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Abstract—The success of deep learning has sparked significant
interest in designing computer hardware optimized for the
high computational demands of neural network inference. As
further miniaturization of digital CMOS processors becomes
increasingly challenging, alternative computing paradigms, such
as analog computing, are gaining consideration. Particularly for
compute-intensive tasks such as matrix multiplication, analog
computing presents a promising alternative due to its potential for
significantly higher energy efficiency compared to conventional
digital technology. However, analog computations are inherently
noisy, which makes it challenging to maintain high accuracy on
deep neural networks. This work investigates the effectiveness
of training neural networks with quantization to increase the
robustness against noise. Experimental results across various
network architectures show that quantization-aware training
with constant scaling factors enhances robustness. We compare
these methods with noisy training, which incorporates a noise
injection during training that mimics the noise encountered
during inference. While both two methods increase tolerance
against noise, noisy training emerges as the superior approach
for achieving robust neural network performance, especially in
complex neural architectures.

Index Terms—Analog noise, Robustness, Quantization, Noisy
training.

I. INTRODUCTION

In the past decade, deep neural networks (DNNs) have been
widely employed to address a variety of real-world problems,
from fields such as image, signal and speech processing,
natural language processing, and autonomous systems. Their
ability to achieve remarkable performance on challenging tasks
has made them a popular choice in various applications. DNNs
are parametric models characterized by a vast number of
weights, necessitating powerful specialized processors, such as
GPUs, for training and evaluation. However, the rapid growth
in the size of DNNs introduces new challenges related to
memory-footprint, computation, and power consumption, par-
ticularly for deployment in resource-constrained embedded or
mobile devices [28, 13]. This growing complexity contradicts
the practical application of DNNs to real-world problems,
as inference with these models often leads to unacceptable
latency or excessive energy consumption in battery-powered
devices.

In this regard, multiple recent studies have turned to al-
ternative computing technologies, such as analog computing,
for instance based on analog electrical computations [23,
19], analog optical computations [30] and similarly emerging
memory technologies such as resistive RAM [6, 8]. In these
applications, the computations inside DNNs are executed in
the analog domain with weights being represented by ana-
log quantities, e.g. electrical voltage [2], photons [30, 4],

or conductance [14]. Analog hardware has the potential to
offer substantial improvements in energy efficiency, poten-
tially exceeding two orders of magnitude compared to digital
hardware [14, 34]. However, analog quantities are subject to
the noise inherently present in their physical components.
Depending on the technology, the weights may be written with
some error [29]. Each weight readout can be overlaid with
some noise, or the arithmetic operations themselves may also
be fraught with noise. In other words, analog computations
are inherently noisy, and without countermeasures, this noise
can negatively affect prediction accuracy.

To use such noisy hardware, methods to improve robust-
ness against unreliable computations are essential. From an
algorithmic perspective, previous empirical work has shown
that noise injection during training can lead to improvements
in the noise resilience of analog computing devices [34, 33,
14, 27]. For instance, Gaussian noise is widely used in the
training process of DNNs to improve the robustness [14, 34,
27] during inference. Noisy Machines [34] explores the use of
knowledge distillation from a digitally trained teacher network
to a student network with noise injection, while BayesFT [33]
proposes different types injecting noise, including Bernoulli
noise, Gaussian noise, and Laplace noise, to enhance the
robustness of analog neural networks. Similarly, training as
a counter measure to improve robustness against noise while
slowly exposing a neural network architecture to an increasing
amount of noise has proven to be effective [16]. Moreover,
Isik et al. [13] have explored neural network compression
techniques such as pruning and knowledge distillation on noisy
storage devices.

Quantization is widely recognized as an effective method
for compressing models on deterministic hardware; moreover,
as analog hardware also faces practical limitations regarding
precision, and quantization is implicitly required. Quantization
is also a good way to simulate the noise in analog-to-digital
(ADC) and digital-to-analog (DAC) converters for neural
network accelerators. By mapping weights and/or activations
from floating-point representations into ”bins” (lower precision
formats, such as 8-bit or 4-bit integers), quantized neural
networks may stay sturdy when models are perturbed by
noise. Similarly, is has been shown previously that that quan-
tization can either improve or degrade adversarial robustness
depending on the attack strength [11]. In general, techniques
such as quantization-aware training (QAT) have demonstrated
significant success in mitigating quantization errors and en-
hancing generalization behavior in models [26]. Given this
promising body of previous work, it would be valuable to



evaluate to which extend QAT improves the robustness against
noise inherently present in analog computations, particularly
as best to our knowledge, this question has not been explored
in the literature before.

