
Multiclass Random Forest on FPGA using Conifer
Kevin Druart

UBO / Lab-Sticc
Brest, France

druart@univ-brest.fr

David Espes
UBO / Lab-Sticc

Brest, France
espes@univ-brest.fr

Catherine Dezan
UBO / Lab-Sticc

Brest, France
dezan@univ-brest.fr

Alain Deturche
Thales DMS
Brest, France

alain.deturche@fr.thalesgroup.com

Abstract—Random Forests are used in machine learning to
build multiple decision trees using different feature sets, enhanc-
ing accuracy and resistance to overfitting. Random Forests orig-
inate from the Bagging method and can be used in many areas.
Field-Programmable gate Arrays (FPGAs) offer a flexible and
energy efficient platform. It is essential for real-time applications
to have low-latency parallel processing. Random Forests are dif-
ficult to implement due to high hardware resource consumption
and increased memory usage. To help developers to deploy their
random forest models on FPGA, the conifer framework is usually
used. This framework represents each decision tree from the
forest as a boosted decision tree. This representation is useful
for large decision tree and for being executed on conventional
processing unit. In this paper, Conifer framework is extended to
offer multiclass classification to Random Forests incorporating
small and medium size trees. Comparison between rolled and
unrolled random forest implementation on FPGA are proposed.

Index Terms—Random Forest, Machine Learning, FPGA

I. INTRODUCTION

Random Forests were introduced by [1] at the beginning
of the 21st century and are applied in machine learning for
classification and regression tasks. They build several decision
trees using samples from the training data, each tree using
a different set of features to find the optimal divisions. The
final prediction is achieved through majority voting of the
trees for classification or by averaging the predictions for
regression. Random forests are an extension of the Bagging
(Bootstrap Aggregating) methodology introduced by Breiman
in 1996. The random forest algorithm involves the random
selection of variable subsets, enhancing the model’s predictive
performance and robustness.

Random Forests are more resistant to overfitting and have
higher accuracy than single-decision trees. They are versatile
for various purposes like identifying spam, image recognition,
text recognition, predicting prices, and analyzing economic
trends. Besides, they can recognize the most essential features
in a data set, rendering them a powerful and adaptable re-
source.

FPGAs (Field-Programmable Gate Arrays) are attractive for
embedding AI due to their flexibility and ability to perform
low-latency parallel processing, which is crucial for real-time
applications. They consume less energy than CPUs and GPUs
and can be reprogrammed to adapt to new tasks. Several frame-
works, such as HLS4ML (High Level Synthesis 4 Machine
Learning) [2], Xilinx’s Vitis AI [3], Intel’s OpenVINO , FINN,

Conifer [4], facilitate developing and deploying AI models on
FPGAs.

Implementing Random Forests on FPGAs presents certain
challenges, as unrolling a tree requires significant hardware
resources, and managing multiple arrays can lead to increased
memory consumption. The Conifer framework, one of the
primary frameworks for deploying boosted decision trees,
represents each tree in the forest as a boosted decision tree.
For this purpose, an array is allocated for each class, which
contains only a subset of the nodes and leaves from the original
tree. Unlike decision tree representation with only one array,
multiple array representation of a tree usually consumes more
hardware resources due to redundant nodes that are present in
multiple arrays. Boosted decision trees are a representation that
was conceived for CPUs, which have big memory (RAM) and
many cores. Each boosted decision tree can be executed on a
dedicated processor unit core, decreasing the overall inference
time. However, this representation is not the best for FPGA,
which can execute almost all tree nodes in parallel. Indeed, a
tree can be fully deployed on an FPGA.

Our solution proposes expanding the Conifer framework and
allowing for rapid and efficient FPGA implementation of any
Random Forest (RF) model for multiclass problems.

Our contribution is twofold:
• adapting the Conifer framework to multivariable Random

Forest classification
• analyzing the resource usage of various random forest

implementations.
We will begin by exploring how the scientific literature

tackles our problem in section II. Section III presents the
Conifer design flow and our improvements, followed by a
detailed description of the experimental setup in Section IV.
The results are outlined in Section V, and this work will be
concluded in Section VI.

