysis of inference speeds across FPGAs,
GPUs, and CPUs, demonstrating significant performance gains
achieved by the proposed system over traditional GPU- and CPU-
based solutions. These gains result from speedups of 200 to 400
times compared to the same implementation running on a CPU
or GPU. This efficient design establishes a robust framework
for expanding parallel processing capabilities to more complex
models and integrating advanced machine learning solutions into
embedded computing environments.

I. INTRODUCTION

High-speed deep learning (DL) inference is crucial for many
applications driven by artificial intelligence (AI), such as large-
scale data analysis, pattern recognition in security systems,
speech processing with large language models (LLMs), and
automated medical diagnosis. However, the increasing com-
plexity of machine learning models—such as those based on
large decision trees—poses significant performance and energy
efficiency challenges when deployed on conventional hardware
like CPUs (Central Processing Units) and GPUs (Graphics
Processing Units). Field-Programmable Gate Arrays (FPGAs)
have emerged as a promising alternative in this context.

FPGAs offer notable advantages, including high flexibility
and the ability to provide custom acceleration that significantly
improves system latency and throughput, all while maintaining
excellent energy efficiency [4]. Traditionally favoured for
edge applications, the availability of FPGA-based platforms
designed for PCIe streaming (e.g., Alveo Platforms) [12]

extends the benefits of FPGAs to the cloud domain, further
broadening their potential use cases.

This work presents a software/hardware architecture for
accelerating inference on XGBoost models [13]. XGBoost
is a model based on Boosting techniques in which multiple
decision trees are combined to improve the accuracy and
robustness of the model in classification and regression tasks.
Boosting is a machine learning (ML) strategy that sequentially
adds models, with each model attempting to correct the errors
of the previous one. XGBoost has gained significant popularity
due to its efficiency and accuracy, making it widely used in
applications that require fast, interpretable models.

One of the most notable features of decision trees is
their interpretable structure, allowing for easy visualization
and understanding of the model’s decision-making process.
However, decision trees often present significant computa-
tional complexity when implemented in high-demand, real-
time applications. Combining multiple trees in ensemble meth-
ods, such as XGBoost, further increases this complexity, so
parallelization becomes essential for enhancing performance.
For this reason, decision trees and their ensemble variants
benefit considerably from hardware acceleration, especially in
FPGA implementations, which enable parallel and low-latency
processing in inference tasks.

The architecture proposed in this paper has been designed
and optimized for FPGA platforms with PCIe streaming
capabilities. This design allows for real-time inference by
providing fast access to model parameters, leveraging high-
speed memory modules and a DMA transfer system that mini-
mizes latency while maximizing concurrency [2]. Additionally,
architecture-level optimization techniques are implemented to
enable parallel processing of the trees, maximizing throughput
and reducing bottlenecks typically encountered in inference
with boosting models accelerated on hardware. This solution
offers a remarkable advantage in real-time inference applica-
tions, handling large data volumes with low latency and high
energy efficiency. It is a unique and competitive alternative in
hardware-accelerated machine learning. The architecture has
been described using Vitis HLS, demonstrating the possibili-
ties enabled by high-level synthesis tools to deploy hardware-
accelerated AI systems.

In addition to the performance improvements enabled by



hardware acceleration, this work focuses on enhancing ac-
cessibility to hardware resources. A Python-based scripting
tool is provided with this aim, allowing users to deploy
automatically previously trained with the LightGBM Python-
based XGBoost library [9] onto hardware accelerators, hiding
the technical details of FPGA architecture [8]. Furthermore,
custom drivers have been developed to ensure seamless in-
tegration between the user’s application and the hardware-
accelerated models, making the implementation process almost
transparent to the user. Overall, the proposed system empowers
users with limited or no hardware expertise to leverage FPGA
acceleration effectively. This approach simplifies the workflow
and optimizes deployment for real-time applications.

Experimental results demonstrate that the proposed FPGA
architecture significantly outperforms conventional GPU and
CPU implementations manually described in OpenCL and C,
respectively, for four open datasets from the Kaggle AI & ML
community [10], particularly regarding inference speed. These
benchmarks consist of executing different models and measur-
ing the inference time. The comparison among these systems
shows that using FPGAs improves the execution efficiency of
XGBoost models, especially in applications where latency and
real-time processing are critical [1].