In the following, we thus explore the robustness of quan-
tized neural networks in the presence of noisy computations.
As a backdrop, we also investigate models trained with noise
injection to provide a quantitative comparison.

To quantify and compare the robustness as a key per-
formance metric, we employ the midpoint noise level µ as
proposed in [3]. Our contributions can be summarized as
follows:

1) We investigate the robustness by quantization against
analog noise and compare robustness across different
precision formats as well as constant and dynamic
scaling.

2) Similarly, we investigate noisy training methods, which
simulates the conditions of a real noisy analog device,
compelling the network to adapt to noise during the
training process.

3) Finally, we present an overall evaluation, comparing
quantization methods and noisy training techniques
across different architectures.

Empirically, we evaluate the effectiveness of our methods
on image classification tasks using models trained on CIFAR-
10. Our evaluation shows that quantization and noisy training
can all enhance the robustness to different extents.

II. RELATED WORK

Noisy Machines [34] models generic non-volatile mem-
ory (NVM) cell noise as an additive zero-mean independent
and identically distributed (i.i.d.) Gaussian noise term on
the weights wi of the model in each particular layer l:
∆wi ∼ N (∆wi; 0, σ

2
N,lI), where I is the identity matrix and

σN,l is the noise standard deviation of layer l. Moreover, they
examine the training with injected Gaussian noise to increase
robustness against such analog computations and proposed
knowledge distillation as a further extension to increase robust-
ness. BayesFT [33] adopts a memristor perturbation model,
which considered multiple factors resulting in the memristance
drifting. Specifically, the drifting term is applied to each neural
network parameter w′

i ← wie
λ, λ ∼ N (0, σ2), where w′

i is
the drifted neural network parameter. Compared with Noisy
Machines and BayesFT, injecting noise on weights, Walking
Noise [3] focus on injection at the output activation, addressing
combined noise from weight readout and the subsequent
computations such as a dot product.

Previous work on quantization have primarily focused on
its effects on DNNs’ robustness to adversarial examples [11,
21, 7, 5, 10] and its impact on neural networks with different
architectures [32] and quantization processes [5].

Giacobbe, Henzinger, and Lechner [10] indicate that ro-
bustness against adversarial attacks is non-monotonic in the
number of bits. Duncan et al. [7] find that quantization can
improve a network’s resilience to adversarial attacks overall
whilst causing negligible loss of precision. Gorsline, Smith,

and Merkel [11] suggest that there is a critical adversarial
attack strength at which quantization has little-to-no effect on
accuracy. For attack strengths less than this critical strength,
increasing weight precision improves accuracy by enabling
more complex decision boundaries. At attack strengths greater
than the critical strength, increasing precision causes a drop in
accuracy stemming from decision boundaries being closer to
data points. Defensive Quantization [21] highlights that vanilla
quantization suffers more from adversarial attacks due to the
error amplification effect, where the quantization operation
further enlarges the distance caused by amplified noise. They
propose to control the Lipschitz constant of the network during
quantization, such that the magnitude of the adversarial noise
remains non-expansive during inference.

Additionally, Sung, Shin, and Hwang [32] analyse the
effects of quantization on feedforward deep neural networks
and convolutional neural networks as their complexity varies.
This study also show that highly complex DNNs have the ca-
pability of absorbing the effects of severe weight quantization
through retraining, but connection-limited networks are less
resilient. To provide intrinsic robustness to the model against a
broad range of quantization processes, Robust Quantization [5]
introduces a kurtosis regularization term, which is added to the
model loss function.

III. METHODOLOGY

While analog accelerators promise to be orders of magni-
tude more energy efficient than their digital counterparts, they
are inevitably fraught with noise and non-linearities in their
computations. In this section, we describe the metric utilized
to evaluate the robustness of DNNs under noisy computations,
as well as the methods employed as counter measures to losses
in robustness due to noise.

