
Large-Scale Evolutionary Optimization of Artificial
Neural Networks Using Adaptive Mutations

Rune Krauss
DFKI

Bremen, Germany
rune.krauss@dfki.de

Jan Zielasko
DFKI

Bremen, Germany
jan.zielasko@dfki.de

Rolf Drechsler
University of Bremen / DFKI

Bremen, Germany
drechsler@uni-bremen.de

Abstract—Big data forms the basis for training and testing
models in Machine Learning (ML). The more data are available,
the more effectively and accurately ML models can process them.
Interest in ML has increased significantly as datasets are growing
rapidly due to technological progress. One of the most popular
ML models is an Artificial Neural Network (ANN), which is used
in numerous areas such as medicine and the video game industry
to analyze data and make decisions accordingly. In applications
such as automatic speech recognition, sufficient labeled samples
are provided to use supervised learning. Other applications such
as robot control define an overall target while the expected output
for a given input can be ambiguous, making supervised learning
approaches not applicable. Neuroevolution, a kind of artificial
intelligence that uses genetic algorithms for evolving ANNs, has
been created to address this type of problem. However, one
of the main issues is its mutation operator because it works
randomly in general. This makes the exploration for performant
ANNs more difficult or can easily disrupt feasible solutions. To
tackle the aforementioned issue, this paper proposes adaptive
mutations for ANN optimization. Experiments on several large-
scale benchmarks show that the proposed approach evolves
efficient ANNs and clearly outperforms related work.

Index Terms—Evolutionary optimization, adaptive mutation,
artificial neural networks, large-scale problems

I. INTRODUCTION

Big data refers to complex datasets that can be generated by
Internet of Things devices such as smartphones [1]. Collected
data are stored, i. a., in graph databases [2] that can be analyzed
by companies using frameworks such as Apache Spark™ [3]
to predict customer demand and develop new products [4].
Applications include, e. g., image recognition that infers visi-
ble objects based on several complex rules [5] and automatic
speech recognition where words are identified from a dictio-
nary on the basis of acoustic sequences [6].

Besides many advantages, big data also comes with nu-
merous challenges. In addition to the fact that the amount of
data doubles approximately every two years [7], unstructured
and semi-structured data types such as video and audio still
need to be curated [8]. While developments for their effective
storage are considerably advanced [9], big data technologies
for their efficient use are changing rapidly [10]. A promising
enhancement in data processing to enable flexible scalability
is Machine Learning (ML) [11].

This work was supported by the German Federal Ministry of Education
and Research within the projects DI-OCDCpro (contract no. 16ME0938),
FAIRe (contract no. 01IS23074), and ECXL (contract no. 01IW22002).

There is a need to continuously improve models and algo-
rithms in ML to keep up with big data technologies [12].
A suitable model to implement artificial intelligences for big
data problems is a deep Artificial Neural Network (ANN)
consisting of neurons and weighted connections [13]. While
ANNs designed for image recognition use pixels to distinguish
objects [14], ANNs for automatic speech recognition receive
acoustic observations for classification on a dictionary [15].
Gradient descent algorithms such as backpropagation usually
adjust weights in such predetermined ANNs based on inputs
and expected outputs to minimize a loss function [16]. In this
way, input signals like pixels or phonemes can be mapped to
an output signal like an object or a word with the aim of being
able to generalize after supervised learning [17].

In addition to the described applications, especially (soft-
ware) robot control tasks have attracted attention in recent
years [18], [19]. These include deliveries of medical supplies
with self-navigation technology [20] and improving the behav-
ior of non-player characters [21]. Unlike supervised learning,
unambiguous outputs do not typically exist for Reinforcement
Learning (RL) problems [22]. With the help of algorithms
such as deep Q-learning, a robot interacts with its environment
and becomes more intelligent through feedback from value
functions on its actions made utilizing backpropagation [23].

Another approach is taken by Neuroevolution (NE) that
evolves ANNs using Genetic Algorithms (GAs) [24]. Com-
pared to RL, direct exploration in the solution space is
possible without indirect inference from value functions, and
problems with hard-to-compute or without any gradients can
be tackled effectively [25]. Studies have shown that NE is more
performant than RL algorithms like Q-learning for several RL
problems such as robot control [26], [27]. Unfortunately, the
mutation used by NE to modify ANNs and explore the search
space is known to be heavily random, which can either disrupt
already found “good” solutions or require impractical effort to
find acceptable solutions [28], [29], [30], [31], [32], [33].

