
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Exploring the applicability of Graph Attention

Networks in computer vision and their hardware

acceleration

 Abdolvahab Khalili Sadaghiani

 Linköping University

 Linköping, Sweden

 0000-0003-4870-2768

Jose Nunez-Yanez

Linköping University

Linköping, Sweden

0000-0002-5153-5481

Abstract— Edge detection is a fundamental task in computer

vision, crucial for object recognition, segmentation, and scene

understanding. Traditional methods often fail to capture

complex edge structures due to their inability to model intricate

relationships between pixels. Graph Neural Networks (GNNs),

particularly Graph Attention Networks (GATs), have shown

promise in addressing these limitations by leveraging graph

structures to model pixel relationships. This paper explores the

applicability of Graph Attention Networks in edge detection,

highlighting their advantages over ordinary Graph

convolutional Networks (GCNs) through rigorous mathematical

reasoning. We integrate GATs into an edge detection

framework based on an encoder-decoder structure with U-Net

architecture and provide detailed theoretical and

implementation insights. Furthermore, we discuss the hardware

acceleration of GCNs and GATs with a reconfigurable dataflow

architecture integrated in the Pytorch framework. The

experimental results demonstrate the superior performance of

GAT-based edge detection and the potential acceleration

possible on reconfigurable edge platforms with limited

resources. The key advantage of our proposed method is its

hardware-friendly design, making it highly suitable for FPGA

acceleration while also enabling efficient optimization through

pruning of the network.

Keywords—edge detection, GNN, Graph Attention Networks,

encoder-decoder structure, U-Net

I. INTRODUCTION

Edge detection is a critical step in many computer vision
applications, serving as the foundation for tasks such as object
recognition, image segmentation, and scene interpretation.
Traditional edge detection algorithms, like Sobel, Prewitt, and
Canny operators, rely on gradient calculations and
thresholding techniques. While effective in simple scenarios,
these methods often struggle with complex images containing
noise, texture variations, and intricate edge patterns.

GNNs have emerged as a powerful tool for modeling
relational data by representing input data as graphs and
learning representations that capture both local and global
structures. GATs, a variant of GNNs, introduce an attention
mechanism that assigns learnable weights to the edges in the
graph, allowing the model to focus on the most relevant
neighboring nodes during message passing.

In this paper, we focus on the following contributions:
1. Theoretical Advantages of GATs over ordinary GCNs

in Edge Detection: We provide an in-depth mathematical
analysis of how GATs improve edge detection
performance compared to traditional GCNs.

2. Implementation Details: We present a detailed
description of integrating GATs into an edge detection
framework, including architectural design and training
procedures.

3. Hardware Acceleration: We discuss how a PYNQ
overlay can be used to accelerate the computation required

for GCNs/GATs and hardware-aware quantization
enhances computational efficiency.

Recent advancements in contour detection have introduced a
variety of novel approaches, each addressing specific
challenges. Ren et al. proposed Sparse Code Gradients (SCG),
leveraging sparse coding for improved accuracy but with high
computational demands [1]. Isola et al. introduced a pointwise
mutual information-based affinity measure for crisp boundary
detection, achieving pixel-level precision but with sensitivity
to noise [2]. Hallman et al. utilized random forests to model
edge orientation, offering interpretability and efficiency,
though limited by training data [3]. Shen et al. employed deep
convolutional networks with a positive-sharing loss function,
capturing semantic features but requiring extensive resources
[4]. Bertasius et al. combined multi-level features for
boundary detection, enhancing performance but with design
complexity [5]. Together, these works highlight diverse
strategies to improve contour detection while presenting
trade-offs in computational efficiency, generalizability, and
implementation complexity. In contrast, our method combines
the strengths of deep learning with adaptive edge refinement,
enabling better generalization and computational efficiency
across diverse datasets.

The method proposed in [6] excels in capturing multi-scale
features, ensuring robust and accurate edge detection under
various conditions. However, its high model complexity can
result in increased computational costs, limiting its
applicability in real-time or resource-constrained systems. On
the other hand, [7] enhances precision and reduces false
positives, particularly in complex scenes, by leveraging
innovative fusion difference convolution techniques. Despite
its accuracy, this method may struggle with high
computational demands and scalability for large datasets.
Both the approaches in [6] and [7] aim to balance trade-offs
between performance and computational efficiency,
depending on the application requirements.