II. RELATED WORK

Since random forests were first introduced and studied in
the early 2000s, they have become a well-known algorithm in
machine learning, as detailed in [5].

Improvements of the initial RF algorithm have been pro-
posed, in particular by [6] who proposes Bernoulli Random
Forests allowing the simplified construction of trees with two
independent Bernouilli distributions.

Decision forests seek to increase a single decision tree’s
capacity for generalization by combining the output of mul-



tiple trees. In their review, [7] emphasize the methods and
strategies utilized in decision forests, particularly the three
main components of decision forest use—growing, thinning,
and combining.

The implementation of Machine Learning algorithms in
software has been significantly facilitated by the availability of
frameworks such as SKLearn [8] in Python. An hardware im-
plementation method has been developped by [9] for decision
trees.

The authors in [10] show that their hybrid CPU-FPGA
platform delivers significant speed improvements and energy
savings compared to traditional CPU-only implementations,
making it well-suited for large-scale data processing tasks.
While there are some limitations in adapting to different types
of decision tree algorithms, this approach provides a scalable
and efficient solution for embedded applications that require
high-performance decision-making.

Multi-valued decision diagrams used in [11] can signifi-
cantly increase node count, resulting in higher memory usage
and potentially slower training times. Their implementation
approach uses the Altera SDK and OpenCL code.

In [12], they improve the performance of implemented de-
cision tree classifiers by designing four different architectures
to optimize the processing speed and energy efficiency. The
evaluation results show significant improvements in processing
time and energy consumption compared to traditional software
implementations. However, these hardware accelerators have
limited flexibility and may limit their adaptation to different
types of decision tree algorithms.

Conifer is derived from HLS4ML [2] and originally enabled
the implementation of Boosted Decision trees on FPGAs using
the Xilinx [3] suite. For this reason, the way you use Conifer
is very similar to the way you use HLS4ML, with the same
file structure, similar configurations, and the benefit of the
questions asked by the HLS4ML community. This framework
takes over the conversion and implementation architecture
of HLS4ML, while adding a wide range of conversion op-
tions starting from ONNX [13], TMVA [14], XGBoost [15],
TensorFlow Decision Forest [16] and Ydf [16]. Conifer also
enables the implementation of Forest Processing Units (FPUs),
offering great flexibility by performing inferences on different
Boosted Decision Trees without having to rebuild the IP
or bitstream. The FPU can be compared to the DPUs in
VitisAI. Thanks to the use of the Xilinx tool chain, Conifer
offers a wide variety of implementation choices, from Xilinx
HLS (High Level Synthesis) code generation, to VHDL,
C++, python (for conversion validation) code generation, to
bitstream generation and simplified execution with PYNQ
[17].

III. METHODOLOGY

This section will describe how multiclass classification with
Random Forests on FPGA has been achieved by modifying
the open-source Conifer framework and the tree unrolling
mechanism.

The implementation flow proposed by Conifer consists of
5 parts as depicted in Figure 1. First, an SKlearn model is
created and trained. Next, a conversion module converts the
functional model into an HLS model. It will then be written
into a Xilinx project by the Writer. Compilation then takes
place, and the RF can be implemented and run on the FPGA
board. Our modifications have been validated only on the
SKLearn conversion block.

We begin by implementing software experimentation mod-
els based on the multivariable Random Forests proposed by
SKLearn. It is the functional model in Figure 1. We instantiate
and parameterize this model with Hyperparameters (HP), such
as the number of estimators or the maximum depth of the trees
in the forest. Other parameters are available in SKlearn.

To train the defined classifier, we need a dataset. Using a
standard SKlearn flow, we import a dataset that we preprocess
to obtain a train and a test dataset, with an 80% train/test ratio.
We use the train set (X train and y train) to train the Random
Forest classifier. Once fitted, our model must be evaluated
using metrics. In our case, we have chosen accuracy to evaluate
a classifier because it is simple and easy to understand. It
allows us to quickly compare the performance of an FPGA
implementation with a software implementation.