To combat the above issue, we propose adaptive mutations,
which re-activate neurons and re-use ANNs depending on the
solution quality, with the main goal of increasing the ANN op-
timization efficiency. Experiments on large-scale RL problems
demonstrate that our approach evolves efficient ANNs. They
are on average around 38 % smaller compared to established
NE algorithms and solve control tasks about 1.5 times faster.



In summary, the main contributions of this research work are
listed as follows:

• Implementation of adaptive ANN mutations to efficiently
explore huge search spaces for feasible solutions;

• Comparison of the proposed approach with established
NE algorithms on large-scale RL benchmarks.

This paper is structured as follows: Section II summarizes
ANNs and GAs as NE fundamentals in an attempt to keep
this work self-contained. In Section III, an overview of related
work is given and NE algorithms that have proven promising
in the past are discussed. The mutations that adapt mutation
probability according to the solution quality are proposed in
Section IV. Section V describes the experiments conducted to
evaluate the optimization efficiency of the proposed approach
compared to random mutations. Finally, Section VI concludes
the paper and discusses future work.

II. PRELIMINARIES

A huge amount of various information is filtered daily by
our brain. One example is pattern recognition where the
human brain has to make important decisions quickly [5].
To mimic these real-world processes and solve ML problems
from experience (data), ANN types such as feedforward and
recurrent ANNs were created.

Definition 1. A feedforward ANN G is a tuple (T,Ξ, S(0),Φ)
that consists of a topology, constraints, an initial state, and
activation functions specified as follows:

The topology T is a pair (Ω, E) that consists of the
frame Ω and connections E.

Ω is a tuple (l1, l2, . . . , lC), where C is the number
of layers and the number of neurons Nc per layer
is denoted by lc := {nc,i}Nc

i=1 (1 ≤ c ≤ C). While
l1 means the input layer and lC refers to the output
layer, every other layer indicates a hidden layer.
E := {n′

c,i → nm,j} consists of a set of relations
from neurons n′

c,i to destination neurons nm,j iff
m > c, where n′

c,i := {nc,i} ⊆ lc is a set of source
neurons and nm,j (1 ≤ m ≤ C, 1 ≤ j ≤ Nm)
denotes the corresponding destination neurons to
which those subsets are connected.

The constraints Ξ := (ΞW ,ΞB ,ΞA) dictate value ranges
for weights ΞW ⊂ R, bias units ΞB ⊂ R, and activi-
ties ΞA ⊂ R meaning the outputs of neurons.
S(0) := {W (0), B(0), A(0)} is the initial state of G
where W (0) := E → ΞW , B(0) := Ω → ΞB , and
A(0) := Ω→ ΞA.
Each hidden and output neuron possesses an activation
function ϕ(x) ∈ Φ that transforms the received input x.

If G contains at least one hidden layer, it is called deep.

Remark. A recurrent ANN is similar to Definition 1, but with
the difference that feedback loops are also provided: direct,
indirect, lateral, or full feedback [13]. Recurrent ANNs are
useful, e. g., for learning temporal dependencies in automatic
speech recognition [15].

n1,1

n1,2

n2,1

1

1

x1

x2

AND

Input layer Output layer

Fig. 1: ANN G representing the well-known Boolean func-
tion AND(x1, x2) = x1 ∧ x2, which is true iff its arguments
are true. G consists of N = 3 neurons and C = 2 dense
layers, meaning they are fully connected. The activation func-
tion ϕ corresponds to a threshold function that outputs 1 iff
x1 + x2 = 2, 0 otherwise. Given an input combination, n1,1

and n1,2 transfer it to n2,1 that calculates a certain activity
level using ϕ and outputs a truth value accordingly. If the
combination (0, 1) applies, 0 · 1+1 · 1 = 1 =⇒ 0 is evaluated
during forward pass. The other cases are analogous.

Algorithm 1 Standard GA for solving optimization problems

Input: Fitness threshold Fth

Output: Best individual
1: t← 0 ▷ Generation number
2: Initialize population P (t) consisting of µ individuals
3: while Fth is not reached do
4: Compute fitness f(p)∀p ∈ P (t)
5: for i← 1, 2, . . . , µ do
6: Select parents pw, pm ∈ P (t) : pw ̸= pm
7: p′ ← crossover(pw, pm)
8: mutate(p′)
9: P (t+ 1)i ← p′

10: end for
11: t← t+ 1
12: end while
13: return best p ∈ P (t− 1)

Example 1. The evaluation of an ANN that computes the
logical conjunction is demonstrated in Fig. 1.

