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Abstract— Edge detection is a fundamental task in computer 

vision, crucial for object recognition, segmentation, and scene 

understanding. Traditional methods often fail to capture 

complex edge structures due to their inability to model intricate 

relationships between pixels. Graph Neural Networks (GNNs), 

particularly Graph Attention Networks (GATs), have shown 

promise in addressing these limitations by leveraging graph 

structures to model pixel relationships. This paper explores the 

applicability of Graph Attention Networks in edge detection, 

highlighting their advantages over ordinary Graph 

convolutional Networks (GCNs) through rigorous mathematical 

reasoning. We integrate GATs into an edge detection 

framework based on an encoder-decoder structure with U-Net 

architecture and provide detailed theoretical and 

implementation insights. Furthermore, we discuss the hardware 

acceleration of GCNs and GATs with a reconfigurable dataflow 

architecture integrated in the Pytorch framework. The 

experimental results demonstrate the superior performance of 

GAT-based edge detection and the potential acceleration 

possible on reconfigurable edge platforms with limited 

resources. The key advantage of our proposed method is its 

hardware-friendly design, making it highly suitable for FPGA 

acceleration while also enabling efficient optimization through 

pruning of the network.  

Keywords—edge detection, GNN, Graph Attention Networks, 

encoder-decoder structure, U-Net 

I. INTRODUCTION 

Edge detection is a critical step in many computer vision 
applications, serving as the foundation for tasks such as object 
recognition, image segmentation, and scene interpretation. 
Traditional edge detection algorithms, like Sobel, Prewitt, and 
Canny operators, rely on gradient calculations and 
thresholding techniques. While effective in simple scenarios, 
these methods often struggle with complex images containing 
noise, texture variations, and intricate edge patterns. 

GNNs have emerged as a powerful tool for modeling 
relational data by representing input data as graphs and 
learning representations that capture both local and global 
structures. GATs, a variant of GNNs, introduce an attention 
mechanism that assigns learnable weights to the edges in the 
graph, allowing the model to focus on the most relevant 
neighboring nodes during message passing. 

In this paper, we focus on the following contributions: 
1. Theoretical Advantages of GATs over ordinary GCNs 

in Edge Detection: We provide an in-depth mathematical 
analysis of how GATs improve edge detection 
performance compared to traditional GCNs. 

2. Implementation Details: We present a detailed 
description of integrating GATs into an edge detection 
framework, including architectural design and training 
procedures. 

3. Hardware Acceleration: We discuss how a PYNQ 
overlay can be used to accelerate the computation required 

for GCNs/GATs and hardware-aware quantization 
enhances computational efficiency. 

Recent advancements in contour detection have introduced a 
variety of novel approaches, each addressing specific 
challenges. Ren et al. proposed Sparse Code Gradients (SCG), 
leveraging sparse coding for improved accuracy but with high 
computational demands [1]. Isola et al. introduced a pointwise 
mutual information-based affinity measure for crisp boundary 
detection, achieving pixel-level precision but with sensitivity 
to noise [2]. Hallman et al. utilized random forests to model 
edge orientation, offering interpretability and efficiency, 
though limited by training data [3]. Shen et al. employed deep 
convolutional networks with a positive-sharing loss function, 
capturing semantic features but requiring extensive resources 
[4]. Bertasius et al. combined multi-level features for 
boundary detection, enhancing performance but with design 
complexity [5]. Together, these works highlight diverse 
strategies to improve contour detection while presenting 
trade-offs in computational efficiency, generalizability, and 
implementation complexity. In contrast, our method combines 
the strengths of deep learning with adaptive edge refinement, 
enabling better generalization and computational efficiency 
across diverse datasets. 

The method proposed in [6] excels in capturing multi-scale 
features, ensuring robust and accurate edge detection under 
various conditions. However, its high model complexity can 
result in increased computational costs, limiting its 
applicability in real-time or resource-constrained systems. On 
the other hand, [7] enhances precision and reduces false 
positives, particularly in complex scenes, by leveraging 
innovative fusion difference convolution techniques. Despite 
its accuracy, this method may struggle with high 
computational demands and scalability for large datasets. 
Both the approaches in [6] and [7] aim to balance trade-offs 
between performance and computational efficiency, 
depending on the application requirements. 