The rest of the paper is organized as follows. Section Ⅱ
gives a background and introductory information about
important concepts used in this work. Section Ⅲ explains the
GAT mechanism and its function. Section Ⅳ explains the
algorithmic aspects of the work. Section V presents the
experimental results of the algorithm. Section ⅤI introduces
initial results of our efforts towards hardware acceleration.
Finally, section VII presents the conclusions and future work.

II. BACKGROUND

A. Edge Detection

Edge detection aims to identify points in an image where
the intensity changes sharply, indicating boundaries of objects
or textures. Mathematically, edges correspond to
discontinuities in the image intensity function I(x,y).
Traditional methods compute the gradient magnitude and
direction using convolutional kernels, such as (1) and (2).

• Prewitt Operator:

 𝐺𝑥 = [
−1 0 1
−1 0 1
−1 0 1

] ∗ 𝐼, 𝐺𝑦 = [
1 1 1
0 0 0

−1 −1 −1
] ∗ 𝐼 (1)

• Gradient Magnitude:

 𝐺 = √𝐺𝑥
2 + 𝐺𝑦

2 (2)

These methods are limited by their local nature and fixed

kernels, which cannot adapt to complex patterns.

B. Graph Convolutional Network (GCN)

GNNs generalize neural networks to graph-structured data. A

graph 𝐺 = (𝑉, 𝐸)consists of nodes V and edges E. Each node

v∈V has a feature vector hv. The standard GNN updates node

features through message passing as (3).

 𝑚𝑢𝑣 = 𝑀(ℎ𝑢 , ℎ𝑣 , 𝑒𝑢𝑣) (3)

where 𝑒𝑢𝑣 is the edge feature, and M is a message function.

Aggregation of the neighboring nodes is as follows in (4).

 𝑎𝑣 = ∑ 𝑚𝑢𝑣𝑢∈𝑁(𝑣) (4)

where N(v) denotes the neighbors of node v. Later nodes

ought to be updated as follows in (5).

 ℎ′𝑣 = 𝑈(ℎ𝑣 , 𝑎𝑣) (5)

where U is an update function. Two main Limitations of

GNN are as follows.

• Uniform Treatment of Neighbors: All neighbors

contribute equally, which may not capture the importance

of specific nodes.

• Over-Smoothing: Repeated aggregations can make node

features indistinguishable.

C. Graph Attention Network (GAT)

GATs address these limitations by introducing an attention

mechanism that assigns different weights to neighbor

contributions. Attention coefficient computation is defined as

𝑒𝑢𝑣 = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝑙𝑢(𝑎𝑇[𝑊ℎ𝑢 ∥ 𝑊ℎ𝑣]),

Where W is a weight matrix, a is an attention vector, and ∥

denotes concatenation. Normalization is also an important

step that needs to be taken into account (6).

 𝛼𝑢𝑣 =
exp (𝑒𝑢𝑣)

∑ exp (𝑒𝑢𝑣)𝑘∈𝑁(𝑣)
 (6)

Lastly, feature Update rewrites the values as (7).

 ℎ′
𝑣 = 𝜎(∑ 𝛼𝑢𝑣𝑊ℎ𝑢𝑢𝜖𝑁(𝑣)) (7)

where 𝜎 is an activation function. The attention coefficient

computed in (6) for each neighbor assigns a degree of

importance that can emphasize strong, informative edges

while downplaying irrelevant or weak signals. For edge

detection, this capacity to differentially weight each node’s

contribution based on similarity is essential, as it helps in

identifying true boundaries while suppressing noise and

texture variations that often cause false positives in traditional

methods.

As for enhanced expressiveness, GATs are able to model

complex relationships and capture high-frequency

components (edges) more effectively. High-frequency

components correspond to rapid changes in node features

(edges) and they are preserved by GATs by assigning lower

weights to dissimilar neighbors, thus retaining edge

information. Also, the attention mechanism prevents over-

smoothing by limiting the aggregation of irrelevant

information [8].