In practice, ML problems as in Example 1 are not linearly
separable, so hidden layers are necessary [34]. With the help
of a bias unit, threshold values of activation functions can
be changed dynamically [13]. For these reasons, ANNs are
theoretically capable of approximating any continuous func-
tion [35]. This property makes them powerful for robot control
that is mainly about solution space exploration [19]. Since
such RL tasks can be formulated as evolutionary optimization
problems, GAs inspired by Darwinian natural selection and
originally introduced by J. Holland [36] are suitable for finding
feasible solutions [37]. Algorithm 1 shows a commonly used
GA realization whose basics are explained in detail below.

The initial population P (t) starts with µ random candidate
solutions (individuals) in generation t ← 0, where each indi-
vidual from P (t) represents a point in the search space and µ
is a predetermined hyperparameter (Lines 1–2). The objective



is to explore the search space for feasible solutions until the
given fitness threshold Fth is reached (Line 3). To this end,
a potential solution is encoded in a chromosome (genotype)
whose quality evaluation is performed by a fitness function f
to compute the respective loss and individual fitness (Line 4).

Example 2. Let XOR(x1, x2) = (¬x1 ∧ x2)∨ (x1 ∧¬x2) be
a Boolean function that is true iff its arguments differ. Given
the sigmoid activation function ϕ(x) = 1 / 1 + e−x [13], the
ANN loss is f = 4 −

∑
i(ei − ai)

2 between expected (ei)
and actual (ai) outputs. If the ANN evaluates exactly to
the expected outputs, f computes an individual fitness of
4, otherwise a score less than 4. The higher Fth , the more
accurate the accepted solution.

Remark. It is rare that GAs are used in a supervised context
as in Example 2 because there is usually enough gradient
information for gradient descent algorithms to work well.
In order to change genotypes and thereby explore the so-
lution space, individuals are successively placed into a so-
called mating pool using fitness proportionate selection [37],
meaning those with higher fitness scores have a higher
probability of reproducing (Lines 5–6). While the genetic
operator crossover mixes parental genes in the hope of
breeding fitter offspring (Line 7), mutate causes random
perturbations to a genotype (Line 8). Analogous to biological
mutations, it ensures genetic diversity from one generation to
the next (Lines 9–12) [38]. Finally, the individual with the
highest fitness score is returned (Line 13).

In summary, if the genotype corresponds to an ANN and
a GA is used to “train” ANNs gradient-free by applying
crossover and mutation, this is referred to as NE.

III. RELATED WORK

Biologically, neurons are interconnected, but their communi-
cation is not just static [39]. Conventional NE only evolves
connection weights and often fails to converge if predeter-
mined ANNs are not deep enough to solve a specific RL
problem [26]. Many enhancements have been researched in
NE for this reason, especially in terms of Topology and
Weight Evolving ANN (TWEANN), as such algorithms can
also evolve neurons and connections. A comprehensive survey
is available in [30], [32]. TWEANN algorithms that have
achieved promising results are briefly discussed below.

The most famous TWEANN algorithm for evolving ANNs
from scratch is probably NeuroEvolution of Augmenting
Topologies (NEAT) [28] that has basically the following
technical strengths: direct genetic encoding and speciation. To
tackle the competing conventions problem [40], each connec-
tion contains a historical marking. This makes ANNs unique
so that their crossover cannot produce damaged offspring.
Furthermore, these markings are used to efficiently compare
individuals based on their ANN topology in order to speciate
them. They compete in their own niche, which counteracts the
individual dominance problem [41].

Turbo NEAT [29] extends NEAT with a divide-and-conquer
concept. Its general idea is to use multiple populations for

training ANN combinations. Populations are evolved simulta-
neously, i. e., every ANN from each population is evaluated in
combination with every other ANN from the other populations.
This approach can also be configured statically so that samples
are divided into sequences for each of which a population is
responsible. Samples for non-sequential problems (Example 2)
can additionally be clustered to evolve multiple ANNs whose
weights are subsequently refined using backpropagation.