The rest of the paper is organized as follows. Section Ⅱ 
gives a background and introductory information about 
important concepts used in this work. Section Ⅲ explains the 
GAT mechanism and its function. Section Ⅳ explains the 
algorithmic aspects of the work. Section V presents the 
experimental results of the algorithm. Section ⅤI introduces 
initial results of our efforts towards hardware acceleration. 
Finally, section VII presents the conclusions and future work. 

II. BACKGROUND 

A. Edge Detection 

Edge detection aims to identify points in an image where 
the intensity changes sharply, indicating boundaries of objects 
or textures. Mathematically, edges correspond to 
discontinuities in the image intensity function I(x,y). 
Traditional methods compute the gradient magnitude and 
direction using convolutional kernels, such as (1) and (2).  



• Prewitt Operator: 

 𝐺𝑥 = [
−1 0 1
−1 0 1
−1 0 1

] ∗ 𝐼,     𝐺𝑦 = [
1 1 1
0 0 0

−1 −1 −1
] ∗ 𝐼    (1) 

• Gradient Magnitude: 

                   𝐺 = √𝐺𝑥
2 + 𝐺𝑦

2                                  (2) 

These methods are limited by their local nature and fixed 

kernels, which cannot adapt to complex patterns. 

B. Graph Convolutional Network (GCN)  

GNNs generalize neural networks to graph-structured data. A 

graph 𝐺 = (𝑉, 𝐸)consists of nodes V and edges E. Each node 

v∈V has a feature vector hv. The standard GNN updates node 

features through message passing as (3).  

                          𝑚𝑢𝑣 = 𝑀(ℎ𝑢 , ℎ𝑣 , 𝑒𝑢𝑣)                              (3) 

where 𝑒𝑢𝑣 is the edge feature, and M is a message function. 

Aggregation of the neighboring nodes is as follows in (4). 

                                  𝑎𝑣 = ∑ 𝑚𝑢𝑣𝑢∈𝑁(𝑣)                               (4) 

where N(v) denotes the neighbors of node v. Later nodes 

ought to be updated as follows in (5). 

                                        ℎ′𝑣 = 𝑈(ℎ𝑣 , 𝑎𝑣)                           (5) 

where U is an update function. Two main Limitations of 

GNN are as follows. 

• Uniform Treatment of Neighbors: All neighbors 

contribute equally, which may not capture the importance 

of specific nodes. 

• Over-Smoothing: Repeated aggregations can make node 

features indistinguishable. 

C. Graph Attention Network (GAT) 

GATs address these limitations by introducing an attention 

mechanism that assigns different weights to neighbor 

contributions. Attention coefficient computation is defined as 

𝑒𝑢𝑣 = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝑙𝑢(𝑎𝑇[𝑊ℎ𝑢 ∥ 𝑊ℎ𝑣]), 

Where W is a weight matrix, a is an attention vector, and ∥ 

denotes concatenation. Normalization is also an important 

step that needs to be taken into account (6). 

                          𝛼𝑢𝑣 =
exp (𝑒𝑢𝑣)

∑ exp (𝑒𝑢𝑣)𝑘∈𝑁(𝑣)
                          (6) 

Lastly, feature Update rewrites the values as (7). 

                           ℎ′
𝑣 = 𝜎(∑ 𝛼𝑢𝑣𝑊ℎ𝑢𝑢𝜖𝑁(𝑣) )                      (7) 

where 𝜎 is an activation function. The attention coefficient 

computed in (6) for each neighbor assigns a degree of 

importance that can emphasize strong, informative edges 

while downplaying irrelevant or weak signals. For edge 

detection, this capacity to differentially weight each node’s 

contribution based on similarity is essential, as it helps in 

identifying true boundaries while suppressing noise and 

texture variations that often cause false positives in traditional 

methods. 

As for enhanced expressiveness, GATs are able to model 

complex relationships and capture high-frequency 

components (edges) more effectively. High-frequency 

components correspond to rapid changes in node features 

(edges) and they are preserved by GATs by assigning lower 

weights to dissimilar neighbors, thus retaining edge 

information. Also, the attention mechanism prevents over-

smoothing by limiting the aggregation of irrelevant 

information [8]. 