III. ATTENTION-BASED EDGE DETECTION FRAMEWORK

In this section, we provide an overview of the proposed

edge detection framework, which integrates GAT into an

encoder-decoder architecture based on U-Net. U-Net is a

convolutional neural network architecture designed primarily

for image segmentation tasks. The block diagram of the

workflow and components of the architecture is depicted in

Fig. 1. The implementation is designed to leverage the

strengths of both convolutional neural networks and graph

neural networks to enhance edge detection performance.

The first step involves constructing a graph representation

from the input image or feature maps extracted by the

encoder. Each pixel or a group of pixels (super-pixels) in the

feature map is considered a node in the graph. The node

features are derived from the corresponding pixel's feature

vector obtained from the encoder's output at the bottleneck

layer. Edges are established between nodes based on spatial

adjacency or feature similarity. For spatial adjacency, we can

use a 4-connected or 8-connected neighborhood, where each

node is connected to its immediate neighbors. Alternatively,

feature similarity can be used to connect nodes with similar

feature representations, which can help in capturing long-

range dependencies. The graph G= (V, E) is thus defined,

where V is the set of nodes and E is the set of edges

connecting these nodes.

After the GAT layer updates the node features, the graph

is transformed back into a grid structure to be processed by

the decoder. The decoder consists of up-sampling operations,

typically implemented using transposed convolutions, which

increase the spatial dimensions of the feature maps. At each

up-sampling stage, skip connections from the encoder are

utilized, concatenating high-resolution features from the

encoder with the up-sampled features in the decoder. This

mechanism preserves spatial details that may have been lost

during down-sampling and enriches the decoder's inputs with

multi-scale information.

The decoder progressively processes the feature maps,

integrating the GAT-enhanced representations with spatially

detailed encoder features. This combination enables the

model to reconstruct high-resolution edge maps that

accurately localize edges while maintaining contextual

coherence. To further enhance edge detection performance,

the model incorporates a complementary operation using the

Prewitt operator. The Prewitt operator is applied to the input

image to compute a basic edge map based on intensity

gradients. This edge map captures fundamental edge

information that might be missed by learned representations,

particularly in regions where the model's predictions are

uncertain.

The final edge map is obtained by combining the GAT-

based edge map with the Prewitt edge map. This combination

is performed using weighted summation, where the weights

are hyperparameters that can be tuned to balance the

contributions of each method. By integrating traditional

image processing techniques with advanced neural network

outputs, the model leverages the strengths of both

approaches, improving robustness and accuracy.

The encoder part of the U-Net consists of several

convolutional blocks, each followed by a max-pooling layer,

progressively reducing the spatial dimensions of the feature

maps while increasing the number of channels.

The output of the encoder at the bottleneck layer is a

feature map 𝐹
 𝜖 ℝ𝐻𝑏.𝑊𝑏.𝐶𝑏, where Hb and Wb are the height

and width, and 𝐶𝑏 is the number of channels. The feature map

F is reshaped into a two-dimensional array𝐻
 𝜖 ℝ𝑁.𝐶𝑏, where

𝑁 = 𝐻𝑏 . 𝑊𝑏 is the total number of nodes. Each node vi has a

feature vector ℎ𝑖𝜖 ℝ𝐶𝑏. Multiple GAT layers are stacked to

capture higher-order relationships (8).

 ℎ′
𝑣 = {

𝐾
𝑘 = 1

𝜎(∑
1

|𝑁(𝑣)|𝑢∈𝑁(𝑣) 𝑊ℎ𝑢) (8)

where K is the number of attention heads.

ℎ′ is the updated feature of node i.

σ is an activation function (e.g., ELU).

αij is the attention coefficient between nodes i and j.

W is a learnable weight matrix.

N(i) is the set of neighboring nodes of node i.

Edge Prediction Layer outputs a probability map

indicating the likelihood of each pixel being an edge [9]. The

decoder part of the U-Net reconstructs the spatial dimensions

by up-sampling the feature maps and combining them with

the corresponding feature maps from the encoder via skip

connections. Transposed convolution method is used to up-

sample and increase the spatial dimensions. The feature maps

from the encoder are concatenated with the up-sampled

feature maps at each level, providing the decoder with high-

resolution features that aid in precise localization. The GAT-

enhanced feature maps are used to generate an edge map

𝐸𝐺𝐴𝑇 . The Prewitt operator is applied to the input image to

obtain 𝐸𝑃𝑟𝑒𝑤𝑖𝑡𝑡 , capturing basic edge information based on

intensity gradients. The final edge map is obtained by

combining the two edge maps. To enhance edge detection,

we combine the GAT output with the Prewitt operator as (9).