The remainder of this paper is structured as follows. Section
2 provides an overview of decision trees and the XGBoost
algorithm, including related work in hardware accelerators for
these models. Section 3 details the proposed design methodol-
ogy. Section 4 presents the FPGA architecture, focusing on the
system’s modules. Section 5 discusses the experimental setup
and the results obtained, comparing the performance of the
FPGA-based implementation with CPU and GPU alternatives.
Finally, Section 6 concludes the paper with insights into
potential future enhancements to expand the applicability and
efficiency of the proposed system.

II. BACKGROUND

A. Decision trees and XGBoost

Decision trees are machine learning models widely used in
classification and regression tasks due to their interpretative
simplicity and ability to handle numerical and categorical data
[11]. A decision tree is a hierarchical structure consisting
of decision and leaf nodes, as shown in Figure 1. At each
decision node, a test is performed by comparing a specific
dataset feature with a parameter discovered during the training
procedure. A feature is an individual measurable property or
attribute of the data. This process divides the data space into
smaller, more homogeneous subspaces, progressively refining
the classification or regression task by grouping similar data
points. The process continues through multiple levels of the
tree until reaching the leaf nodes where the model’s final
predictions are represented, either a class in classification or
a numerical value in regression [11]. Training a decision tree
involves iteratively selecting each node’s optimal features and
decision thresholds to minimize prediction error.

A common strategy to enhance the model’s accuracy and
robustness is to combine multiple trees using an ensemble ap-

Fig. 1. Structure of a decision tree

proach. Algorithms like CART (Classification and Regression
Trees) and XGBoost (eXtreme Gradient Boosting) are based
on this technique. This work focuses on XGBoost due to its
broader adoption in industry and academia.

XGBoost is a specialized decision tree algorithm that lever-
ages the boosting method [13]. Boosting is an ensemble tech-
nique that combines multiple weak models—such as decision
trees—to create a robust and accurate predictor [13], as shown
in Figure 2. In XGBoost, each new tree is trained to correct the
errors made by previous trees, resulting in a cumulative model
that iteratively reduces prediction errors [9]. This approach
enhances the accuracy and efficiency of predictive models,
particularly for classification and regression tasks.

One main feature that positions XGBoost above other
boosting methods is its focus on computational efficiency
and its ability to handle large volumes of data. Additionally,
XGBoost incorporates regularization into its learning process,
which helps reduce overfitting and improves the model’s
generalization to unseen data. These qualities have made
XGBoost popular in applications requiring high precision
and performance, such as fraud detection [14], financial data
analysis [16], and medical diagnosis [15].

However, due to its complex structure based on multiple
decision trees, XGBoost demands substantial computational
resources, especially to achieve real-time inference. Imple-
menting XGBoost in hardware, such as on FPGA architec-
tures, addresses these challenges by accelerating computations
and enabling parallel processing. This makes the algorithm
suitable for environments where speed and low latency are
essential.

B. Previous Works on Hardware Accelerators for XGBoost

Different contributions to the state-of-the-art address the
acceleration of XGBoost in hardware, particularly on FPGAs.
Some of the most relevant works are described next.

Kanani et al. proposed LightFPGA [1], a library that au-
tomates the conversion of pre-trained LightGBM models into
Verilog descriptions. This solution enables hardware imple-
mentations that deliver improvements in latency, achieving
speeds 100 to 400 times faster than CPU counterparts and



Fig. 2. Combination of XGBoost decisions trees

reducing energy consumption by 7 to 8 times. The tool enables
quantization without loss of precision and automatically gener-
ates testbenches for validation, marking a significant milestone
in simplifying the deployment of models on FPGAs.

Alternatively, works by Nane et al. [3] and Gajjar et al. [4]
focus on accelerating XGBoost using High-Level Synthesis
(HLS) tools. These works highlight the efficiency in data dis-
tribution and inter-FPGA communication, achieving superior
performance compared to traditional software-based solutions.
Moreover, they present a comprehensive comparative analysis
of academic and commercial HLS tools, emphasizing the
robustness and flexibility of commercial tools for this type
of application.