III. ATTENTION-BASED EDGE DETECTION FRAMEWORK 

In this section, we provide an overview of the proposed 

edge detection framework, which integrates GAT into an 

encoder-decoder architecture based on U-Net. U-Net is a 

convolutional neural network architecture designed primarily 

for image segmentation tasks. The block diagram of the 

workflow and components of the architecture is depicted in 

Fig. 1. The implementation is designed to leverage the 

strengths of both convolutional neural networks and graph 

neural networks to enhance edge detection performance. 

The first step involves constructing a graph representation 

from the input image or feature maps extracted by the 

encoder. Each pixel or a group of pixels (super-pixels) in the 

feature map is considered a node in the graph. The node 

features are derived from the corresponding pixel's feature 

vector obtained from the encoder's output at the bottleneck 

layer. Edges are established between nodes based on spatial 

adjacency or feature similarity. For spatial adjacency, we can 

use a 4-connected or 8-connected neighborhood, where each 

node is connected to its immediate neighbors. Alternatively, 

feature similarity can be used to connect nodes with similar 

feature representations, which can help in capturing long-

range dependencies. The graph G= (V, E) is thus defined, 

where V is the set of nodes and E is the set of edges 

connecting these nodes. 

After the GAT layer updates the node features, the graph 

is transformed back into a grid structure to be processed by 

the decoder. The decoder consists of up-sampling operations, 

typically implemented using transposed convolutions, which 

increase the spatial dimensions of the feature maps. At each 

up-sampling stage, skip connections from the encoder are 

utilized, concatenating high-resolution features from the 

encoder with the up-sampled features in the decoder. This 

mechanism preserves spatial details that may have been lost 

during down-sampling and enriches the decoder's inputs with 

multi-scale information. 

The decoder progressively processes the feature maps, 

integrating the GAT-enhanced representations with spatially 

detailed encoder features. This combination enables the 

model to reconstruct high-resolution edge maps that 

accurately localize edges while maintaining contextual 

coherence. To further enhance edge detection performance, 

the model incorporates a complementary operation using the 

Prewitt operator. The Prewitt operator is applied to the input 

image to compute a basic edge map based on intensity 

gradients. This edge map captures fundamental edge 

information that might be missed by learned representations, 

particularly in regions where the model's predictions are 

uncertain. 

The final edge map is obtained by combining the GAT-

based edge map with the Prewitt edge map. This combination 

is performed using weighted summation, where the weights 

are hyperparameters that can be tuned to balance the 

contributions of each method. By integrating traditional 

image processing techniques with advanced neural network 

outputs, the model leverages the strengths of both 

approaches, improving robustness and accuracy. 

The encoder part of the U-Net consists of several 

convolutional blocks, each followed by a max-pooling layer, 

progressively reducing the spatial dimensions of the feature 

maps while increasing the number of channels. 



The output of the encoder at the bottleneck layer is a 

feature map 𝐹 
 𝜖 ℝ𝐻𝑏.𝑊𝑏.𝐶𝑏, where Hb and Wb  are the height 

and width, and 𝐶𝑏 is the number of channels. The feature map 

F is reshaped into a two-dimensional array𝐻 
 𝜖 ℝ𝑁.𝐶𝑏, where 

𝑁 = 𝐻𝑏 . 𝑊𝑏  is the total number of nodes. Each node vi has a 

feature vector ℎ𝑖𝜖 ℝ𝐶𝑏. Multiple GAT layers are stacked to 

capture higher-order relationships (8).  

             ℎ′
𝑣 = {

𝐾
𝑘 = 1

𝜎(∑
1

|𝑁(𝑣)|𝑢∈𝑁(𝑣) 𝑊ℎ𝑢)                     (8) 

where K is the number of attention heads. 

ℎ′ is the updated feature of node i. 

σ is an activation function (e.g., ELU). 

αij  is the attention coefficient between nodes i and j. 

W is a learnable weight matrix. 

N(i) is the set of neighboring nodes of node i. 

Edge Prediction Layer outputs a probability map 

indicating the likelihood of each pixel being an edge [9]. The 

decoder part of the U-Net reconstructs the spatial dimensions 

by up-sampling the feature maps and combining them with 

the corresponding feature maps from the encoder via skip 

connections. Transposed convolution method is used to up-

sample and increase the spatial dimensions. The feature maps 

from the encoder are concatenated with the up-sampled 

feature maps at each level, providing the decoder with high-

resolution features that aid in precise localization. The GAT-

enhanced feature maps are used to generate an edge map 

𝐸𝐺𝐴𝑇  . The Prewitt operator is applied to the input image to 

obtain 𝐸𝑃𝑟𝑒𝑤𝑖𝑡𝑡 , capturing basic edge information based on 

intensity gradients. The final edge map is obtained by 

combining the two edge maps. To enhance edge detection, 

we combine the GAT output with the Prewitt operator as (9). 