Once our forest is trained and evaluated, we can feed it
into Conifer to start the transformation. The first block is
the SKlearn conversion part, where the forest is converted
using the custom convert RF function. This function has been
modified to correctly map the individual trees into a python
Ensemble Dictionary.

In the conifer implementation, each decision tree is repre-
sented by 6 arrays of size 2n, where n is the tree depth. For
a complete binary tree of depth (n): The number of leaves
(terminal nodes) is (2n). The total number of internal nodes
(including the root and intermediate nodes) is given by the sum
(20+21+22+ · · ·+2n−1). We can calculate the total number
of nodes: Total number of nodes =

∑n−1
i=0 2i This geometric

sum can be simplified to:
∑n−1

i=0 2i = 2n − 1. So, the total
number of internal nodes is (2n − 1). For the total number of
leaves, Number of leaves = 2n

The six-array representation appears to be directly extracted
from the storage mechanisms utilized by the SKLearn library
for decision trees. Children left and children right contain the
left and right child indices for each node, with -1 indicating a
leaf. The feature array specifies the index of the feature used
for testing each node, while threshold indicates the threshold
value for that feature. The n node samples array keeps track
of the number of samples that reach each node. The value and
impurity tables contain the prediction values for leaf nodes and
impurity measures (such as Gini index or entropy) respectively.
Finally, node depth stores the depth of each node in the tree.
Together, these arrays enable the decision tree to be efficiently
represented and traversed for prediction and analysis.

To propose multi-class representation, we have to face two
challenges: 1) to use the same structure and arrays proposed
by Conifer and 2) to avoid increasing the size of the arrays.



Fig. 1. Overall Conifer methodology. Orange blocks have been modified.

The first challenge is important to maintain the compatibility
with previous Conifer versions. Conifer will use SKlearn to
model the RF that will be deployed on FPGA. By adding new
functionalities (i.e., multi-class inference), we have to keep
the main arrays that are resulting from SKlearn. The trees,
represented as six arrays, are imported directly into the HLS
project using the convert RF conversion method. SKLearn
uses this structure for training, inference, visualization, op-
timization, etc. We need to focus only on the inference phase.
It is, therefore, possible to optimize how trees are stored and
accessed by taking advantage of the parallel architecture of
FPGAs. The six arrays of size 2n − 1, as they stand, risk
saturating resources frivolously. Vitis HLS optimizes this kind
of problem to a certain degree. However, three arrays are used
by SKlearn during the training phase. The implementation on
FPGA will only be executed for inference. As such, we only
keep three arrays (i.e., threshold, value and node depth). Same
if our approach is multi-class, the number of resources on
FPGA is hence half.

For the second challenge, we change the representation of
the value array. Initially, the value array was used by conifer
to store the prediction values. To allow multi-class prediction,
we modify the content of the value array to store the predicted
class. Such a change is quite simple and do not require a new
array to know the inferred class. Indeed, we adapt the vote
function to compute the majority and decide which class is
inferred from the RF.

The unroll optimization technique enables the simultaneous
execution of all comparisons involving non-leaf nodes. By
doing so, it gathers and stores the results of these comparisons
in a dedicated comparison array. This approach enhances

efficiency by processing multiple evaluations at once, rather
than sequentially, ultimately improving the overall perfor-
mance of the algorithm. The unrolling mechanism can be
triggered during the Conifer configuration and will influence
the implementation process of the decision functions.