Regarding specific applications, Krueger et al. [5] demon-
strate how FPGAs can optimize data processing in positron
emission tomography (PET) systems. Their implementation
of gradient boosting trees on Kintex-7 FPGAs can process
between 2.94 and 4.55 million gamma interactions per second,
significantly reducing hardware resource usage while main-
taining high positioning accuracy. Gamma interactions per
second refers to the number of gamma-ray events a positron
emission tomography system can detect and process every
second. In turn, the paper by Owaida et al. [6] focuses on
high data-rate applications such as particle classification in
high-energy physics. Their architecture can handle up to half
a million tree nodes within the FPGA’s memory, providing
performance improvements of up to 20 times over a 10-thread

CPU and enabling hybrid CPU-FPGA processing for larger
datasets.

Additionally, the works of Summers et al. [7] and Alcolea
et al. [8] delve into methods for accelerating XGBoost on
FPGAs. In particular, authors in [8] stand out for optimizing
the execution of gradient-boosted decision trees in embedded
systems, specifically for pixel classification in hyperspectral
images. The authors demonstrate that their accelerator can
process hyperspectral data at the same speed as the sensors
generate it, achieving significant performance improvements
over high-performance CPUs while consuming considerably
less energy—averaging twice the speed and 72 times less
energy compared to optimized software on a high-performance
processor, and 30 times faster with 23 times less energy
than an embedded processor. To achieve this, they employ a
decision tree model encoding that is well-suited for execution
on an FPGA.

Differently from the state-of-the-art, the proposal in this
paper is to develop an automated system for deploying pre-
trained XGBoost-based decision tree models directly on FPGA
hardware. This approach includes seamless integration from
model training in a software environment to its adaptation and
deployment on specialized hardware, leveraging a structured
process to maximize inference performance and minimize
user involvement in hardware-specific tasks. The proposed
system allows users to train, export, and deploy models in an
FPGA-compatible format, using a pre-order depth-first search
(DFS) traversal along with optimized parameter encoding for
hardware execution, automating the model’s configuration and
loading process to enable real-time, high-speed inference on
PCIe-based FPGA hardware accelerators optimized for the
cloud.

III. PROPOSED DESIGN METHODOLOGY

The system proposed in this work is based on decision
tree models trained using the XGBoost algorithm, optimized
for execution on FPGA hardware. The training and export
workflow consists of several stages that ensure the proper
adaptation of the model to the hardware architecture and its
efficient operation in low-latency environments. The proposed
design methodology is described next.

First, the model is trained with LightGBM in a software
environment using Python. In this stage, the model is trained
on the CPU. Afterward, the trained model’s weights are sent
to the FPGA, where the inference operations will be executed.
LightGBM is in charge of hyperparameter tuning and model
optimization through boosting techniques. During this stage,
the model learns the dataset’s features by constructing a set
of decision trees. Each tree is trained sequentially to correct
the errors of the previous trees, thus improving the model’s
accuracy with each iteration. The training phase also includes
tree regularization to prevent overfitting, which is crucial to
obtaining a model that generalizes well to unseen data.

Once training is completed with LightGBM, a custom
script has been designed to export the model in a hardware-



compatible format that can be executed and interpreted by an
FPGA. This is achieved using a pre-order DFS algorithm. This
tree traversal method starts at the root node and explores all
nodes from left to right and top to bottom. This arrangement
is shown in Figure 1, where the index indicated in each
node refers to the position where the node is stored in the
exported file. During this process, essential parameters of the
decision tree are extracted, including each node’s decision
thresholds, feature indices, and right-node indices. Left-node
indices are not stored, as they are always one unit higher than
the current node’s index. These parameters are structured in a
predefined format: a 64-bit vector for each node that contains
all the necessary information to reconstruct and interpret the
previously exported tree. The organization of this bit vector is
shown in Table I.

This workflow automates the generation of indices and
configures the trees into the required structure, allowing the
model to be directly loaded into 64-bit width on-chip memory
and ready for quick access during inference [7].

TABLE I
BIT MAP FOR EACH 64-BIT WORD DESCRIBING A TREE NODE.

BITS FIELD
63 - 57 RESERVED
56 LEAF (1) / NODE (0)
55 - 48 FEATURE INDEX
47 - 40 NEXT NODE RIGHT INDEX
39 - 31 RESERVED
31 - 0 NODE THRESHOLD / LEAF VALUE

On the application’s side, a library has been designed to
enable the communication between the hardware generated
on the FPGA and the host PC transparently, maximizing the
performance of the hardware described in this paper. This
is achieved thanks to the library’s ability to distribute the
workload automatically.