A. Robustness: midpoint noise level

To quantify robustness of a DNN against injected noise,
we measure the midpoint noise level µ; a metric developed
in a previous work by Borras, Klein, and Fröning [3]. It is
defined as the injected noise at which the network achieves
half of its maximum accuracy, precisely δa = amax−amin

2 ,
with amax and amin being the maximally and minimally
achieved accuracy, respectively. Under normal circumstances,
amin equates to the random prediction accuracy of a given
dataset. Equation (1) describes a scaled and shifted logistic
function which is fitted to the observed data,

F (σ;µ, s, δa, amin) =
2

1 + e(σ−µ)/s
· δa+ amin (1)

with µ as specified before, s the curve’s slope, and δa and
amin being the curve’s scale and shift factor. Fitting a function
to the data additionally gives us the ability to link data points
with uncertainty information, which are a natural result of
fluctuations during training. Thus the error estimate returned
by the fit can be used to assess the reliability of the obtained
result:

µ = arg min
µ,s,δa,amin

∥∥∥∥F (σ;µ, s, δa, amin)− y(σ)

∆y(σ)

∥∥∥∥2 ,∀σ (2)



where y(σ) and ∆y(σ) refer to the observed accuracy and
uncertainty, respectively.

This metric follows the intuition that a larger µ corresponds
to higher robustness against noise. And is roughly equivalent to
simply finding the data point closest to the threshold, where the
investigated network achieves half of the maximum possible
accuracy. However, the metric is more stable against fluctu-
ations by using the entire data and incorporating statistical
errors and additionally allowing to quantify how certain the
resulting observation is.

By injecting noise globally with the same intensity at all
layers of the network, the midpoint noise level µ can reflect
the sensitivity of a network to noise. Furthermore, noise can
also be injected exclusively at a single layer to probe how the
internals of a network react to the noise.

B. Quantization

When applying quanitzation to DNNs, the goal is to reduce
the precision of both the parameters wi, as well as the inter-
mediate activation maps ai to a lower precision, with minimal
impact on the generalization power, in other terms accuracy of
the model. To do this, we first provide a quantization scheme
that maps a floating point value to a quantized one, such as
an integer, and then introduce how we adapt this scheme for
training with backpropagation.

In this work we focus on the common quantization method,
uniform quantization, where the distance s between quan-
tization intervals is identical across all quantization levels.
This distance s is also called the scaling factor. Then, the
quantization function can be defined as follows:

Q(x) = ⌊x
s
⌉+ z, (3)

where Q is the quantization operator, x is a real-valued input,
⌊·⌉ is the rounding operation (e.g. round to nearest or round to
floor) and z is the zero point. The scaling factor and the zero
point are used to map a floating point value to the integer grid,
whose size depends on the bit-width b. The scaling factor can
be defined manually as a hyperparameter, but it can also be
defined according to the desired range of real values:

s =
β − α

2b − 1
, (4)

where [α, β] denotes the bounded range that real values are
clipped with.

Symmetric and asymmetric quantization. Symmetric
quantization is a simplified version of the general asymmetric
case. Symmetric quantization restricts the zero point to 0, i.e.
−α = β. This reduces the computational overhead of dealing
with the zero point offset. However, asymmetric quantiza-
tion often results in a tighter clipping range and thus better
representation of the actual value space, since the clipping
range can be chosen to use the min/max of the input, i.e.
α = xmin, β = xmax, which results in the zero point non-
zero. This is especially important when the target weights or
activations are imbalanced, e.g., the activations after a ReLU,
which are always of positive value.

After the representation range [α, β] is determined, any
values of x that lie outside of this range will be clamped to
its limit:

ql = clamp
(
⌊x
s
⌉+ z, qmin, qmax

)
, (5)

where ql is the quantization level , [qmin, qmax] denotes the
range of the integer grid, i.e. {0, . . . , 2b − 1} for unsigned
integers and {−2b−1, . . . , 2b−1−1} for signed integers. Here,
[qmin, qmax] are equivalent to the quantized values of [α, β].

Notably, the clipping procedure may incur a clipping er-
ror [24]. To reduce the clipping error one can expand the
quantization range by increasing the scaling factor. However,
increasing the scaling factor leads to increased rounding
errors [24] as the rounding error is dependent on the range[
− 1

2s,
1
2s
]
. As such choosing the scaling factor s becomes a

trade-off.
Static and dynamic quantization. Except for the methods

for determining the clipping range [α, β], another important
differentiator of quantization methods is when the clipping
range is determined. This range can be computed statically
for weights, as the parameters are fixed during inference.
However, the activation maps differ for each input sample. So,
there are two approaches to quantizing activations: dynamic
quantization, and static quantization.