IV. EXPERIMENTAL SETUP

We chose the Xilinx ZCU102 evaluation board, based on
the Zynq UltraScale+ MPSoC, which offers a powerful com-
bination of FPGA and CPU/GPU resources. It features 600K
logic cells, 2,520 DSP blocks, and 32.1 Mb of memory for
programmable logic. The CPU features a quad-core Cortex-
A53 for general-purpose processing, a dual-core Cortex-R5F
for real-time tasks, and a Mali-400 MP2 GPU for graphics
applications. The board also includes 4GB DDR4 SODIMM
with ECC, 512MB DDR4 for programmable logic, and various
interfaces such as PCIe Gen2 x4, USB3, DisplayPort, SATA,
and 4x SFP+ for Ethernet. It is compatible with Vivado Design
Suite and PetaLinux, making it ideal for automotive, industrial,
video, and communications applications.

We used Xilinx Vitis 2023.2. On the software side, sklearn
1.5.1 was installed with Python 3.10.12 and our modified
Conifer 1.4 version. Our machine is equipped with an Intel
Xeon w5-2465x with 32 cores and 256Go of RAM on Ubuntu
22.04.

a) Dataset: We have chosen to utilize the CIC-IDS-2017
dataset to detect cyber attacks in IT environments. This dataset
represents a standard network environment with various oper-
ating systems on computers and servers. It comprises more
than 2 million samples, including 14 different types of attacks
and benign network flow. 78 features describe each sample.



n estimators max depth acc skl acc hls lat skl lat hls
(%) (%) (µs) (µs)

2 2 0.88 0.87 526.91 0.72
2 4 0.94 0.88 637.05 0.8
2 5 0.96 0.95 524.04 0.88

10 3 0.94 0.93 597.24 1.6
10 4 0.96 0.96 602.48 1.9
10 5 0.97 0.96 747.44 3.7
10 6 0.98 0.98 628.23 5.67
20 2 0.88 0.88 793.93 2.44
20 4 0.96 0.96 786.54 3.36
20 5 0.98 0.98 774.38 6.9
50 3 0.94 0.94 1251.46 4.6
50 4 0.96 0.96 1247.17 7.56
50 5 0.98 0.98 1243.35 16.99

100 3 0.94 0.94 2017.97 8.6
100 4 0.96 0.96 1968.15 16.57
100 5 0.98 0.98 2001.05 33.49
200 3 0.94 0.94 3408.43 16.59
200 4 0.96 0.96 3428.22 32.57

TABLE I
COMPARISON OF SOFTWARE AND HARDWARE ACCURACY AND LATENCY

(IN MS) DEPENDING ON RF HYPERPARAMETERS ON FLOAT PRECISION FOR
ROLLED IMPLEMENTATION

b) Metrics: To evaluate our implemented Random Forest
and the impact on performance caused by the implementation
toolchain, we chose to compare the software accuracy given by
SKLearn with the real accuracy obtained with the transformed
model in C++.

The estimations supplied by the Xilinx toolchain were
utilized to assess energy consumption measured in Watts.
Additionally, resource estimations produced by Vivado, cal-
culated after the routing process was completed, were taken
into account. For hardware latency, the estimations generated
by Vitis HLS provide valuable insights into the system’s
performance characteristics.

V. RESULTS

Our experiment aims to visualize the impact of several
optimizations on the hardware implementation of RF. First,
the hardware and software accuracy will be compared while
keeping a full data bandwidth (in float). The latency will also
be compared between these implementations. Secondly, the
unroll factor will be used, and the experiments will compare
implementation with and without unrolling trees while keeping
the same data width. Several metrics will be displayed, such as
resource usage on the FPGA (LUT, FF, DSP, BRAM), energy
consumption (both static and dynamic), and latency. Thirdly,
the data precision will be varied to see how it impacts resource
usage and accuracy.

These metrics have been collected for RF with HP varying
from 1 to 200 trees and for a maximum depth of 3 to 7.
The data width has been set to float for the first experiments
to objectively compare the differences between hardware and
software.

Interestingly, while increasing the depth and the number of
trees, the conversion time takes significantly longer. Compared
to neural network implementations using HLS4ML, Conifer
implementations take longer.

Table I presents the accuracy improvements achieved by
fine-tuning the primary hyperparameters of the forest, specif-
ically focusing on the number of trees (n estimators) and the
maximum depth (max depth) of the individual trees.