This fully automated workflow enables users without hard-
ware design experience to train and export XGBoost models
ready for FPGA acceleration. The efficient implementation
includes the hierarchical structure of decision trees and all
the information necessary to perform inference optimally. This
training and export approach allows for smooth integration
between software and hardware. It maximizes inference perfor-
mance by eliminating the need for additional transformations
when loading the model onto the FPGA. As a result, the
proposed system can execute real-time inferences, leveraging
the parallel processing capability and low latency of FPGA
architectures.

IV. PROPOSED ACCELERATION ARCHITECTURE

The proposed architecture for accelerating XGBoost models
is detailed in the following subsections. First, the design and
implementation of the individual tree accelerator are presented.
This is followed by describing the optimized infrastructure for
efficient input data transmission to the FPGA card.

A. Tree Architecture
The architecture of the decision tree is responsible for

making predictions by traversing a tree’s nodes until reaching
a leaf. Data corresponding to each node is loaded from an
internal memory. This data includes the 64-bit vector shown
in Table I, that include the following fields:

• An indicator determining whether the node is a leaf or
an internal node ”LEAF (1) / NODE (0)”.

• The associated prediction value (if it is a leaf) ”NODE
THRESHOLD / LEAF VALUE”.

• The index of the attribute (feature) used for comparison
(if it is an internal node) ”FEATURE INDEX”.

• The threshold value for the comparison (if it is an
internal node) ”NODE THRESHOLD / LEAF VALUE”.

• The index of the right node to which it should jump if
the comparison condition is not met (if it is an internal
node) ”NEXT NODE RIGHT INDEX”.

The prediction process, which is graphically represented in
Figure 3, is described in Algorithm 1.

Algorithm 1 Procedure to Make a Prediction
Require: Array of trees trees[NTrees][NNodesAndLeafs],

feature vector features[NFeatures]
Ensure: Prediction stored in prediction

1: sum← 0
2: for t← 0 to NTrees− 1 do
3: nodeIndex← 0
4: while true do
5: treeNode← trees[t][nodeIndex] ▷ Extract node

data
6: featureIndex← treeNode.featureIndex
7: threshold← treeNode.nodeV alue
8: nodeLeft← nodeIndex+ 1
9: nodeRight← treeNode.nextNodeRightIndex

10: if features[featureIndex] < threshold then
11: nodeIndex← nodeLeft
12: else
13: nodeIndex← nodeRight
14: end if
15: if not (treeNode.leafOrNode&0x01) then
16: break
17: end if
18: end while
19: sum← sum+ treeNode.nodeV alue
20: end for
21: prediction← sum

B. Trees Forest
The architecture of the tree forest aggregates a large number

of decision trees that execute in parallel. To achieve this level
of parallelism, special care has been taken to determine which
components can be parallelized—specifically, all the trees that
run concurrently, as shown in Figure 4. Since the trees operate
simultaneously, it is crucial to ensure they have the correct



Fig. 3. Tree Architecture

access to the data they need, namely the features and the
parameters of each node in each tree. To manage this, each
tree has been assigned its dedicated memory to store its nodes,
and the feature data are stored in registers to allow all trees
to have parallel access.

Fig. 4. Tree Forest Architecture (Tree Architecture from Figure 3)

Additionally, a ping-pong scheme has been implemented in
both the memory and the registers. The memory stores all the
features to be processed, while the registers provide fast access
to the currently processed set of features. This strategy offers
several advantages:

• Reduced Latency: Loading the next set of features to
process from memory to the registers occurs concurrently
with processing, eliminating waiting times between infer-
ence cycles at both the register and memory levels.

• Minimized Memory Access: Ping-pong registers ensure
data availability in each cycle, reducing the need to access
external memory and decreasing the total data access
time.

• Enhanced Parallelism: With all trees executing concur-
rently, storing features in registers allows simultaneous
processing. The ping-pong registers further improve par-
allelism by continuously providing feature data to the
trees.