Artificial Life Form (ALF) [31] is an evolutionary frame-
work with which a TWEANN algorithm was implemented that
is oriented towards Turbo NEAT but offers remarkable ben-
efits: semantic speciation, dynamic populations, and fitness-
based genetic operations. First, besides ANN topology, outputs
are also used for speciation to improve evolutionary explo-
ration of solution spaces. Second, the population is resized
depending on extinct species in order to leave unsuitable
subspaces more quickly. Third, fitness is utilized to increase
the probability of optimization success, meaning that the
higher the score, the fewer ANN mutations occur, and vice
versa. These include adding layers, hidden neurons, bias units,
and connections as well as weight adjustments. Since ALF’s
genotype is generic, it can be used in many fields for various
purposes such as binary decision diagram optimization [42].

To address the lack of scalability, genetic recombination
for efficient mixing of entire ANNs and ensemble learning
methods [43] to restrict huge solution spaces to be searched
exist in the TWEANN algorithm implemented using ALF [33].
For the sake of simplicity, this algorithm is referred to directly
as ALF in the following. While the so-called Output Distri-
bution method assigns previously identified subproblems to
different genotypes of each individual for evolving specialized
ANNs, bootstrap aggregating trains multiple weak learners that
collaboratively predict for ANN inputs.

Although ALF has been shown on benchmarks to interact
more intelligently in non-deterministic environments and to
have higher generalization performance due to reduced over-
fitting compared to state of the art, its mutation probability is
generally assigned a constant value. Even though, unlike re-
lated TWEANN algorithms, fitness is considered as a mutation
parameter, it essentially only controls the number of mutation
attempts. The following scenarios can therefore easily disrupt
learning progress or lead to stagnation:

1) Evolving dead neurons;
2) Re-use of unsuitable ANN structures.

These limitations are to be overcome in order to meet the main
goal of this work as stated in Section I.

IV. PROPOSED ADAPTIVE MUTATIONS

To tackle the issues identified in the previous section, they
are addressed by our novel adaptive mutations that choose a
mutation probability depending on individual fitness:

1) Living Neuron (Section IV-A);
2) Structural Learning (Section IV-B).

The listed strategies learn useful ANN mutations while the
corresponding mutation probability refers to ANN regions,
which is proposed at the beginning.



(a) α = 1.0, β = 1.0 (b) α = 0.3, β = 1.0 (c) α = 1.0, β = 3.0

Fig. 2: Probability matrices w. r. t. Eq. (1), where the rows
refer to ANN layers and columns mean the (inverse) fitness
scores. The lighter a cell is, the more likely a mutation in the
layer, and vice versa. No mutation would thus occur for an
accepted solution. In (a), a linear relationship of layers, and
scores is visualized. The other matrices interpolate differently.
While (b) strengthens mutations in anterior ANN regions, (c)
exerts more influence on individuals in early stages.

Anterior ANN regions are more likely to have more influence
on ANN behavior than posterior regions [34]. When applied
to TWEANN, it is less likely that a mutation in anterior layers
will improve ANN performance the closer an individual is to
the fitness threshold. On the contrary, there is an increased
risk that their solution quality will deteriorate. Since ALF
essentially only uses fitness quantitatively in mutations, even
one ANN modification can destroy the learning progress of a
fit individual. The population would stagnate if features like
elitism [41] are enabled.

To avoid the pits of total randomness of mutation, a prob-
ability distribution for ANN layers according to the fitness
score is introduced, which is shown in Eq. (1).

ρ(Cl, F ) =

(
Cl

C

)α

·
(
1− F

Fth

)β

(1)

Cl ∈ N : ANN layer ID
C : Number of layers
α : Layer scaling
F : Individual fitness
Fth : Fitness threshold
β : Fitness scaling

In general, the fitter an individual is, the less likely their ANN
changes in anterior layers during mutation, and vice versa. To
allow flexibility, the respective mutation probabilities can be
shifted using the exponents, which is illustrated in Fig. 2.

Specifically, Eq. (1) is utilized by the novel strategies that
specify ANN changes based on it, which are proposed next.

A. Living Neuron
Dead neurons are a type of vanishing gradient problem [13]
where the gradient of the loss function w. r. t. layer weights
becomes very small or zero, meaning weights are not updated
during training and the respective layer becomes inactive.