               𝐸𝐹𝑖𝑛𝑎𝑙 = 𝜆𝐺𝐴𝑇 . 𝐸𝐺𝐴𝑇 + 𝜆𝑃𝑟𝑒𝑤𝑖𝑡𝑡 . 𝐸𝑃𝑟𝑒𝑤𝑖𝑡𝑡              (9) 

where 𝜆𝐺𝐴𝑇  and 𝜆𝑃𝑟𝑒𝑤𝑖𝑡𝑡   are weighting factors satisfying  

𝜆𝐺𝐴𝑇 + 𝜆𝑃𝑟𝑒𝑤𝑖𝑡𝑡 = 1 . A combination of Binary Cross-

Entropy (BCE) loss and Dice loss is used to handle class 

imbalance and improve edge detection performance as (10). 

  𝐿 = 𝐿𝐵𝐶𝐸 (𝐸𝑓𝑖𝑛𝑎𝑙 , 𝐸𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ) + 𝛽𝐿𝑆𝑚𝑜𝑜𝑡ℎ(𝐸𝑓𝑖𝑛𝑎𝑙)      (10) 

where 𝐿𝐵𝐶𝐸  is the Binary Cross-Entropy loss, and 𝐿𝑆𝑚𝑜𝑜𝑡ℎ 
encourages spatial smoothness. 

IV. NOVEL ENCODER-DECODER STRUCTURE WITH U-NET 

AND GNN INTEGRATION 

In this section we highlight the novelties of the proposed 
framework in detail. As previously indicated, the proposed 
edge detection model introduces a novel integration of GATs 
into the traditional U-Net architecture, forming an encoder-
decoder structure that leverages both convolutional and graph-
based operations. The encoder path of the U-Net captures 
local spatial features through successive convolutional layers 
and pooling operations, effectively reducing the spatial 
dimensions while increasing the depth of feature 

representations. This process extracts hierarchical features 
that are essential for identifying edges at multiple scales [10]. 

The novelty lies in the incorporation of a GAT layer at the 
bottleneck of the U-Net architecture, where the feature maps 
have the lowest spatial resolution but richest feature 
representations. By converting these feature maps into a graph 
structure, each pixel (or group of pixels) becomes a node with 
associated features, and edges are established based on spatial 
adjacency or feature similarity. The GAT operates on this 
graph to perform attention-based message passing, allowing 
the model to capture complex, non-local relationships 
between distant pixels that standard convolutional operations 
might miss. 

Another key innovation is the seamless fusion of the GAT-
enhanced features back into the decoder path of the U-Net. 
After the GAT processes the graph and updates the node 
features, these features are reshaped back into a grid format to 
match the decoder's expected input. The decoder then 
progressively up-samples these feature maps, using 
transposed convolutions and skip connections from the 
encoder layers. The skip connections ensure that fine-grained 
lost spatial information during down-sampling is preserved, 
while the GAT-enhanced features provide enriched contextual 
information. This combination allows the decoder to 
reconstruct high-resolution edge maps that are both precise 
and contextually informed. 

A. Customized U-Net Architecture 

The model introduces a complementary operation by 
integrating the output of the GAT-enhanced U-Net with the 
traditional Prewitt operator. U-Net consists of two main parts. 
First, the encoder path (Contracting Path) captures context by 
progressively down-sampling the input image through 
convolutional and pooling layers, extracting high-level 
features. While the GAT captures complex patterns and non-
local interactions, the Prewitt operator provides a simple yet 
effective method for detecting basic edge structures based on 
intensity gradients. By combining the outputs of both 
methods, the model benefits from the strengths of deep 
learning and classical image processing techniques.  