 𝐸𝐹𝑖𝑛𝑎𝑙 = 𝜆𝐺𝐴𝑇 . 𝐸𝐺𝐴𝑇 + 𝜆𝑃𝑟𝑒𝑤𝑖𝑡𝑡 . 𝐸𝑃𝑟𝑒𝑤𝑖𝑡𝑡 (9)

where 𝜆𝐺𝐴𝑇 and 𝜆𝑃𝑟𝑒𝑤𝑖𝑡𝑡 are weighting factors satisfying

𝜆𝐺𝐴𝑇 + 𝜆𝑃𝑟𝑒𝑤𝑖𝑡𝑡 = 1 . A combination of Binary Cross-

Entropy (BCE) loss and Dice loss is used to handle class

imbalance and improve edge detection performance as (10).

 𝐿 = 𝐿𝐵𝐶𝐸 (𝐸𝑓𝑖𝑛𝑎𝑙 , 𝐸𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ) + 𝛽𝐿𝑆𝑚𝑜𝑜𝑡ℎ(𝐸𝑓𝑖𝑛𝑎𝑙) (10)

where 𝐿𝐵𝐶𝐸 is the Binary Cross-Entropy loss, and 𝐿𝑆𝑚𝑜𝑜𝑡ℎ
encourages spatial smoothness.

IV. NOVEL ENCODER-DECODER STRUCTURE WITH U-NET

AND GNN INTEGRATION

In this section we highlight the novelties of the proposed
framework in detail. As previously indicated, the proposed
edge detection model introduces a novel integration of GATs
into the traditional U-Net architecture, forming an encoder-
decoder structure that leverages both convolutional and graph-
based operations. The encoder path of the U-Net captures
local spatial features through successive convolutional layers
and pooling operations, effectively reducing the spatial
dimensions while increasing the depth of feature

representations. This process extracts hierarchical features
that are essential for identifying edges at multiple scales [10].

The novelty lies in the incorporation of a GAT layer at the
bottleneck of the U-Net architecture, where the feature maps
have the lowest spatial resolution but richest feature
representations. By converting these feature maps into a graph
structure, each pixel (or group of pixels) becomes a node with
associated features, and edges are established based on spatial
adjacency or feature similarity. The GAT operates on this
graph to perform attention-based message passing, allowing
the model to capture complex, non-local relationships
between distant pixels that standard convolutional operations
might miss.

Another key innovation is the seamless fusion of the GAT-
enhanced features back into the decoder path of the U-Net.
After the GAT processes the graph and updates the node
features, these features are reshaped back into a grid format to
match the decoder's expected input. The decoder then
progressively up-samples these feature maps, using
transposed convolutions and skip connections from the
encoder layers. The skip connections ensure that fine-grained
lost spatial information during down-sampling is preserved,
while the GAT-enhanced features provide enriched contextual
information. This combination allows the decoder to
reconstruct high-resolution edge maps that are both precise
and contextually informed.

A. Customized U-Net Architecture

The model introduces a complementary operation by
integrating the output of the GAT-enhanced U-Net with the
traditional Prewitt operator. U-Net consists of two main parts.
First, the encoder path (Contracting Path) captures context by
progressively down-sampling the input image through
convolutional and pooling layers, extracting high-level
features. While the GAT captures complex patterns and non-
local interactions, the Prewitt operator provides a simple yet
effective method for detecting basic edge structures based on
intensity gradients. By combining the outputs of both
methods, the model benefits from the strengths of deep
learning and classical image processing techniques.

This hybrid approach improves robustness and accuracy in
edge detection, particularly in challenging scenarios with
noise, texture variations, or subtle edges that might be missed
by either method alone. The encoder comprises several
convolutional blocks, each consisting of two convolutional
layers with a small kernel size (e.g., 3×3), each followed by a
rectified linear unit (ReLU) activation. Also, a max-pooling
layer that reduces the spatial dimensions by a factor of 2. At
each down-sampling step, the number of feature channels is
doubled to capture more complex features. The bottleneck is
the deepest part of the network where the feature maps have
the smallest spatial dimensions but the highest number of
channels. This is where the GAT is integrated to enhance the

Fig. 1. Block diagram of the workflow and components of the architecture.