Definition 2. Let G be an ANN according to Definition 1
that also provides feedback. A neuron in G is called dead if
it produces an unchangeable activation regardless of its input.

Dead neurons commonly occur in deep ANNs that use acti-
vation functions with limited ranges, such as sigmoid (Ex-
ample 2) or ReLU ϕ(x) = max(0, x) [34]. For example,

1

0−∞

(a) Random

1

0.5

(b) Adaptive

Fig. 3: Comparison between a randomly mutated ANN and
an adaptively mutated ANN. In (a), the ANN is disconnected
because the neuron labeled by 0 has no path to the input layer.
The other hidden neuron is also dead if ReLU is used since
the connection of the bias unit visualized by a square shape
has a high negative weight multiplied by 1. In (b), this weight
is reinitialized to 0.5. If the corresponding individual was fit,
the negative bias change in this anterior layer would have been
less likely. The former neuron can live depending on its inputs,
as it is on a path from the input to the output layer.

0/1

0/1

∨

∧

∧

1

−1
1

−1

1

1

x1

x2

XOR

Fig. 4: ANN with one hidden layer consisting of two neurons
to separate the XOR problem (Example 2). The Boolean
disjunction operation ∨ outputs 1 iff its input is positive. The
threshold x of the negated conjunction ∧ is x > −2. The
∧-neuron corresponds to the ANN in Fig. 1.

ReLU neurons can be fragile during training and die when
input ranges are strongly negative. If there are too many dead
neurons, the ANN loses much of its explanatory power since
many neurons do not contribute to the ANN output [13]. This
state is established more easily in TWEANN or ALF because
a disconnected ANN as shown in Fig. 3(a) can also emerge.
The worst-case scenario, where the entire ANN dies and just
a constant function is computed, is also possible.

To prevent dead neurons due to missing connections, a path
rule is defined: Whenever a neuron is evolved in ALF by a
mutation, it must be on a path between the input and output
layer. Activation values are monitored during the evolution
and testing of ANNs to detect dead neurons. The memory
overhead caused by this procedure is negligible because com-
parison values can be overwritten after each generation. Made
records are utilized to no longer mutate outgoing connections
from dead neurons. Instead, their incoming connections are
reinitialized so that they can become useful (again), which is
shown schematically in Fig. 3(b).

B. Structural Learning

McCulloch-Pitts neurons [44] are part of many of today’s
ANN types. These neurons form a complete base for Boolean
functions since they can simulate logical conjunction (Exam-
ple 1), disjunction, and negation [13].

Example 3. Fig. 4 depicts an ANN for exclusive alternation.



TABLE I: Experimental comparison between random and adaptive mutations in solving large-scale RL benchmark problems

Experiment Random mutations Proposed adaptive mutations

Name Fitness threshold
Learning time in min Generation number Number of neurons Learning time in min Generation number Number of neurons
Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev

DPNV 1,000 time steps 2 1 9 3 47 26 2 1 9 2 22 8
DPNV 1,500 time steps 6 1 16 7 45 21 5 1 14 5 25 10
DPNV 2,000 time steps 26 5 43 12 93 32 20 2 36 7 68 21
DPNV 2,500 time steps 54 16 71 19 146 46 41 9 64 13 92 18
DPNV 3,000 time steps 97 26 105 31 215 57 69 12 88 17 144 33
Snake 20 apples 13 5 21 4 96 30 11 3 20 2 63 12
SMB level 2-4 X-coordinate 2,167 629 246 206 78 361 173 402 112 182 42 204 65

Boolean operations play a central role in numerous RL ap-
plications such as robot control in order to make decisions
depending on logical conditions [19], [20], [21], [22]. With the
help of McCulloch-Pitts neurons, they can be easily encoded
and combined as demonstrated in Example 3.

ALF is therefore being extended with the ability to mutate
the McCulloch-Pitts model. The corresponding ANNs are
learned in advance and stored statically in a vector. They are
scaled during a mutation depending on the number of source
neurons in order to re-use them structurally between a source
and destination layer of an individual ANN. This mutation
chooses both layers adaptively using Eq. (1) analogous to the
mutation strategy presented in the previous subsection.

V. EXPERIMENTS

This section summarizes the experiments conducted to empir-
ically analyze our approach proposed in Section IV. To this
end, Section V-A describes the system specification and RL
problems used for the performance evaluation in Section V-B
where the benefits of our adaptive mutations are demonstrated.