The system has been designed to perform feature processing
in burst mode to increase throughput further. This reduces the
number of control instructions that must be sent to the system,
as a single set of instructions is sufficient for each burst to
be processed. This approach involves sending a configurable
number of features to process with a single instruction, and it
works as follows:

1) A number N of features to be processed is sent.
2) The number of inferences to be performed is specified.
3) The signal to start processing is sent.
4) The system waits for the processing of the features to

complete.

This strategy significantly reduces control data traffic to
the accelerator, thereby increasing system performance. This
improvement arises because it eliminates the need to send the
start signal and wait for each inference’s completion. Instead,
a single operation is performed for each N-batch of inferences.

C. System Integration

A PCIe interface communicates with the previously de-
scribed IP core (Tree Forest). A PCIe/AXI bridge facilitates
this communication by converting data from the PC host over
PCIe into AXI transactions, as shown in Figure 5. Two types
of AXI interfaces are employed:

• AXI Lite: Used for components requiring lower band-
width or minimal data traffic, such as loading the tree
node data and controlling the Tree Forest IP core.

• AXI Full: Used for operations that involve higher data
traffic, such as loading feature data and reading predic-
tions. The AXI Full interface transfers feature data to the
ping-pong feature memory and reads prediction results
from the ping-pong memory.

This arrangement ensures efficient data transfer and optimal
performance by matching the interface type to the specific
bandwidth requirements of each operation.

V. ARCHITECTURE EVALUATION

A. Experimental setup

Multiple models were trained to evaluate the state-of-the-
art system for different problems. The execution time was
measured on various FPGA platforms with the proposed
architecture and different CPUs and GPUs.



Fig. 5. System Integration (Tree Forest from Figure 4)

1) Models Description: The models are based on datasets
sourced from Kaggle, each tailored for specific medical condi-
tions. MODEL 1 uses the Diabetes dataset, which contains raw
data, including records with missing values, for 768 patients
and 8 features per patient. MODEL 2 utilizes the Heart Attack
dataset, consisting of processed data for 303 patients, each
with 13 features. MODEL 3 is built on the Lung Cancer
dataset, which includes processed data for 3,000 patients and
15 features per patient. Lastly, MODEL 4 employs the Anemia
dataset, containing processed data for 500 patients with six
features per patient. The models’ size varied depending on
the number of trees being trained. In the case of using 512
trees, the models require 1048 MB, whereas with 128 trees,
the storage of the models requires 262 MB. Due to this fact
and size constraints, only 128 trees were used for the models
deployed on the XC7K325T board.

2) Evaluated platforms: To evaluate the quality of the
proposed hardware acceleration, the following devices were
evaluated:

• Alveo U250: The Xilinx Alveo U250 accelerator card is
an FPGA based on the UltraScale+ architecture, designed
for data centre applications requiring high computational
performance, such as machine learning and data analytics.

• XC7K325T: The Xilinx Kintex-7 XC7K325T is a
medium-density FPGA with 326,080 logic cells and 840
DSP slices.

• E5-2696 v3: The Intel Xeon E5-2696 v3 processor fea-
tures 18 cores and 36 threads, based on the Haswell-
EP architecture, targeting servers and high-performance
computing tasks.

• i7-8700K: The Intel Core i7-8700K is a processor with

6 cores and 12 threads, a base frequency of 3.7 GHz,
and Turbo Boost up to 4.7 GHz, designed for high-
performance desktop applications.

• RTX 4060: The NVIDIA GeForce RTX 4060 is a graph-
ics card based on the Ada Lovelace architecture, aimed
at 1080p gaming and content creation.

• RTX 3050: The NVIDIA GeForce RTX 3050 is an entry-
level graphics card based on the Ampere architecture,
intended for 1080p gaming.

3) Tree Parameters: The generated trees had the following
characteristics:

• The number of trees: 512 (for all platforms except
XC7K325T), 128 (for the XC7K325T platform).

• The depth of the trees: 8 (for all platforms).
4) Training Parameters: The training parameters used in

LightGBM for model training were as follows:
• Learning rate: 0.1 (applied to all models and platforms).
• Training size: 80% and test size: 20% (applied to all

models and platforms).

B. Experimental Results

These results show the average inference time of various
models and are shown in Table II.