In dynamic quantization, this range is dynamically calcu-
lated for each activation map during runtime. This approach
requires real-time computation of the signal statistics (min,
max, percentile, etc.) which can have a significant overhead.
However, dynamic quantization often results in higher ac-
curacy as the signal range is exactly calculated for each
activation.

Another quantization approach is static quantization, in
which the clipping range is pre-calculated and static during
inference. This approach does not add any computational
overhead, but it typically results in lower accuracy compared to
dynamic quantization. In this work, we mainly focus on static
quantization. Specifically, we investigate constant scaling and
dynamic scaling. In constant scaling, a single scaling factor
is applied to all activations, whereas in dynamic scaling, each
activation (or groups thereof) has its own scaling factor. We
use the term dynamic scaling to differentiate it from dynamic
quantization.

Quantization-aware training. In this paper, we focus
on quantization compatible with backpropagation, generally
called quantization-aware training (QAT), which evaluates the
impact of parameter quantization during training and adjusts
parameters using training data to mitigate accuracy degrada-
tion, thus achieving higher accuracies than direct post-training
quantization. A common method for implementing QAT is
to insert fake quantization [9], where values are stored in full
precision but discretized during computation. Additionally, the
Straight Through Estimator (STE) [1] is used to address the
non-differentiable quantization operator in backpropagation
by approximating the rounding operation with an identity
function.
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Fig. 1. Global noise injection in a quantized neural network.

A quantized convolutional neural network with global noise
injection is depicted in Fig. 1.

IV. EXPERIMENTS

All experiments are conducted using the CIFAR-10
dataset [18]. We focus on three representative convolutional
neural network architectures, LeNet-5 [20], VGG [31] and
ResNet [12]. The simplicity of LeNet-5 allows us to isolate
the effects of quantization without the added complexity of
more modern, deeper networks. VGG and ResNet networks,
in contrast, have significantly deeper architectures. This depth
allows for the study of quantization effects across many lay-
ers, providing insights into how quantization impacts deeper
networks.

To quantize a neural network, we employ QAT, using the
open-source framework Brevitas [25] and follow the findings
from Krishnamoorthi [17]. Specifically, we apply per-channel
quantization on convolutional layers and per-tensor quanti-
zation on fully connected layers and activations. Uniform
quantization is used for both weight tensors and activations.
For the activations, we explore both constant and dynamic
scaling. The bit widths for weight tensors and activations are
uniform.

As additive noise is often the primary type of noise in accel-
erators, we employ the quantified robustness metric midpoint
noise level µ [3] to asses the robustness of an architecture
against noisy computation. To inject noise at the activations of
a given neural network, a custom noise module is added after
each layer. Similar to STE [1], the noise is only injected in the
forward path, not the backward path. For all experiments, we
inject Gaussian additive noise globally with the same intensity
at all layers of the network.

A. Robustness of QAT without noisy training

1) Results with LeNet-5: In order to compare the effective-
ness of quantization as a robustness method, all experiments
are trained on the CIFAR-10 dataset without noise injection.
While the baseline is trained with floating-point precision.
Both the baseline and quantized models are trained using
Adam [15] with cosine learning rate decay [22], and an initial
learning rate of 0.001 (with batch size 128) for 500 epochs.
In order to isolate the effects of quantization, models are
trained without batch normalization layers and regularization

methods1. To observe the uncertainty of data points, each
inference is repeated 10 times on different networks with
different random weight initialization. The accuracies obtained
for different bit widths and different scaling methods are
shown in Fig. 2. As expected the model accuracy degrades
with increasing noise for the baseline LeNet-5 and its quan-
tized variants.

The clipping range is computed statically for weights, as
the parameters are fixed during inference. For the activations,
we compare dynamic and constant scaling. As can be seen,
the dynamic scaling (orange curves in Fig. 2 (a) and (b)) can
achieve almost the same peak accuracy as the non-quantized
baseline model for both 4-bit and 8-bit. However, the curves
lie left to the baseline curve, which means that the robustness
of the dynamic scaling is slightly worse than the baseline.