Input

Output

feature representations by capturing global context and
complex relationships between features.

The decoder path (Expanding Path) enables precise
localization by up-sampling the features and combining them
with corresponding features from the encoder via skip
connections. The decoder mirrors the encoder structure and
consists of an up-sampling step that increases the spatial
dimensions, often implemented using transposed
convolutions. Also, a concatenation with the corresponding
feature map from the encoder via skip connections.

There are two convolutional layers with ReLU activations
in which at each up-sampling step, the number of feature
channels is halved. Mathematically, the encoder applies a
series of convolutional operations as (11).

 𝐹𝑒𝑛𝑐
(𝑙+1)

= 𝜎(𝑊𝑒𝑛𝑐
(𝑙)

∗ 𝐹𝑒𝑛𝑐
(𝑙)

+ 𝑏𝑒𝑛𝑐
(𝑙)

) (11)

where 𝐹𝑒𝑛𝑐
(𝑙+1)

is the feature map at layer l, and * denotes

convolution𝑊𝑒𝑛𝑐
(𝑙)

 and 𝑏𝑒𝑛𝑐
(𝑙)

 are the weights and biases, and σ is
an activation function.

B. Integration of GAT into the U-Net Bottleneck

To leverage the advantages of GATs, we integrate a GAT

layer into the bottleneck of the U-Net architecture, where the

feature maps are at their lowest spatial resolution but richest

in features. The bottleneck layer contains rich feature

representations but lacks spatial resolution. Incorporating

GAT at this stage allows the model to capture complex

dependencies and relationships between features, which is

particularly beneficial for edge detection where contextual

information is crucial. In order to convert and map the features

to Graph network, the bottleneck feature-map

𝐹𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘
 𝜖 ℝ𝐻𝑏.𝑊𝑏.𝐶𝑏is reshaped into a graph representation.

Each spatial location (i,j) corresponds to a node 𝑣𝑖𝑗
with

feature vector ℎ𝑦𝑖
 = 𝐹𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘

 𝜖 ℝ𝐶𝑏 . Edges are established

based on spatial adjacency (e.g., connecting each node to its

4 or 8 neighbors).

C. Decoder with Skip connections

The decoder reconstructs the high-resolution edge map by
up-sampling the feature maps and combining them with
corresponding encoder feature maps through skip connections
as (12).

𝐹𝑑𝑛𝑐
(𝑙)

= 𝜎(𝑊𝑑𝑛𝑐
(𝑙+1)

∗ (𝑈𝑝𝑠𝑎𝑚𝑙𝑒(𝐹𝑒𝑛𝑐
(𝑙+1)

) ⊕ 𝐹𝑒𝑛𝑐
(𝑙)

) + 𝑏𝑑𝑛𝑐
(𝑙)

)

(12)

where ⊕ denotes concatenation, and Upsample is an up-
sampling operation (e.g., transposed convolution). The
following steps summarize the algorithm:

Algorithm Summary

Input: Image I∈RH×W×C.

Encoder: Extract feature maps {𝐹𝑒𝑛𝑐
(𝑙)

} through convolutional

layers.
Bottleneck:

a. Convert Feature Map to Graph: Nodes V, edges E.

b. Apply GAT Layer: Update node features h′v.

c. Convert Graph Back to Feature Map: FGAT.

Decoder: Reconstruct feature maps {Fdec
(l)} using up-

sampling and skip connections.

Edge Prediction:

a. Decoder Output: Edge map EGATE.

b. Compute Prewitt Edge Map: EPrewitt .

c. Combine Edge Maps:

𝐸𝐹𝑖𝑛𝑎𝑙 = 𝜆𝐺𝐴𝑇 . 𝐸𝐺𝐴𝑇 + 𝜆𝑃𝑟𝑒𝑤𝑖𝑡𝑡 . 𝐸𝑃𝑟𝑒𝑤𝑖𝑡𝑡

The final result is a robust edge detection framework that

significantly outperforms traditional methods and standard

GNN-based models as shown in the next section, showcasing

the effectiveness of integrating GATs within an encoder-

decoder architecture for computer vision tasks.