A. Setup

To evaluate the ANN optimization efficiency of the proposed
approach, its adaptive mutations were implemented in ALF
using C++23. The corresponding parameter values were set as
shown in Fig. 2(a). To allow a fair comparison with random
mutations included in the original ALF, the same system con-
figuration as in [33] was used. Accordingly, evaluations were
carried out on a Fedora 37 machine with an Intel® Xeon® E5-
2680 processor and 32 GB of main memory. The hyperparam-
eter settings were also adopted for the large-scale RL bench-
marks considered: Double Pole, No Velocities (DPNV) [28],
Snake [45], and Super Mario Bros. (SMB) [46]. For repre-
sentative purposes, the divide-and-conquer method described
in Section III was used for an experiment that proved most
successful for robot control: bootstrap aggregating if DPNV,
Output Distribution otherwise. Each experiment was repeated
10 times for complexity reasons.

B. Results

The experimental results are summarized in TABLE I, which
are now interpreted and discussed. ALF with adaptive muta-
tions evolves smaller ANNs for each experiment compared to
random mutations, which solve every control task at least as

quickly. Specifically, optimized ANNs of the best individuals
are reduced by around 38 % on average, making the learning
time about 1.5 times faster. For example, only about 2 instead
of 3 min are needed to evaluate an entire SMB generation.
In addition, the results are overall significantly more stable, as
the standard deviation is roughly halved. The main reasons for
these improvements are the dead neuron handling mechanism
and re-use of ANNs according to individual fitness. While the
former prevents fragile ANNs in particular, the latter provides
an additional boost in learning combined actions. The fact
that the novel mutations adapt their probability to overcome
total randomness makes the learning process less prone to
degradation or stagnation, which is particularly noticeable as
individuals become continuously fitter. This progress leads to
efficient ANNs that cannot only be evaluated rapidly, but also
make meaningful predictions for inputs.

These results ultimately apply not only to learning, e. g.,
in non-deterministic environments such as Snake, but also to
ML testing. In this context, the learned ANNs from SMB
level 2-4 were used as in [33] and test runs were performed for
levels 1-4 and 3-4. While the software robot in level 1-4 (3-
4) originally only reached the x-coordinate 781 (720), it now
stops at 1,094 (952), leading to an increase in generalization
performance of approximately 36 %.

VI. CONCLUSION

In this paper, we presented adaptive mutations to address a
lack of NE optimization. To this end, the focus was on dead
neuron handling and structural ANN learning. Experiments
on several large-scale benchmarks for robot control confirmed
that the main goal of this work was achieved. Various RL
problems can be solved considerably more efficiently using
the proposed approach compared to random mutations. ANNs
evolved by the novel mutations are on average about 1.5 times
faster and around 38 % smaller in this context.

We believe that evolutionary ANN optimization can be
further improved. Future research will therefore be primarily
directed towards investigating and utilizing ANN structures.
At present, learned ANNs can only be re-used statically.
This strategy should be extended to also dynamically mutate
evolved ANNs. Besides this mutation, convolutional neural
network architectures for deep learning are also to be found
in an evolutionary way. In addition, different hyperparameter
settings will be analyzed using further robot control tasks.



REFERENCES

[1] A. Naghib, N. J. Navimipour, M. Hosseinzadeh, and A. Sharifi, “A com-
prehensive and systematic literature review on the big data management
techniques in the Internet of Things,” Wireless Networks, vol. 29, no. 3,
pp. 1085–1144, 2022.

[2] M. Macak, M. Stovcik, and B. Buhnova, “The suitability of graph
databases for big data analysis: A benchmark,” in Proceedings of the 5th
International Conference on Internet of Things, Big Data and Security.
SciTePress – Science and Technology Publications, 2020, pp. 213–220.

[3] Apache Software Foundation, “Apache Spark™ – a multi-language
engine for executing data engineering, data science, and machine
learning on single-node machines or clusters,” 2024. [Online]. Available:
https://spark.apache.org

[4] D. Tosi, R. Kokaj, and M. Roccetti, “15 years of big data: A systematic
literature review,” Journal of Big Data, vol. 11, no. 1, pp. 1–39, 2024.