For constant scaling factors, we identify a trade-off between
the peak accuracy and noise robustness of a model for both
4-bit and 8-bit. Larger scaling factors result in larger midpoint
levels and lower peak accuracies. In the low noise regime,
dynamic scaling factors and small constant scaling factors can
preserve the peak accuracies, but when the constant scaling
factors are larger than 1, the accuracies drop significantly.
In the high noise regime, larger constant scaling factors can
achieve significantly better accuracies than dynamic scaling
factors up to a scaling factor of 512. As introduced in Section
III-B, the rounding error then lies in the range of [− 1

2s,
1
2s],

thus increasing the scaling factor leads to increased round-
ing error and reduced top accuracy. However, with constant
scaling, the rounding error can be potentially mitigated by the
weights during training.

To better evaluate the trade-off between different quanti-
zation granularities, Fig. 2(c) shows the trade-off between
the peak accuracy and midpoint noise level of 4-bit model
and the 8-bit model. The blue solid curves show that the
peak accuracy is partially linearly correlated with the scaling
factor. Experiments with models quantized to 16-bit did not
yield better results than 8-bit. Surprisingly, the 8-bit model
outperforms the 4-bit model on both accuracy performance
and robustness performance. A possible explanation is that
the 8-bit model can represent wider clipping ranges, resulting
in smaller clipping errors and consequently improved fitting
capabilities.

2) Results with VGG and ResNet: For experiments on
VGG, we choose the achitecture VGG-11 using 50% dropout
on fully connected layers. We train both the full precision
model (fp32) and quantized models for 500 epochs. The full
precision model is trained with learning rate η = 1 × 10−3 ,
whereas the quantized models require a smaller learning rate
of η = 1× 10−4. For experiments on ResNet, we choose the
architecture ResNet-18, trained for 500 epochs with learning

1While both batch normalization and regularization are important for
generalization and thus maximizing test error, they are not used here to
avoid interference with noise experiments. Future work will revisit noise
and regularization in combination. A discussion on the impact of batch
normalization on midpoint noise level can be found in [3].
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Fig. 2. Robustness of LeNet-5 on CIFAR-10, quantized with different bit widths, using either constant scaling (scaling factors s) or dynamic scaling on
activations. Note that the x-axis is of logarithmic scale.

TABLE I
ROBUSTNESS OF VGG-11 AND RESNET-18 ON CIFAR-10, QUANTIZED WITH DIFFERENT BIT WIDTHS AND SCALING FACTORS.

Model Bitwidths Scaling factors Peak accuracy (%) Midpoint noise level µ
fp32 - 87.7 0.154 (±0.5%)
8-bit dynamic 87.2 0.024 (±0.1%)

0.5 84.3 0.145 (±0.2%)
1 82.2 0.2 (±0.2%)
2 76.8 0.222 (±0.3%)

VGG-11 3 10.0 0.013 (±0.0%)
4-bit dynamic 86.5 0.031 (±0.1%)

0.5 84.5 0.12 (±0.2%)
1 82.6 0.177 (±0.2%)
2 78.3 0.23 (±0.3%)
3 10 0.010 (±0.1%)

fp32 - 87.0 0.495 (±0.2%)
8-bit dynamic 87.3 0.452 (±0.3%)

0.5 87.1 0.526 (±0.3%)
1 87.0 0. 557 (±0.3%)
4 86.5 0.577 (±0.3%)
8 85.7 0.625 (±0.4%)

ResNet-18 10 10 0.05 (±2.5%)
4-bit dynamic 86.8 0.281 (±0.3%)

0.5 86.5 0.492 (±0.4%)
1 86.7 0.605 (±0.3%)
4 86.5 0.657 (±0.5%)
8 86.5 0.665 (±0.3%)

10 10 0.005 (±1.3%)

rate η = 0.01 for both the full precision model and quantized
models. The results are shown in Table I.

By comparing dynamic scaling with constant scaling, the
advantages of constant scaling become evident. For both 8-
bit and 4-bit of VGG-11 and ResNet-18, the midpoint noise
levels with dynamic scaling are significantly smaller than those
with constant scaling factors, up until the model completely
collapses when the constant scaling factor reaches 3 for
VGG-11 and 10 for ResNet-18, respectively. When comparing
models using dynamic scaling factors to the original floating-
point model, it is clear that the dynamic scaling can nearly
retain the original peak accuracy, while the midpoint noise
levels µ are significantly lower. Overall the conclusions here

are identical to LeNet-5, previously.