In this instance, the software accuracy and hardware ac-
curacy are nearly identical, as both involve the same pre-
cision implementation (float). The slight discrepancy can be
attributed to rounding errors inherent in the implementation.

While increasing the number of estimators tends to enhance
accuracy, the maximum depth plays a more decisive role.
For instance, comparable accuracy can be attained using just
two trees at a depth of 5, in contrast to employing 50,
100, or 200 trees with a maximum depth of 4. Conversely,
latency is more significantly affected by the number of trees
than by the maximum depth, both in software and hardware
implementations.

The unroll RF implementation is compared to the rolled
RF in Table II. This table details the percentage of FPGA
resource utilization, including LUT, FF, DSP, and BRAM, as
well as software and hardware latency µs, and both dynamic
and static energy consumption in watts. The unrolled imple-
mentation demonstrates a significant improvement in latency,
applicable to both small and large forests. Notably, in small
forests (with fewer than five trees), the resource usage is
lower when employing the unrolled factor. However, this trend
reverses after ten trees, resulting in a doubling of resource
usage with the unrolled implementation.The pattern of energy
consumption exhibits a similar trend; however, it is arguably
less pronounced in rolled implementations with fewer than
20 trees. Conversely, in larger forests, the significance of
energy consumption becomes more pronounced in the context
of unrolled implementations.

Various data precision implementations were compared on
the RF implementations, as shown in Table III. The ap fixed
(a.f in the table) data type specifies a fixed-point number,
where the first value denotes the total width (number of bits),
including the sign bit, and the second value indicates the
integer width (number of bits assigned to the integer part).
Float precision is compared with three other precisions, 16,6,
12,4 and 8,2. In this instance, the precision and the unroll
parameter are adjusted while different depth are studied.

The accuracy reduction in hardware is significant when
using fixed-point representations of 12,4 and 8,2. While en-
ergy consumption varies, it remains relatively consistent. In
contrast, latency can be reduced by half with minor precision
adjustments; however, the decrease in resource usage is not as
pronounced.The LUT resource is most significantly affected
by changes in data precision. For instance, when using 10
trees with a maximum depth of 3, LUT utilization decreases
from 7.35% in the 16.6 precision to 4.88% in the 8.2 precision,
with an even lower usage of just 2.72% in floating-point im-
plementation. Notably, despite maintaining the same examples,
the latency is reduced with fixed-point implementations. With
deeper forests, the float implementations consume the most
resources, while decreasing the data precision also decreases
the resource usage and latency.



n estimators max depth unroll lat skl lat hls lut prct ff prct dsp prct bram prct energy dyn energy sta energy
(µs) (µs) (%) (%) (%) (%) (Watt) (Watt) (Watt)

2 2 False 526.91 0.72 1.61 1.12 0.2 0.11 2.78 0.72 3.5
2 2 True 495.91 0.48 1.39 0.91 0.2 0.11 2.77 0.72 3.5
2 2 False 711.92 0.72 1.61 1.12 0.2 0.11 2.78 0.72 3.5
2 2 True 675.68 0.48 1.39 0.91 0.2 0.11 2.77 0.72 3.5
2 4 False 637.05 0.8 1.76 1.13 0.2 0.11 2.78 0.72 3.51
2 4 True 535.73 0.51 1.58 0.93 0.2 0.11 2.77 0.72 3.49
2 5 False 524.04 0.88 2.49 1.38 0.2 0.11 2.8 0.72 3.52
2 5 True 534.3 0.54 1.62 0.95 0.2 0.11 2.77 0.72 3.5