[5] S. Zhang, Y. Wu, and J. Chang, “Survey of image recognition algo-
rithms,” in Proceedings of the 4th Information Technology, Networking,
Electronic and Automation Control Conference. IEEE, 2020, pp. 542–
548.

[6] A. Rista and A. Kadriu, “Automatic speech recognition: A comprehen-
sive survey,” SEEU Review, vol. 15, no. 2, pp. 86–112, 2020.

[7] A. Stojanov and B. K. Daniel, “A decade of research into the application
of big data and analytics in higher education: A systematic review of
the literature,” Education and Information Technologies, vol. 29, no. 5,
pp. 5807–5831, 2024.

[8] M. Yang, “Research progress on data analysis in big data technology,”
in International Conference on Computer Engineering, Information
Science & Application Technology. Atlantis Press, 2017, pp. 851–854.

[9] J. Akoka, I. Wattiau, and N. Laoufi, “Research on big data – a systematic
mapping study,” Computer Standards & Interfaces, vol. 54, no. 2, pp.
105–115, 2017.

[10] S. Leonelli, “Scientific research and big data,” in The Stanford Encyclo-
pedia of Philosophy, E. N. Zalta, Ed. Stanford: Metaphysics Research
Lab, 2020, pp. 191–217.

[11] L. Wang and C. A. Alexander, “Machine learning in big data,” Interna-
tional Journal of Mathematical, Engineering and Management Sciences,
vol. 1, no. 2, pp. 52–61, 2016.

[12] L. Zhou, S. Pan, J. Wang, and A. V. Vasilakos, “Machine learning on
big data: Opportunities and challenges,” Neurocomputing, vol. 237, pp.
350–361, 2017.

[13] K. Du and M. N. Swamy, Neural Networks and Statistical Learning.
London: Springer, 2020.

[14] H. Wang, G. Li, Z. Ma, and X. Li, “Application of neural networks
to image recognition of plant diseases,” in International Conference on
Systems and Informatics. IEEE, 2012, pp. 2159–2164.

[15] W. Gevaert, G. Tsenov, and V. Mladenov, “Neural networks used for
speech recognition,” Journal of Automatic Control, vol. 20, no. 1, pp.
1–7, 2010.

[16] C. Sekhar and P. S. Meghana, “A study on backpropagation in artificial
neural networks,” Asia-Pacific Journal of Neural Networks and Its
Applications, vol. 4, no. 1, pp. 21–28, 2020.

[17] V. Nasteski, “An overview of the supervised machine learning methods,”
Horizons, vol. 4, pp. 51–62, 2017.

[18] D. K. Mishra, A. K. Upadhyay, and S. Sharma, “Role of big data analyt-
ics in manufacturing of intelligent robot,” Materials Today: Proceedings,
vol. 47, no. 19, pp. 6636–6638, 2021.

[19] V. K. Singh, S. Chen, M. Singhania, B. Nanavati, A. K. Kar, and
A. Gupta, “How are reinforcement learning and deep learning algorithms
used for big data based decision making in financial industries – a review
and research agenda,” International Journal of Information Management
Data Insights, vol. 2, no. 2, pp. 1–15, 2022.

[20] X. Wang, Y. Li, and K. Kwok, “A survey for machine learning-based
control of continuum robots,” Frontiers in Robotics and AI, vol. 8, pp.
1–14, 2021.

[21] E. K. Sure and X. Wang, “A deep reinforcement learning agent for
general video game AI framework games,” in International Conference
on Artificial Intelligence and Computer Applications. IEEE, 2022, pp.
182–186.

[22] J. Kober and J. Peters, Learning Motor Skills: From Algorithms to Robot
Experiments. Cham: Springer, 2014.

[23] S. S. Mousavi, M. Schukat, and E. Howley, “Deep reinforcement
learning: An overview,” in Proceedings of the SAI Intelligent Systems
Conference. Springer, 2018, pp. 426–440.

[24] K. O. Stanley, J. Clune, J. Lehman, and R. Miikkulainen, “Designing
neural networks through neuroevolution,” Nature Machine Intelligence,
vol. 1, no. 1, pp. 24–35, 2019.

[25] R. Miikkulainen, “Evolving neural networks,” in Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO). ACM,
2016, pp. 229–253.

[26] K. O. Stanley and R. Miikkulainen, “Competitive coevolution through
evolutionary complexification,” Journal of Artificial Intelligence Re-
search, vol. 21, no. 1, pp. 63–100, 2004.