B. Experiments with Noisy Training.

Noise injection during training is a method used to expose
the network to more realistic loss scenarios by randomly per-
turbing weights and activations. This simulates the conditions
of a real noisy analog device, compelling the network to adapt
to the noise during the training process. Ideally, training within
the noisy analog systems leads to better empirical results, yet
understanding the noise dynamics in analog hardware remains
challenging.

To compare with noisy training techniques, we train the net-
work while simultaneously injecting noise. The noise intensity
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(b) Pareto analysis of LeNet-5 for different quan-
tization levels.
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(c) ResNet-18, noisy training with static quantiza-
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Fig. 3. Robustness of LeNet-5 and ResNet-18 on CIFAR-10 with noisy training, combined with quantization.

is matched precisely to that encountered during inference (i.e.,
σtraining = σinference). Results of LeNet-5 and ResNet-18 are
shown in Fig. 3, (a) and (c).

From the results in Fig. 3, we observe that the dashed
lines in each plot, representing noisy training combined with
quantization, are closely matched, almost overlapping. This
indicates that, regardless of whether the model is simple or
complex, quantization methods can not significantly improve
the robustness of models trained with noise injection.

The likely explanation for this inconsistency with the per-
formance observed when models are trained without noise
injection is that low precision quantization can degrade the
fitting capability of models. This degradation helps explain
why quantization does not improve the baseline performance
of noisy training with floating-point 32-bit precision. Previous
studies support these findings. For instance, Sung, Shin, and
Hwang [32] discovered that highly complex DNNs can absorb
the effects of severe weight quantization through retraining,
while connection-limited networks exhibit less resilience.

Although quantization methods do not improve the robust-
ness of the baseline performance of noisy training, there is
a positive aspect: quantized models trained with noise can
achieve the same level of robustness as the floating point
models while maintaining their accuracy. This finding suggests
that it is feasible to deploy quantized models, which have
smaller sizes, without sacrificing robustness.

C. Comparison among Architectures

The experiments above reveal significant differences in
the performance of various models. An overall comparison
is provided in Table II. In general, we make the following
observations:

1) More complex models trade accuracy against robust-
ness. Without noise injection and quantization, VGG-
11 and ResNet-18 achieve higher accuracies (87.7%
and 87.0%, respectively) compared to LeNet-5 (75%).
However, the midpoint noise level µ of VGG-11 (0.154)
is significantly lower than LeNet-5 (0.286). In general,
complex models can achieve better accuracy, however,

they also involve more multiplications and accumu-
lations, overall leading to more noise involved and,
consequently, less robustness. From Table II, it is ev-
ident that VGG-11 has more noisy layers than LeNet-5.
However, with noisy training, complex models, which
typically have a greater capacity to fit data, can learn to
become more resilient to noise, thereby achieving higher
robustness.

2) Skip connections reduce the amount of error accu-
mulation, thereby improving robustness. In contrast,
ResNet-18 exhibits significantly more robustness, likely
due to the used skip connections. These connections
allow the original stacked layers to focus on optimizing
the residual mapping while the skip connections preserve
the primary identity information, which is less exposed
to noise. Specifically, for one building block, three
noisy layers are present in the original stacked layers,
while only one or zero noisy layer is present in the
skip connection, depending on whether downsampling
is applied or not.

3) Constant scaling is more robust than dynamic scal-
ing. For all three architectures, dynamic scaling is worse
for robustness than constant scaling, and even worse
than non-quantized fp32 values. To gain a more detailed
understanding of this an in-depth analysis of activation
distributions and effects related to training dynamics
would be required, which is out-of-scope for this work.

4) Larger scaling factors yield diminishing returns in
terms of robustness with increasing model complex-
ity. On VGG-11 and ResNet-18, larger constant scaling
factors result in only slight improvements in midpoint
noise levels. For instance, for VGG-11 with 8-bit quan-
tization and a constant scaling factor of 2, the midpoint
noise level increases by 44.2%, but accuracy drops from
87.7% to 76.8%, for ResNet-18 with 4-bit quantization
and a constant scaling factor of 8, the midpoint noise
level increases by 34.3%. In contrast, for LeNet-5 with
8-bit quantization and a constant scaling factor of 8, the
midpoint noise level rises by over 200%, while accuracy



TABLE II
OVERALL COMPARISON AMONG ARCHITECTURES ON CIFAR-10.