10 3 False 597.24 1.6 2.65 1.57 0.08 0.11 2.8 0.72 3.53
10 3 True 619.65 1.41 2.72 1.71 0.16 0.11 2.8 0.72 3.52
10 4 False 602.48 1.9 3.1 1.68 0.08 0.11 2.86 0.72 3.58
10 4 True 626.09 1.54 3.09 1.82 0.16 0.11 2.81 0.72 3.53
10 5 False 747.44 3.7 9.43 3.95 0.16 0.11 2.93 0.72 3.65
10 5 True 659.23 1.94 3.59 1.95 0.08 0.11 2.81 0.72 3.53
10 5 False 622.03 3.7 9.43 3.95 0.16 0.11 2.93 0.72 3.65
10 5 True 660.66 1.94 3.59 1.95 0.08 0.11 2.81 0.72 3.53
10 6 False 628.23 5.67 26.83 12.13 0.16 0.11 3.05 0.72 3.77
10 6 True 597.72 2.19 4.91 2.24 0.08 0.11 2.82 0.72 3.54
20 2 False 793.93 2.44 3.28 1.96 0.08 0.11 2.81 0.72 3.53
20 2 True 791.31 0.48 5.13 4.01 1.43 0.11 2.84 0.72 3.56
20 4 False 786.54 3.36 5.65 2.33 0.16 0.11 2.91 0.72 3.64
20 4 True 812.53 0.51 4.45 2.59 0.16 0.11 2.84 0.72 3.56
20 5 False 774.38 6.9 10.36 4.29 0.16 0.11 3.04 0.72 3.76
20 5 True 818.73 0.54 8.6 3.62 0.95 0.11 2.96 0.72 3.68
50 3 False 1251.46 4.6 5.88 2.28 0.16 0.11 2.8 0.72 3.52
50 3 True 1270.06 0.5 9.92 4.75 0.95 0.11 2.97 0.72 3.7
50 4 False 1247.17 7.56 6.69 2.53 0.16 0.11 2.98 0.72 3.7
50 4 True 1254.32 0.52 11.53 5.01 0.95 0.11 3.05 0.72 3.78
50 5 False 1243.35 16.99 13.31 4.82 0.16 0.11 3.06 0.72 3.78
50 5 True 1238.35 0.53 15.1 5.62 0.95 0.11 3.18 0.72 3.9

100 3 False 2017.97 8.6 6.69 2.46 0.16 0.11 2.98 0.72 3.7
100 3 True 1976.97 10.31 14.89 6.96 0.95 0.11 3.17 0.72 3.89
100 4 False 1968.15 16.57 8.7 2.98 0.16 0.11 3 0.72 3.73
100 4 True 1981.26 12.46 17.88 7.64 0.95 0.11 3.07 0.72 3.8
100 5 False 2001.05 33.49 18.13 5.37 0.16 0.11 3.08 0.72 3.8
100 5 True 1995.8 15.85 24.51 8.87 0.95 0.11 3.36 0.72 4.09
200 3 False 3408.43 16.59 8.71 2.82 0.16 0.11 2.99 0.72 3.71
200 3 True 3414.63 0.5 23.95 11.55 0.95 0.11 3.39 0.73 4.11
200 4 False 3428.22 32.57 13.03 3.59 0.16 0.11 3.03 0.72 3.75
200 4 True 3471.85 0.51 30.48 12.92 0.95 0.11 3.2 0.72 3.92

TABLE II
RESOURCE COMPARISON OF ROLLED/UNROLLED RF IMPLEMENTATION WITH FLOAT PRECISION

We have encountered limitations with the implementation
of our RFs. When implementing an RF with a considerable
amount of trees and/or a significant depth, the implementation
phase can crash or take several hours to complete. This issue
likely arises from the size of the tables representing the trees.
It would be beneficial to divide them and see if that resolves
the problem and if the latency could be improved with this
approach.

VI. CONCLUSION AND PERSPECTIVES

Rather than reinventing the wheel, adapting existing high-
quality work to our needs is often more accessible and more
efficient. Hence, we have enhanced the Conifer framework to
offer multi-class classification with Random Forest on FPGAs.
Our approach presents several modifications on the conversion
phase and on the writer. Nevertheless, the actual proposed
extension is limited to depth of 8 for heavy datasets such as
CIC-IDS2017 because of its high dimensionality and its size.