TABLE II
AVERAGE EXECUTION TIME FOR VARIOUS MODELS

MODEL 1 MODEL 2 MODEL 3 MODEL 4
Alveo 250 200ns 390ns 110ns 240ns
XC7K325T 205ns 394ns 109ns 242ns
E5 2696V3 27us 18us 60us 60us
i7 8700k 23us 14us 48us 47us
RTX 4060 25us 27us 25us 25us
RTX 3050 49us 63us 42us 55us

Regarding the slight differences in latency between the
Alveo U250 and the XC7K325T, it must be noticed that all
trees on both boards are executed in parallel. This results in
no overhead, even when more trees are added. In this context,
observed latency differences arise from the Linux driver that
manages communication with PCIe, the Linux scheduler, the
possible state of the PCIe at that moment or the system load.
Since PCIe is not used in the bare-metal mode, we do not
have complete control over the timings.

The system operates at a clock frequency of 125 MHz. Table
III provides a detailed overview of the resource utilization
for different system configurations, specifically varying the
number of decision trees processed in parallel. The metrics
include the utilization of Block RAMs, Flip-Flops, and Look-
Up Tables. This analysis helps evaluate the scalability of the
design as the number of trees increases.

TABLE III
RESOURCES UTILIZATION (XC7K325T)

16 trees 32 trees 64 trees 128 trees 256 trees
BRAMs 64 128 256 512 1024
Flip-Flops 16481 17347 29253 53128 100818
lookup table 13648 22927 44262 86912 172247



The memory resource utilization is calculated as follows:

Mtotal = T ·N ·Mn

Where:
T : the number of parallel trees.
N : the number of nodes per tree (256 in this case).
Mn: the memory required per node (64 in this case).

The number of trees that are executed in parallel determines
the throughput of the proposed system, while an increase in the
number of trees executed in parallel results in a proportional
increase in the memory used.

The system’s accuracy was equivalent to that achieved when
running the models in software, with minor differences due
to slight variations in the implementation of the floating-
point operators. Additionally, the slightly higher accuracy of
the FPGA implementations (Alveo U250 and XC7K325T)
compared to other platforms can be attributed to the use of
custom floating-point operators in the FPGA, which minimize
numerical errors and result in more precise outcomes. Detailed
results are shown in Table IV.

TABLE IV
ACCURACY FOR VARIOUS MODELS

MODEL 1 MODEL 2 MODEL 3 MODEL 4
Alveo 250 95.42% 96.42% 97.42% 94.42%
XC7K325T 95.42% 96.42% 97.42% 94.42%
E5 2696V3 95.22% 96.22% 97.22% 94.42%
i7 8700k 95.35% 96.35% 97.39% 94.35%
RTX 4060 95.37% 96.39% 97.37% 94.37%
RTX 3050 95.35% 96.35% 97.35% 94.35%

The FPGA-based implementation demonstrated a speed
advantage, achieving execution times between 200 and 400
times faster than the same implementation running on a CPU
or GPU.

VI. CONCLUSIONS AND FUTURE WORK

This work presents an FPGA-accelerated architecture for
decision tree model inference, implemented explicitly for
the XGBoost algorithm. The proposed solution significantly
improves inference speed compared to conventional CPU- and
GPU-based systems, positioning itself as an efficient option for
real-time applications. The hardware implementation reduces
latency and optimizes data flow through a memory system and
PCIe/AXI control, achieving concurrent processing that max-
imizes performance without compromising model accuracy.
The accessibility of the architecture is also highlighted as a
significant contribution, allowing users with limited hardware
expertise to train and deploy models seamlessly via a Python
script. Several opportunities for expansion and optimization
are proposed for future work. First, the architecture could
be adapted to handle more complex models, such as neural
networks or ensemble models with heterogeneous structures,
broadening its application to advanced classification and pre-
diction tasks. Additionally, implementing model compression
techniques, such as tree pruning or parameter quantization,

could enhance memory efficiency on the FPGA, allowing the
system to manage larger models without increasing resource
consumption. Finally, integrating parameter self-tuning capa-
bilities into the FPGA could make the system even more
adaptable, dynamically adjusting resources and performance
based on workload demands and application requirements.

ACKNOWLEDGMENT

This work was conducted as part of the TED2021-
132768B-I00 project, which received funding from MI-
CIU/AEI /10.13039/501100011033 and the European Union’s
NextGenerationEU/PRTR.