This hybrid approach improves robustness and accuracy in 
edge detection, particularly in challenging scenarios with 
noise, texture variations, or subtle edges that might be missed 
by either method alone. The encoder comprises several 
convolutional blocks, each consisting of two convolutional 
layers with a small kernel size (e.g., 3×3), each followed by a 
rectified linear unit (ReLU) activation. Also, a max-pooling 
layer that reduces the spatial dimensions by a factor of 2. At 
each down-sampling step, the number of feature channels is 
doubled to capture more complex features. The bottleneck is 
the deepest part of the network where the feature maps have 
the smallest spatial dimensions but the highest number of 
channels. This is where the GAT is integrated to enhance the 

 
Fig. 1. Block diagram of the workflow and components of the architecture. 
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Output



feature representations by capturing global context and 
complex relationships between features. 

The decoder path (Expanding Path) enables precise 
localization by up-sampling the features and combining them 
with corresponding features from the encoder via skip 
connections. The decoder mirrors the encoder structure and 
consists of an up-sampling step that increases the spatial 
dimensions, often implemented using transposed 
convolutions. Also, a concatenation with the corresponding 
feature map from the encoder via skip connections. 

There are two convolutional layers with ReLU activations 
in which at each up-sampling step, the number of feature 
channels is halved. Mathematically, the encoder applies a 
series of convolutional operations as (11). 

                        𝐹𝑒𝑛𝑐
(𝑙+1)

= 𝜎(𝑊𝑒𝑛𝑐
(𝑙)

∗ 𝐹𝑒𝑛𝑐
(𝑙)

+ 𝑏𝑒𝑛𝑐
(𝑙)

)                (11) 

where 𝐹𝑒𝑛𝑐
(𝑙+1)

is the feature map at layer l, and * denotes 

convolution𝑊𝑒𝑛𝑐
(𝑙)

 and 𝑏𝑒𝑛𝑐
(𝑙)

 are the weights and biases, and σ is 
an activation function. 

B. Integration of GAT into the U-Net Bottleneck 

To leverage the advantages of GATs, we integrate a GAT 

layer into the bottleneck of the U-Net architecture, where the 

feature maps are at their lowest spatial resolution but richest 

in features. The bottleneck layer contains rich feature 

representations but lacks spatial resolution. Incorporating 

GAT at this stage allows the model to capture complex 

dependencies and relationships between features, which is 

particularly beneficial for edge detection where contextual 

information is crucial. In order to convert and map the features 

to Graph network, the bottleneck feature-map 

𝐹𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘
 𝜖 ℝ𝐻𝑏.𝑊𝑏.𝐶𝑏is reshaped into a graph representation. 

Each spatial location (i,j) corresponds to a node 𝑣𝑖𝑗  
with 

feature vector   ℎ𝑦𝑖
 = 𝐹𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘

 𝜖 ℝ𝐶𝑏 . Edges are established 

based on spatial adjacency (e.g., connecting each node to its 

4 or 8 neighbors). 

C. Decoder with Skip connections 

The decoder reconstructs the high-resolution edge map by 
up-sampling the feature maps and combining them with 
corresponding encoder feature maps through skip connections 
as (12). 

𝐹𝑑𝑛𝑐
(𝑙)

= 𝜎(𝑊𝑑𝑛𝑐
(𝑙+1)

∗ (𝑈𝑝𝑠𝑎𝑚𝑙𝑒(𝐹𝑒𝑛𝑐
(𝑙+1)

) ⊕ 𝐹𝑒𝑛𝑐
(𝑙)

) + 𝑏𝑑𝑛𝑐
(𝑙)

) 

(12) 

where ⊕  denotes concatenation, and Upsample is an up-
sampling operation (e.g., transposed convolution). The 
following steps summarize the algorithm: 

Algorithm Summary 

 
Input: Image I∈RH×W×C. 

Encoder: Extract feature maps {𝐹𝑒𝑛𝑐
(𝑙)

} through convolutional 

layers. 
Bottleneck: 

a.  Convert Feature Map to Graph: Nodes V, edges E. 

b. Apply GAT Layer: Update node features h′v. 

c. Convert Graph Back to Feature Map: FGAT. 

Decoder: Reconstruct feature maps {Fdec
(l)} using up-

sampling and skip connections. 

Edge Prediction: 

a. Decoder Output: Edge map EGATE. 

b. Compute Prewitt Edge Map: EPrewitt . 

c. Combine Edge Maps:  

𝐸𝐹𝑖𝑛𝑎𝑙 = 𝜆𝐺𝐴𝑇 . 𝐸𝐺𝐴𝑇 + 𝜆𝑃𝑟𝑒𝑤𝑖𝑡𝑡 . 𝐸𝑃𝑟𝑒𝑤𝑖𝑡𝑡 

 

The final result is a robust edge detection framework that 

significantly outperforms traditional methods and standard 

GNN-based models as shown in the next section, showcasing 

the effectiveness of integrating GATs within an encoder-

decoder architecture for computer vision tasks. 