The modified framework is accessible on https://gitlabsticc.
univ-brest.fr/cyber-fpga-ia/conifer test

The prospects for implementing Random Forest on FPGA
are promising, especially with the possibility of carrying out
performance measurements on various datasets to compare
the results obtained. This approach would make it possible to
test the efficiency and accuracy of random forests on FPGAs
against conventional software implementations. Comparing
results obtained with different parameter configurations and
datasets would provide valuable information for optimizing
algorithms and improving hardware architecture. Another in-
teresting prospect would be to improve the way decision trees
are stored in arrays, which could reduce processing latency
and increase resource management capacity when dealing
with deep trees. These prospects pave the way for real-time
applications and embedded systems where processing speed
and efficiency are crucial.



n estimators max depth unroll acc skl acc hls lat skl lat hls lut prct ff prct dsp prct prec
10 3 False 0.94 0.93 597.24 1.6 2.65 1.57 0.08 float
10 3 True 0.94 0.93 619.65 1.41 2.72 1.71 0.16 float
10 3 False 0.94 0.8 644.92 1.16 7.45 2.02 0.48 a.f.16,6
10 3 True 0.94 0.8 670.19 0.79 7.35 1.82 0.48 a.f.16,6
10 3 False 0.94 0.76 811.1 0.81 6.28 1.79 0.48 a.f.12,4
10 3 True 0.94 0.76 863.08 0.79 6.04 1.73 0.48 a.f.12,4
10 3 False 0.94 0.35 877.38 0.81 5.34 1.67 0.48 a.f.8,2
10 3 True 0.94 0.35 657.8 0.5 4.88 1.43 0.08 a.f.8,2
10 4 False 0.96 0.96 602.48 1.9 3.1 1.68 0.08 float
10 4 True 0.96 0.96 626.09 1.54 3.09 1.82 0.16 float
10 4 False 0.96 0.77 672.34 1.44 7.63 2.12 0.48 a.f.16,6
10 4 True 0.96 0.77 664 0.94 7.82 1.9 0.48 a.f.16,6
10 4 False 0.96 0.67 649.45 1.11 6.55 1.88 0.48 a.f.12,4
10 4 True 0.96 0.67 651.12 0.94 6.36 1.81 0.48 a.f.12,4
10 4 False 0.96 0.27 646.83 1.11 5.55 1.75 0.48 a.f.8,2
10 4 True 0.96 0.27 681.16 0.52 4.99 1.47 0.08 a.f.8,2
10 5 False 0.97 0.96 747.44 3.7 9.43 3.95 0.16 float
10 5 True 0.97 0.96 659.23 1.94 3.59 1.95 0.08 float
10 5 False 0.97 0.84 854.02 3.51 10.85 3.32 0.48 a.f.16,6
10 5 True 0.97 0.84 652.79 1.16 8.6 2 0.48 a.f.16,6
10 5 False 0.97 0.67 841.38 3.22 10.1 3.15 0.48 a.f.12,4
10 5 True 0.97 0.67 653.03 1.15 6.85 1.9 0.48 a.f.12,4
10 5 False 0.97 0.31 659.47 3.22 8.24 2.6 0.48 a.f.8,2
10 5 True 0.97 0.31 653.27 0.54 5.2 1.54 0.08 a.f.8,2
10 6 False 0.98 0.98 628.23 5.67 26.83 12.13 0.16 float
10 6 True 0.98 0.98 597.72 2.19 4.91 2.24 0.08 float
10 6 False 0.98 0.81 658.51 5.48 23.52 7.45 0.48 a.f.16,6
10 6 True 0.98 0.81 834.7 1.43 9.24 2.15 0.48 a.f.16,6
10 6 False 0.98 0.7 620.6 5.2 23.69 8 0.48 a.f.12,4
10 6 True 0.98 0.7 662.33 1.4 7.08 2.04 0.48 a.f.12,4
10 6 False 0.98 0.21 659.94 5.2 18.52 5.64 0.48 a.f.8,2
10 6 True 0.98 0.21 653.98 0.56 5.36 1.66 0.08 a.f.8,2

TABLE III
RESOURCE COMPARISON OF ROLLED AND UNROLLED RF IMPLEMENTATION WITH VARYING PRECISION FROM FLOAT TO FIXED POINT 8,2

REFERENCES

[1] Leo Breiman. “Random forests”. In: Machine learning
45 (2001), pp. 5–32.