REFERENCES

[1] A. Kanani, S. Vaidya, and H. Agarwal, ”LightFPGA: Scalable and
Automated FPGA Acceleration of LightGBM for Machine Learning
Applications,” in 2021 25th International Symposium on VLSI Design
and Test (VDAT), Sept. 2021, doi: 10.1109/VDAT53777.2021.9600900.

[2] M. Owaida, A. Kulkarni, and G. Alonso, ”Distributed Inference over
Decision Tree Ensembles on Clusters of FPGAs,” ACM Trans. Recon-
figurable Technol. Syst., vol. 12, no. 4, art. no. 17, pp. 1–27, Sept. 2019,
doi: 10.1145/3340263.

[3] R. Nane et al., ”A Survey and Evaluation of FPGA High-Level Synthesis
Tools,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 35,
no. 10, pp. 1591–1604, Oct. 2016, doi: 10.1109/TCAD.2016.2593660.

[4] A. Gajjar, P. Kashyap, A. Aysu, P. Franzon, S. Dey, and C. Cheng,
”FAXID: FPGA-Accelerated XGBoost Inference for Data Centers using
HLS,” in 2022 IEEE 30th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), 15-18 May 2022,
doi: 10.1109/FCCM53951.2022.9786085.

[5] K. Krueger et al., ”High-Throughput FPGA-Based Inference of Gradient
Tree Boosting Models for Position Estimation in PET Detectors,” IEEE
Trans. Radiat. Plasma Med. Sci., vol. 7, no. 3, pp. 253-264, Mar. 2023,
doi: 10.1109/TRPMS.2023.3238904.

[6] M. Owaida, H. Zhang, C. Zhang, and G. Alonso, ”Scalable infer-
ence of decision tree ensembles: Flexible design for CPU-FPGA plat-
forms,” in 2017 IEEE 25th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), 30 April - 2 May
2017, pp. 38-45, doi: 10.1109/FCCM.2017.12.

[7] S. Summers et al., ”Fast inference of Boosted Decision Trees in FPGAs
for particle physics,” J. Inst., vol. 15, no. 5, pp. P05026, May 2020, doi:
10.1088/1748-0221/15/05/P05026.

[8] A. Alcolea and J. Resano, ”FPGA Accelerator for Gradient Boosting
Decision Trees,” Electronics, vol. 10, no. 3, art. no. 314, Jan. 2021, doi:
10.3390/electronics10030314.

[9] LightGBM, ”LightGBM’s Documentation,” Available:
https://lightgbm.readthedocs.io. [Accessed: Sept. 2024].

[10] ”Datasets,” Kaggle, Available: https://www.kaggle.com/datasets. [Ac-
cessed: Sept. 2024].

[11] Scikit-learn, ”Tree-Based Models,” Available: https://scikit-
learn.org/stable/modules/tree.html. [Accessed: Sept. 2024].

[12] AMD, ”Alveo U250 Accelerator Card,” Available:
https://www.amd.com/es/products/accelerators/alveo/u250/a-u250-
a64g-pq-g.html. [Accessed: Nov. 2024].

[13] XGBoost Documentation, ”XGBoost: Scalable, Portable and Dis-
tributed Gradient Boosting (GBM, GBRT, GBDT) Library,” Available:
https://xgboost.readthedocs.io/en/stable/. [Accessed: Nov. 2024].

[14] Y. Zhang, J. Tong, Z. Wang, and F. Gao, ”Customer Transaction Fraud
Detection Using Xgboost Model,” 2020 International Conference on
Computer Engineering and Application (ICCEA), Guangzhou, China,
2020, pp. 554–558, doi: 10.1109/ICCEA50009.2020.00122.

[15] A. Ogunleye and Q.-G. Wang, ”XGBoost Model for Chronic Kidney
Disease Diagnosis,” IEEE/ACM Transactions on Computational Biology
and Bioinformatics, vol. 17, no. 6, pp. 2131–2140, Nov.–Dec. 2020, doi:
10.1109/TCBB.2019.2911071.

[16] K. Garg, K. S. Gill, S. Malhotra, S. Devliyal, and G. Sunil, ”Imple-
menting the XGBOOST Classifier for Bankruptcy Detection and Smote
Analysis for Balancing Its Data,” 2024 2nd International Conference on
Computer, Communication and Control (IC4), Indore, India, 2024, pp.
1–5, doi: 10.1109/IC457434.2024.10486274.