V. EXPERIMENTAL RESULTS

The experimental evaluation of the proposed model

focuses on demonstrating its effectiveness in edge detection

tasks compared to traditional methods and standard GNN-

based models. The experiments are designed to assess the

model's performance quantitatively and qualitatively,

highlighting the advantages conferred by the integration of

GAT within the U-Net architecture and the complementary

use of the Prewitt operator.

The BSDS500 dataset is employed for training and testing

the model. This dataset is a standard benchmark for edge

detection, containing a diverse collection of natural images

with manually annotated ground truth edges. The variety in

image content and complexity provides a rigorous testbed for

evaluating edge detection algorithms. The proposed method

is evaluated using the widely accepted ODS, OIS, and AP

metrics. It is compared against several competing methods,

including [1], [2], [3], [4], [5], [6], and [7] to demonstrate its

effectiveness and robustness in edge detection tasks as

depicted in table 1.

Table 1. Comparison with other methods on BSDS500

image bank.

Methods ODS OIS AP

[1] 0.739 0.803 0.773

[2] 0.741 0.769 0.799

[3] 0.746 0.770 0.820

[4] 0.757 0.776 0.800

[5] 0.767 0.788 0.795

[6] 0.758 0.771 0.673

[7] 0.730 0.778 0.747

Proposed GCN-based 0.747 0.791 0.788

Proposed GAT-based 0.771 0.809 0.827

These quantitative gains reflect the model's ability to

accurately detect edges while minimizing false positives and

negatives. Visual inspections of the edge maps produced by

the different models reveal that the proposed model generates

more precise and continuous edges. The GAT-based model

captures fine details and complex edge structures that are

often missed by traditional methods and standard GNNs.

Edges in regions with subtle intensity variations or intricate

textures are detected more reliably. The U-Net structure

further complements this approach by preserving spatial

details through skip connections, allowing the decoder to

reconstruct precise edge maps that combine both global

context and fine-grained information. Fig 2,3 and 4 show

how, when applied to different types of images, the GAT-

based method particularly excels with colored images

containing high-frequency components, such as the Baboon

image. These images present a challenge due to their intricate

textures and rapid intensity variations. The attention

mechanism in GAT allows the model to effectively discern

significant edges amidst the high-frequency noise by

prioritizing important features and suppressing less relevant

information.

This results in a more pronounced improvement over the

GCN-based method for the Baboon image compared to

grayscale images like Lena and Boat, which have lower

frequency components and simpler structures. The GCN-

based approach, lacking the adaptive focus provided by

attention, struggles to capture the detailed edges in such

complex images, leading to less accurate edge detection.

Compared to other competing methods, the proposed

GAT-based approach demonstrates enhanced capabilities in

handling both colored and grayscale images with varying

degrees of complexity. Traditional edge detection algorithms,

such as Sobel, Prewitt, or even more advanced methods like

Canny, rely on fixed operators and are limited in their ability

to adapt to the diverse features present in different images. In

contrast, the proposed GAT-based method learns to

adaptively weight features based on their importance for edge

detection, resulting in more accurate and robust edge maps.

Fig. 2. Input image(top), estimated ground truth, and

detected output image of ‘Baboon’ (GCN on left, GAT on

right).

Fig. 3. Input image(top), estimated ground truth, and

detected output image of ‘Boat’ (GCN on left, GAT on

right).

Fig. 4. Input image(top), estimated ground truth, and

detected output image of ‘Lena’ (GCN on left, GAT on

right).

The adaptability, combined with the strengths of the U-

Net architecture and the attention mechanism, allows the

proposed method to outperform traditional techniques and

provides a significant advancement in the field of edge

detection.