[27] F. P. Such, V. Madhavan, E. Conti, J. Lehman, K. O. Stanley, and
J. Clune, “Deep neuroevolution: Genetic algorithms are a competitive
alternative for training deep neural networks for reinforcement learning,”
2017. [Online]. Available: https://arxiv.org/abs/1712.06567

[28] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through
augmenting topologies,” Evolutionary Computation, vol. 10, no. 2, pp.
99–127, 2002.

[29] R. Krauss, M. Merten, M. Bockholt, S. Froehlich, and R. Drechsler,
“Efficient machine learning through evolving combined deep neural
networks,” in Proceedings of the GECCO Companion. ACM, 2020,
pp. 215–216.

[30] E. Papavasileiou, J. Cornelis, and B. Jansen, “A systematic literature re-
view of the successors of “NeuroEvolution of Augmenting Topologies”,”
Evolutionary Computation, vol. 29, no. 1, pp. 1–73, 2021.

[31] R. Krauss, M. Merten, M. Bockholt, and R. Drechsler, “ALF: A fitness-
based Artificial Life Form for evolving large-scale neural networks,” in
Proceedings of the GECCO Companion. ACM, 2021, pp. 225–226.

[32] E. Galván and P. Mooney, “Neuroevolution in deep neural networks:
Current trends and future challenges,” IEEE Transactions on Artificial
Intelligence, vol. 2, no. 6, pp. 476–493, 2021.

[33] M. Merten, R. Krauss, and R. Drechsler, “Scalable neuroevolution of
ensemble learners,” in Proceedings of the GECCO Companion. ACM,
2023, pp. 667–670.

[34] A. Bhaya, “Neural networks: Theory and practice,” in Decision Sciences,
R. N. Sengupta, A. Gupta, and J. Dutta, Eds. Boca Raton: CRC Press,
2016, pp. 751–800.

[35] G. Lewicki and G. Marino, “Approximation by superpositions of a
sigmoidal function,” Journal of Analysis and Its Applications, vol. 17,
no. 10, pp. 1147–1152, 2004.

[36] J. H. Holland, Adaptation in Natural and Artificial Systems: An Intro-
ductory Analysis with Applications to Biology, Control and Artificial
Intelligence. MIT Press, 1992.

[37] T. Alam, S. Qamar, A. Dixit, and M. Benaida, “Genetic algorithm:
Reviews, implementations, and applications,” International Journal of
Engineering Pedagogy, vol. 12, no. 6, pp. 57–77, 2020.

[38] D. Whitley, “An overview of evolutionary algorithms: Practical issues
and common pitfalls,” Information and Software Technology, vol. 43,
no. 14, pp. 817–831, 2001.

[39] J. Lin, “Artificial neural network related to biological neuron network: A
review,” Advanced Studies in Medical Sciences, vol. 5, no. 1, pp. 55–62,
2017.

[40] J. D. Schaffer, D. Whitley, and L. J. Eshelman, “Combinations of genetic
algorithms and neural networks: A survey of the state of the art,” in
International Workshop on Combinations of Genetic Algorithms and
Neural Networks. IEEE, 1992, pp. 1–37.

[41] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.

[42] W. Lenders and C. Baier, “Genetic algorithms for the variable ordering
problem of binary decision diagrams,” in Foundations of Genetic Algo-
rithms, A. H. Wright, M. D. Vose, K. A. De Jong, and L. M. Schmitt,
Eds. Berlin: Springer, 2005, pp. 1–20.

[43] C. Zhang and Y. Ma, Ensemble Machine Learning. New York: Springer,
2014.

[44] W. McCulloch and W. Pitts, “A logical calculus of the ideas immanent
in nervous activity,” Bulletin of Mathematical Biophysics, vol. 5, no. 4,
pp. 115–133, 1943.

[45] J. Yeh, P. Su, S. Huang, and T. Chiang, “Snake game AI: Movement
rating functions and evolutionary algorithm-based optimization,” in
Conference on Technologies and Applications of Artificial Intelligence.
IEEE, 2016, pp. 256–261.

[46] E. D. Demaine, G. Viglietta, and A. Williams, “Super Mario Bros. is
harder/easier than we thought,” in Proceedings of the 8th International
Conference on Fun with Algorithms. Schloss Dagstuhl Publishing,
2016, pp. 1–14.