Midpoint noise level µ
Model FLOPS (M) Param (M) Noisy layers Peak accuracy (%) w/o Noisy Training with Noisy Training

LeNet-5 0.66 0.06 12 75 0.286 2.59
VGG-11 276.56 132.86 27 87.7 0.154 2.957

ResNet-18 37.53 11.69 33 86.9 0.494 3.023

only decreases from 75% to 70%. VGG-11 collapses
when the scaling factor reaches 3, whereas LeNet-5 can
function properly even with an extremely large scaling
factors, such as 512. Larger scaling factors come with
larger quantization errors. The inferior robustness of
VGG-11 can be attributed to the error amplification
effect, where quantization errors are amplified through
the layers of deep neural networks [21].

V. CONCLUSION

Analog hardware holds the potential to significantly reduce
the latency and energy consumption of neural network infer-
ence, however, at the same time is imprecise and introduces
noise within computations that limits accuracy in practice. In
this work, we investigate the robustness of DNNs affected by
analog noise during inference. We employ quantization-aware
training and noisy training techniques as robustness enhancing
methods.

Our experimental results, conducted on the CIFAR-10
dataset with various models, including LeNet-5, VGG-11 and
ResNet-18, indicate that quantization with constant scaling
factors can significantly improve the robustness. Large scal-
ing factors, however, lead to accuracy loss. Additionally, by
comparing different architectures, we find that deeper network
architectures are likely to suffer from error amplification, mak-
ing them more sensitive to large scaling factors. Our results
also show that when models are trained in an environment
identical to the noisy conditions experienced during inference,
robustness is significantly improved. Despite potential benefits
of quantization, it does not improve the robustness of models
when noise is injected during training. Overall, our findings
highlight the importance of aligning training conditions with
anticipated inference noise and suggest that targeted robustness
strategies are essential to fully realize the benefits of analog
hardware in practical, real-world applications.

OUTLOOK

This study underscores both the potential and the challenges
of leveraging analog hardware to improve the speed and energy
efficiency of neural network inference, despite the inherent
computational noise it introduces. Our findings suggest sev-
eral promising directions for future work to further enhance
robustness in noisy environments. A key question is whether
robust performance requires detailed knowledge of system
noise or if approximate estimates of noise type and strength
could suffice, simplifying practical implementations. Given
the observed limitations of quantization alone, evaluating
perturbation-based methods as complementary strategies may

address weaknesses seen when training does not fully align
with noisy inference conditions. Examining the combination of
various robustness techniques could reveal potential synergies,
strengthening noise resilience without significantly impacting
performance.

Additionally, further exploration of architectural factors
such as network depth, width, residual connections, and at-
tention mechanisms could clarify their influence on robust-
ness, particularly since deeper architectures are prone to error
amplification in noisy contexts. Improving robustness may
also benefit from advanced sensitivity evaluation methods
that go beyond techniques like walking noise, offering faster
and more precise insights into the layer-specific impact of
noise. Exploring robustness techniques adapted to each layer’s
unique sensitivity profile within a model may further enhance
resilience. Advancing these research directions holds promise
for developing robust, energy-efficient models optimized for
noise-prone, analog hardware.
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[4] Frank Brückerhoff-Plückelmann et al. “Probabilistic
Photonic Computing with Chaotic Light”. In: CoRR
abs/2401.17915 (2024). DOI: 10 . 48550 / arXiv. 2401 .
17915.

[5] Brian Chmiel et al. “Robust quantization: One model
to rule them all”. In: Advances in Neural Information
Processing Systems. Vol. 33. NeurIPS. 2020. DOI: 10.
5555/3495724.3496170.

[6] Yide Du et al. “Exploring the impact of random tele-
graph noise-induced accuracy loss on resistive RAM-
based deep neural network”. In: IEEE Transactions on
Electron Devices 67 (2020).

https://doi.org/10.48550/arXiv.2401.17915
https://doi.org/10.48550/arXiv.2401.17915
https://doi.org/10.5555/3495724.3496170
https://doi.org/10.5555/3495724.3496170


[7] Kirsty Duncan et al. “Relative robustness of quantized
neural networks against adversarial attacks”. In: 2020
International Joint Conference on Neural Networks.
IJCNN. IEEE. 2020.

[8] Yannick Emonds, Kai Xi, and Holger Fröning. “Im-
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