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Abstract—Neural network quantization, sparsification or Neu-
ral Architecture Search (NAS) have shown great success in
reducing model size and computational cost on many different
ML tasks and architectures. Appropriately reducing model size
without degrading task performance requires a suitable measure
for quantifying the amount of important information entailed
in the model parameters. Information theory provides such
a tool, called entropy, which, from a probabilistic point of
view, makes it possible to determine whether a model has
effectively extracted important information from the data. Based
on information theory and the maximum entropy principle, this
paper investigates the influence of the clamping function on the
distribution of weights in a quantized neural network. We show
that the entropy weights can be increased by using a trainable
parameter that evolves during training. We also identify a
correlation between high entropy and high performance. Finally,
by using a regularizer that enables the model to further increase
its entropy we highlighted the importance to split training into
a generalization phase and an information optimization phase.

Index Terms—compression, quantization, deep learning, en-
tropy

I. INTRODUCTION

The increase in performance of deep neural networks has
been driven by the availability of ever-larger databases and
the use of hardware adapted to parallelizable calculations like
GPUs. This exponential increase in the size of databases and
in the number of operations required during training [1] has
given rise to a number of problems: high energy consumption
and computation times, and an increase in memory footprint.

Today, the trend in deep learning is to constantly increase
the size of models and databases. This trend cannot continue
indefinitely, and will eventually comes up against the limits of
computer memory and computing capacity. In the past years,
such challenges have led to the emergence of neural network
compression, which aims to reduce the size of AIs without
affecting their performance. A great deal of work has been
carried out to reduce the size of neural networks, with 4 main
categories emerging: sparsification, quantization, automatic
architecture search (NAS) and matrix decomposition. The
aim of all these methods is to favor a simple model for a
given task, in line with the minimal description length (MDL
[6]) principle. It is a very important principle for embedded
AI considerations, as it ensures frugality and computational
acceleration. The aim is to find the most compact and accurate

representation of the data, while maintaining good perfor-
mance.

Deep Neural Networks can also be studied from an
information-theoretic point of view, using Shannon entropy
to quantify the amount of important information in a neural
network. However, the distribution of weights and activations
of many DNNs is not uniform and does not maximize its
entropy. There is therefore a difference between the number of
bits allocated to encode weights and the amount of information
actually present in the distribution. Maximizing entropy to
close this gap has been studied and tested in numerous works
on DNNs [7] [8] [9] [10] [11] and seems particularly well
suited to neural networks quantization.

In this paper we study neural network quantization methods
using information theory to apply the maximum entropy prin-
ciples to achieve the most compact data representation possible
and make each bit of information as useful as possible. We
show that we can increase weights distribution’s entropy using
a trainable parameter β in the clamping function. We also show
strong correlation between high entropy and high performance
especially for low-bit quantization.

II. RELATED WORKS AND FONDATIONS

A. Quantization

Quantifying parameters of a DNN consists in converting
network floating-point 32 bits weights values with a smaller
number of bits like 8, 4, or 2 bits (Figure 1) [12]. The main
objective is to reduce memory and computing footprint of
network while maintaining high performances and favoring
faster and less costly integer-only operations.

Quantization methods are numerous [16], [19], [20], and
can be used after (post training quantization) [13] or during
training (quantization aware training) [14] , be uniform [16] or
non-uniform [17]. Other quantization schemes introduce ran-
domness to choose the upper or lower bin to round values [18].
Some methods allocate a different number of bits depending
on the model layer [15] (Mixed Precision).