V. EXPERIMENTAL RESULTS 

The experimental evaluation of the proposed model 

focuses on demonstrating its effectiveness in edge detection 

tasks compared to traditional methods and standard GNN-

based models. The experiments are designed to assess the 

model's performance quantitatively and qualitatively, 

highlighting the advantages conferred by the integration of 

GAT within the U-Net architecture and the complementary 

use of the Prewitt operator. 

The BSDS500 dataset is employed for training and testing 

the model. This dataset is a standard benchmark for edge 

detection, containing a diverse collection of natural images 

with manually annotated ground truth edges. The variety in 

image content and complexity provides a rigorous testbed for 

evaluating edge detection algorithms. The proposed method 

is evaluated using the widely accepted ODS, OIS, and AP 

metrics. It is compared against several competing methods, 

including [1], [2], [3], [4], [5], [6], and [7] to demonstrate its 

effectiveness and robustness in edge detection tasks as 

depicted in table 1. 

Table 1. Comparison with other methods on BSDS500 

image bank. 

Methods ODS OIS AP 

[1] 0.739 0.803 0.773 

[2] 0.741 0.769 0.799 

[3] 0.746 0.770 0.820 

[4] 0.757 0.776 0.800 

[5] 0.767 0.788 0.795 

[6] 0.758  0.771  0.673 

[7] 0.730 0.778 0.747 

Proposed GCN-based 0.747 0.791 0.788 

Proposed GAT-based 0.771 0.809 0.827 

 

These quantitative gains reflect the model's ability to 

accurately detect edges while minimizing false positives and 

negatives. Visual inspections of the edge maps produced by 

the different models reveal that the proposed model generates 

more precise and continuous edges. The GAT-based model 

captures fine details and complex edge structures that are 

often missed by traditional methods and standard GNNs. 

Edges in regions with subtle intensity variations or intricate 

textures are detected more reliably. The U-Net structure 

further complements this approach by preserving spatial 

details through skip connections, allowing the decoder to 

reconstruct precise edge maps that combine both global 

context and fine-grained information. Fig 2,3 and 4 show 



how, when applied to different types of images, the GAT-

based method particularly excels with colored images 

containing high-frequency components, such as the Baboon 

image. These images present a challenge due to their intricate 

textures and rapid intensity variations. The attention 

mechanism in GAT allows the model to effectively discern 

significant edges amidst the high-frequency noise by 

prioritizing important features and suppressing less relevant 

information.  

This results in a more pronounced improvement over the 

GCN-based method for the Baboon image compared to 

grayscale images like Lena and Boat, which have lower 

frequency components and simpler structures. The GCN-

based approach, lacking the adaptive focus provided by 

attention, struggles to capture the detailed edges in such 

complex images, leading to less accurate edge detection. 

Compared to other competing methods, the proposed 

GAT-based approach demonstrates enhanced capabilities in 

handling both colored and grayscale images with varying 

degrees of complexity. Traditional edge detection algorithms, 

such as Sobel, Prewitt, or even more advanced methods like 

Canny, rely on fixed operators and are limited in their ability 

to adapt to the diverse features present in different images. In 

contrast, the proposed GAT-based method learns to 

adaptively weight features based on their importance for edge 

detection, resulting in more accurate and robust edge maps.  

 

 

   

  
Fig. 2. Input image(top), estimated ground truth, and 

detected output image of ‘Baboon’ (GCN on left, GAT on 

right). 

 

      

 
Fig. 3. Input image(top), estimated ground truth, and 

detected output image of ‘Boat’ (GCN on left, GAT on 

right). 

 

 

 

 



Fig. 4. Input image(top), estimated ground truth, and 

detected output image of ‘Lena’ (GCN on left, GAT on 

right). 

 

The adaptability, combined with the strengths of the U-

Net architecture and the attention mechanism, allows the 

proposed method to outperform traditional techniques and 

provides a significant advancement in the field of edge 

detection. 