VI. HARDWARE ACCELERATION

The algorithm research presented in the previous sections

have illustrated the benefits of graph neural networks. These

networks are, on the other hand, very compute-intensive as

previously shown in [12]. Fig. 1 shows how the algorithm

uses Pytorch Geometric layers GATConv and GCNConv. To

tackle the compute complexity we have been working on a

hardware accelerator integrated in the Pytorch framework

that can be used to map these layers transparently to hardware

execution using a PYNQ overlay [12]. A Pytorch hardware

library exports hardware layers GATConvPYNQ and

GCNConvPYNQ and takes care of the data preparation,

kernel execution and quantization/dequantization. Fig. 5

depicts a block diagram overview of the accelerator that

includes engines for graph aggregation, combination and

attention linked via a dataflow paradigm that keeps high

hardware utilization and minimizes external memory

accesses.

Combination Engine
(FEATURES

@
WEIGHTS)

Aggregation Engine
(ADJ @ X)

 X

H i

W

 X

H (i-1)

READ/QUANTIZE
SPARSE FEATURES

READ/QUANTIZE
DENSE WEIGHTS

PIPO

ADJ

32

32

WP

Val RowPtr

CoIndex

32 32

RNNZ FP32

IP

32 32

RNNZ

AP

32

Row A/ non-

zero values

...

col_index

rowPtr

B block width (e.g. B values = 1...128)

B(0,0)[wp..0] B(0,bw -1)[wp..0]

B(rs-1,0)[wp..0] B(rs-1,bw-1)[wp..0]

ACC
All

rows

done?

...

...

...

CU 0 CU bw-1

...

...

B rows

Result FIFO

PE 0

Scaling

X

Other

PEs

SPMM/GEMM

Stage 1

(READ)

Stage 2

(COMPUTE)

Stage 3

(SCALE)

WP

...

readinde

x /

readval

readPtr

...

Read/

Quantize

Colindex

Val

RowPtr

32

32

...

...
...

...

...

SF

AP/FP

Select logic ...

Address Weight WeightAddress

Select logic

ACC
All

rows

done?

Result FIFO

PE bw-1

WP
AP/FP

TH

IP IP

32

Val

RowPtr

32

32

CoIndex

READ/QUANTIZE
SPARSE ADJACENCY DEQUANTIZE/WRITE

O
IP

SCALE

 X

Fig. 5. GNN layer overlay architecture.

We target a Zynq Ultrascale MPSOC device in which the

processor runs standard Pytorch/Python code offloading the

layer execution to the programmable logic when needed. The

hardware is highly configurable and scalable with multiple

options possible such as quantization level, the number of

hardware threads and the number of computation units per

thread. Table 2 shows the complexity of several

configurations with 8-bit precision, 4 hardware threads for

aggregation and combination and 8,16 or 32 compute units

per thread. Each compute unit takes care of processing one

column of weight data independently and each tensor

computes a fraction of the graph independently.

Table 2. Hardware complexity of 8-bit GNN accelerator.

Configuration LUTs(K) FF(K)
BRAM-

18Ks
DSP48Es

(4t4t8c) 58 57 160 191

(4t4t16c) 70 68 256 351

(4t4t32c) 93 85 448 671

Initial results obtained with GCNConvPYNQ layers are

shown in Fig 6 for two graph layers for different levels of

graph sparsity at 99.82%, 99%, 90% sparse. The acceleration

factor compares execution time with running the layers in

software using the 4-core ARM Cortex A52 processor with

optimized SIMD/Neon instructions. We can see that the more

parallel configuration with 64 compute units is significantly

faster than the narrow 32 unit as the sparsity of graph is

reduced. This shows that the computation intensity of the

layer increases and the additional hardware can be utilized

better.

Fig. 6. Comparison of results between two configurations.

Capability of hardware implementation in short word

lengths and coefficient lengths is crucial for systems with

high computational intensity, offering faster processing and

lower latency compared to software-based approaches. It

enhances energy efficiency, making it ideal for power-

constrained environments. Additionally, it ensures real-time

performance and scalability for complex applications [13].

This proposed method stands out due to its exceptional

hardware friendliness, which makes it particularly suitable

for FPGA acceleration. This characteristic allows for

efficient implementation on hardware platforms, ensuring

high performance and low power consumption. Additionally,

the method's high pruning capability enables significant

model optimization by reducing unnecessary complexity

without sacrificing accuracy. These features collectively

enhance the adaptability and efficiency of the method,

making it an ideal choice for hardware-based machine

learning applications and real-time processing tasks.