In our experiments we will base our method on Scale
Adjusted Training (SAT [19]) which quantize weights using
DoReFa [20] and activations with PArameterized Clipping ac-
Tivation (PACT [16]). DoReFa introduces a clamping function
that bounds weights between [0, 1] (eq. 1). This function uses



Fig. 1: Quantization pipeline with Tanhβ. (1) First we apply our clamping function to Wl which flatten the distribution
depending on β , (2) then we quantize W̃l to get our quantized weights used as our knew weights . (3) In our regularization
RH only, we need to ”unclamp” our quantized weights to compare them with FP32 Wl.

tanh as a non-linearity to clip outliers before quantization
(eq. 2) instead of PACT which uses a trainable parameter as
scaling factor to overcome the non symmetric and unbounded
activation distributions.

W̃l,i = Tanh0(Wl,i) =
1

2

(
tanh(Wl,i)

maxr | tanh(Wl,r)|
+ 1

)
(1)

W q
l,i = 2Q(W̃l,i)−1 =

2

(2b − 1)
round((2b−1)W̃l,i)−1 (2)

Wl,i being the ith weight of the lth layer and b the
bitwidth. SAT also applies constant variance scaling to quan-
tized weights of linear layers without batch normalisation, nout

being the number of weights in the layer :

W ∗
l =

W q
l√

noutVAR(W q
l )

B. Information theory

Information theory introduces tools to measure information
in a set of elements [21] in a probabilistic way by using
the log2 function of the probability distribution of a random
variable X ∼ p(x) (eq. 3). This way we can add information
of two independent random variables.

I(X = x) = − log2(p(x)) (3)

We can now define entropy as the amount of uncertainty in
the entire set of discrete values by using the expectation of
information across all values:

H(X) = EX∼p(x)(I(x)) = −
∑
x∈X

p(x) log2(p(x)) (4)

Entropy is a fundamental measure of information and has
been used in deep learning to quantify information of a dataset
filtered by a neural network [24]. Moreover, information theory
has been used as an attempt to explain and understand neural
network efficiency [22]. In this work entropy and mutual
information are used to build a theory linking compression
and generalisation of DNNs. Entropy can also be applied to

design a regularizer to penalize confident output and maximize
uncertainty [23].

This leads to a fundamental principle in information theory :
maximum entropy principle (MEP) which states that the
distribution that best fits the data is the one with the highest
entropy. This principle has been used for quantization in order
to better optimize the amount of information allocated for
weights and activations [7], [8], [25]. It can be shown that
for a Gaussian distribution, maximizing entropy is equivalent
to minimizing quantization error [26], which is the L2 norm
between weights and quantized weights :

max
Q

H(Q(W )) ⇐⇒ min
Q

||W −Q(W )||2 (5)

This equation links a common information measure to a
well studied objective in quantized neural networks like in [27]
where the quantization error is an objective to minimise to get
the best representation possible in 1 bit. In the next sections
this equivalence will enable us to develop a regularizer to
increase entropy.

III. METHOD TANHβ

In the literature DoReFa is a broadly common weights
quantization scheme and its clamping function in (eq. 1) is
widely used but there is no clear explanation on why tanh
clamping would be a more appropriate choice than a naive
minmax quantizer (eq. 6).

MinMax(Wl) =
Wl −minr(Wl,r)

maxr(Wl,r)−minr(Wl,r)
(6)

This function is simplier but has the same expected effect :
to bound weights values between [0, 1]. In fact when we apply
MinMax on a MobilenetV1 quantized in 4 bits we can increase
Top1 accuracy by 2.14 points and Top5 accuracy by 1.31
points (table II).

One way to explain this gap is to study the amount of
information encoded by these different clamping functions. In
order to measure the entropy of a neural network we introduce
a metric we named Hnorm which represents the distance