[2] FastML Team. fastmachinelearning/hls4ml.
Version v0.8.1. 2023. DOI: 10.5281/zenodo.1201549.
URL: https://github.com/fastmachinelearning/hls4ml.

[3] Vitis Unified Software Platform. https : / / www. xilinx .
com / products / design - tools / vitis . html. Accessed:
[current date].

[4] Sioni Summers et al. “Fast inference of boosted decision
trees in FPGAs for particle physics”. In: Journal of
Instrumentation 15.05 (2020), P05026.

[5] Gérard Biau and Erwan Scornet. “A random forest
guided tour”. In: Test 25 (2016), pp. 197–227.

[6] Yisen Wang et al. “A novel consistent random forest
framework: Bernoulli random forests”. In: IEEE trans-
actions on neural networks and learning systems 29.8
(2017), pp. 3510–3523.

[7] Lior Rokach. “Decision forest: Twenty years of re-
search”. In: Information Fusion 27 (2016), pp. 111–125.

[8] Fabian Pedregosa et al. “scikit-learn: Machine Learning
in Python”. In: Journal of Machine Learning Research
12 (2011). Accessed on September 16, 2024, pp. 2825–
2830. URL: https://scikit-learn.org/stable/.

[9] Flora Amato et al. “An fpga-based smart classifier
for decision support systems”. In: Intelligent Dis-
tributed Computing VII: Proceedings of the 7th Interna-
tional Symposium on Intelligent Distributed Computing-
IDC 2013, Prague, Czech Republic, September 2013.
Springer. 2014, pp. 289–299.

[10] Muhsen Owaida et al. “Scalable inference of decision
tree ensembles: Flexible design for CPU-FPGA plat-
forms”. In: 2017 27th International Conference on Field
Programmable Logic and Applications (FPL). IEEE.
2017, pp. 1–8.

[11] Hiroki Nakahara et al. “A random forest using a multi-
valued decision diagram on an FPGA”. In: 2017 IEEE
47th international symposium on multiple-valued logic
(ISMVL). IEEE. 2017, pp. 266–271.

[12] Rastislav Struharik. “Decision tree ensemble hardware
accelerators for embedded applications”. In: 2015 IEEE
13th International Symposium on Intelligent Systems
and Informatics (SISY). IEEE. 2015, pp. 101–106.

[13] Junjie Bai, Fang Lu, Ke Zhang, et al. ONNX: Open
Neural Network Exchange. https : / /github.com/onnx/
onnx. 2019.

[14] Andreas Hoecker et al. “TMVA-toolkit for multivari-
ate data analysis”. In: arXiv preprint physics/0703039
(2007).



[15] Tianqi Chen and Carlos Guestrin. “XGBoost: A Scal-
able Tree Boosting System”. In: Proceedings of the
22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. KDD ’16. San
Francisco, California, USA: ACM, 2016, pp. 785–794.
ISBN: 978-1-4503-4232-2. DOI: 10 . 1145 / 2939672 .
2939785. URL: http://doi.acm.org/10.1145/2939672.
2939785.

[16] Mathieu Guillame-Bert et al. “Yggdrasil Decision
Forests: A Fast and Extensible Decision Forests Li-
brary”. In: Proceedings of the 29th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining,
KDD 2023, Long Beach, CA, USA, August 6-10, 2023.
2023, pp. 4068–4077. DOI: 10.1145/3580305.3599933.
URL: https://doi.org/10.1145/3580305.3599933.

[17] PYNQ — Python Productivity to AMD Adaptive Com-
pute Platforms. http : / / www. pynq . io/. Accessed on
February 20, 2024.