VII. CONCLUSION

In this paper, we have presented a novel edge detection
framework that integrates Graph Neural Networks within a U-
Net architecture, leveraging the strengths of both
convolutional neural networks and graph-based methods. The
theoretical advantages of GATs, such as adaptive neighbor
weighting and enhanced expressiveness, were analyzed and
demonstrated to be particularly beneficial for edge detection
tasks. By combining the GAT-enhanced features with the
traditional Prewitt operator, the model capitalizes on both
learned representations and classical image processing
techniques, achieving superior performance compared to
baseline methods.

The experimental results validated the effectiveness of the

proposed approach, showing significant improvements in

edge detection accuracy and robustness. Additionally, initial

evaluation of the potential for acceleration of the graph layers

in edge devices highlighted the model's practical viability,

enabling efficient computation and performance. The detailed

architectural design and implementation strategies outlined in

this work provide valuable insights for future research in

integrating advanced graph neural network techniques and

hardware acceleration for computer vision tasks. These

benefits highlight the method's focus on adaptability and

performance for hardware-based implementations, aligning

with the paper's broader exploration of applying GNNs in

computer vision.

REFERENCES

[1] X. Ren and L. Bo, "Discriminatively trained sparse code gradients for
contour detection," in Proceedings of the Neural Information
Processing Systems (NIPS), 2012, pp. 5–6.

[2] P. Isola, D. Zoran, D. Krishnan, and E. H. Adelson, "Crisp boundary
detection using pointwise mutual information," in Proceedings of the
European Conference on Computer Vision (ECCV), 2014, p. 6.

[3] S. Hallman and C. C. Fowlkes, "Oriented edge forests for boundary
detection," in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2015, pp. 1732–1740.

[4] W. Shen, X. Wang, Y. Wang, X. Bai, and Z. Zhang, "Deep-contour: A
deep convolutional feature learned by positive-sharing loss for contour
detection," in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2015, pp. 1–2, 6.

[5] B. Bertasius, J. Shi, and L. Torresani, "High-for-low and low-for-high:
Efficient boundary detection from deep object features and its
applications to high-level vision," in Proceedings of the IEEE
International Conference on Computer Vision (ICCV), 2015, pp. 1–2,
6.

[6] K. Li, Y. Tian, B. Wang, Z. Qi, and Q. Wang, "Bi-Directional Pyramid
Network for Edge Detection," Electronics, vol. 10, no. 3, p. 329, Feb.
2021. https://doi.org/10.3390/electronics10030329

[7] Z. Yin, Z. Wang, C. Fan, X. Wang, and T. Qiu, "Edge Detection via
Fusion Difference Convolution," Sensors, vol. 23, no. 15, p. 6883, Aug.
2023. https://doi.org/10.3390/s23156883

[8] D. Z. and S. T., "Edge detection techniques—An overview," Pattern
Recognition and Image Analysis: Advances in Mathematical Theory
and Applications, vol. 8, no. 4, pp. 537–559, 1998.

[9] T. Lindberg, "Edge detection and ridge detection with automatic scale
selection," International Journal of Computer Vision, vol. 30, no. 2,
pp. 117–154.

[10] H. Shu and G. P. Qiu, "More precise edge detection," arXiv preprint,
arXiv:2407.19992v3, Oct. 2024. Accessed: Nov. 2024. [Online].
Available: https://arxiv.org/abs/2407.19992.

[11] D. A. Mely, J. Kim, M. McGill, Y. Guo, and T. Serre, "A systematic
comparison between visual cues for boundary detection," Vision
Research, vol. 120, pp. 93–107, 2016.

[12] J. L. Nunez-Yanez, "Accelerating Graph Neural Networks in Pytorch
with HLS and Deep Pipelined Dataflows," in Proceedings of the 2023
International Conference on Field-Programmable Technology
(ICFPT), 2023, pp. 1-8.

[13] Abdolvahab Khalili Sadaghiani and Behjat Forouzandeh, "High-
performance power spectral/bispectral estimator for biomedical signal
processing applications using novel memory-based FFT processor,"
Integration, vol. 99, p. 102241, Nov. 2024.
https://doi.org/10.1016/j.vlsi.2024.102241

https://arxiv.org/abs/2407.19992