VI. HARDWARE ACCELERATION 

The algorithm research presented in the previous sections 

have illustrated the benefits of graph neural networks. These 

networks are, on the other hand, very compute-intensive as 

previously shown in [12].  Fig. 1 shows how the algorithm 

uses Pytorch Geometric layers GATConv and GCNConv. To 

tackle the compute complexity we have been working on a 

hardware accelerator integrated in the Pytorch framework 

that can be used to map these layers transparently to hardware 

execution using a PYNQ overlay [12]. A Pytorch hardware 

library exports hardware layers GATConvPYNQ and 

GCNConvPYNQ and takes care of the data preparation, 

kernel execution and quantization/dequantization. Fig. 5 

depicts a block diagram overview of the accelerator that 

includes engines for graph aggregation, combination and 

attention linked via a dataflow paradigm that keeps high 

hardware utilization and minimizes external memory 

accesses. 
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Fig. 5. GNN layer overlay architecture. 

We target a Zynq Ultrascale MPSOC device in which the 

processor runs standard Pytorch/Python code offloading the 

layer execution to the programmable logic when needed. The 

hardware is highly configurable and scalable with multiple 

options possible such as quantization level, the number of 

hardware threads and the number of computation units per 

thread. Table 2 shows the complexity of several 

configurations with 8-bit precision, 4 hardware threads for 

aggregation and combination and 8,16 or 32 compute units 

per thread. Each compute unit takes care of processing one 

column of weight data independently and each tensor 

computes a fraction of the graph independently. 

 

Table 2. Hardware complexity of 8-bit GNN accelerator. 

Configuration LUTs(K) FF(K) 
BRAM-

18Ks 
DSP48Es 

(4t4t8c) 58 57 160 191 

(4t4t16c) 70 68 256 351 

(4t4t32c) 93 85 448 671 

 

Initial results obtained with GCNConvPYNQ layers are 

shown in Fig 6 for two graph layers for different levels of 

graph sparsity at 99.82%, 99%, 90% sparse. The acceleration 

factor compares execution time with running the layers in 

software using the 4-core ARM Cortex A52 processor with 

optimized SIMD/Neon instructions. We can see that the more 

parallel configuration with 64 compute units is significantly 

faster than the narrow 32 unit as the sparsity of graph is 

reduced. This shows that the computation intensity of the 

layer increases and the additional hardware can be utilized 

better.   

  
Fig. 6. Comparison of results between two configurations.  

 

Capability of hardware implementation in short word 

lengths and coefficient lengths is crucial for systems with 

high computational intensity, offering faster processing and 

lower latency compared to software-based approaches. It 

enhances energy efficiency, making it ideal for power-

constrained environments. Additionally, it ensures real-time 

performance and scalability for complex applications [13]. 

This proposed method stands out due to its exceptional 

hardware friendliness, which makes it particularly suitable 

for FPGA acceleration. This characteristic allows for 

efficient implementation on hardware platforms, ensuring 

high performance and low power consumption. Additionally, 

the method's high pruning capability enables significant 

model optimization by reducing unnecessary complexity 

without sacrificing accuracy. These features collectively 

enhance the adaptability and efficiency of the method, 

making it an ideal choice for hardware-based machine 

learning applications and real-time processing tasks. 

VII. CONCLUSION 

In this paper, we have presented a novel edge detection 
framework that integrates Graph Neural Networks within a U-
Net architecture, leveraging the strengths of both 
convolutional neural networks and graph-based methods. The 
theoretical advantages of GATs, such as adaptive neighbor 
weighting and enhanced expressiveness, were analyzed and 
demonstrated to be particularly beneficial for edge detection 
tasks. By combining the GAT-enhanced features with the 
traditional Prewitt operator, the model capitalizes on both 
learned representations and classical image processing 
techniques, achieving superior performance compared to 
baseline methods.  

The experimental results validated the effectiveness of the 

proposed approach, showing significant improvements in 

edge detection accuracy and robustness. Additionally, initial 

evaluation of the potential for acceleration of the graph layers 



in edge devices highlighted the model's practical viability, 

enabling efficient computation and performance. The detailed 

architectural design and implementation strategies outlined in 

this work provide valuable insights for future research in 

integrating advanced graph neural network techniques and 

hardware acceleration for computer vision tasks. These 

benefits highlight the method's focus on adaptability and 

performance for hardware-based implementations, aligning 

with the paper's broader exploration of applying GNNs in 

computer vision. 
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