W/A Model Baseline FP32 Tanh0 MinMax Tanhβ

4 bits

MobilenetV1 Top 1 Acc (%) 66.96 67.75 68.25 68.72
Hnorm / 0.868 0.681 0.887

MobilenetV2 Top 1 Acc (%) 68.8 66.08 66.38 67.45
Hnorm / 0.902 0.752 0.914

Resnet34 Top 1 Acc (%) 67.11 61.71 62.14 67.85
Hnorm / 0.789 0.593 0.865

3 bits

MobilenetV1 Top 1 Acc (%) 66.96 69.74 69.07 70.4
Hnorm / 0.872 0.587 0.911

MobilenetV2 Top 1 Acc (%) 68.8 67.66 67.74 67.39
Hnorm / 0.910 0.670 0.933

Resnet34 Top 1 Acc (%) 67.11 64.23 62.09 66.09
Hnorm / 0.767 0.481 0.903

2 bits

MobilenetV1 Top 1 Acc (%) 66.96 60.52 NaN 60.64
Hnorm / 0.829 0.887

MobilenetV2 Top 1 Acc (%) 68.8 53.56 NaN 53.49
Hnorm / 0.860 0.891

Resnet34 Top 1 Acc (%) 67.11 64.68 5.63 63.71
Hnorm / 0.703 0.127 0.930

TABLE I: CIFAR100, Top 1 accuracy and Hnorm for different models, bitwidth and clamping functions. NaN is for a model
that didn’t converge. Most of the time our method Tanhβ outperform other functions on accuracy and entropy

Clamping function Top1 Acc (%) Top5 Acc (%) Hnorm

Tanh 68.93 88.38 0.66
MinMax 71.07 89.69 0.9

Gain 2.14 1.31 0.24

TABLE II: Accuracy and entropy gain for a quantized Mo-
bilenetV1 4bits on Imagenet for 150 epoch

between our weight distribution’s entropy and the maximum
it can reach for each layer (eq. 7).

Hnorm =
1

N

N∑
i=1

H(Wi)

bi
(7)

N being the number of layers and bi the bitwidth of the
ith layer. If Hnorm = 1 our model reached its maximum
entropy which is the uniform distribution for every layer. The
normalisation by bi allows to compare layers with different
bitwidth especially the first and last layers quantized in 8 bits.
H is computed with the empirical distribution of every bin of
quantization, then we compute the average normalised entropy
of the network. In the table II we can see that MinMax also
reaches a higher entropy than Tanh (+0.24). The clamping
function seems to have more effect on the distribution and the
model performances than just bounding weights values.

W̃l = Tanh0

(
βlWl√

σ2(Wl) + ϵ

)
(8)

To study the effect of the clamping function on the model we
introduce Tanhβ which allows the model to modify the entropy
of its weights using a trainable parameter β in the clamping
function for each layer (eq. 8), σ2 being the empirical variance
of weights. Indeed, weights values are often very small due to
weight decay (figure 1.A) so tanh is almost equivalent to the
identity function and doesn’t change weight’s distribution and
the entropy. So the variance rescaling is necessary to escape
this linearity of tanh for small values.

Figure 1.B shows the effect of β on a reduced gaussian dis-
tribution (µ = 0). We can see that β affects the distribution’s
shape and tends to be uniform for β = 0.86. We can show
that β can make the clamping function transition from Tanh0
to MinMax when it varies from 0 to 1 (eq. 9, 10).

lim
β→0

Tanh0(βW ) ∝ MinMax(W ) (9)

lim
β→1

Tanh0(βW ) = Tanh0(W ) (10)

By introducing the parameter β we expect the model to use
it during training to flatten its weight’s distribution through
gradient descent. To help the model to optimize β in this way
we can use a regularizer based on (eq. 5) to minimise the
quantization error and thus maximise entropy :

RH(W ) =
1

N

∑
w∈W

(w −Q(w))2 (11)

L = Lcls + λRH (12)

In (eq. 11) we need to compare FP32 weights with quantized
weights which usually have values in [−1, 1] (figure 1.C) and
can’t be compared to non-quantized weights which values are
smaller. So we need to ”unclamp” quantized bins to rescale
values in the set of FP32 weights (black lines of Wl in figure
1.A) and apply the regularizer RH to increase entropy of W q .
Then we add this regularizer in the loss function with λ = 105

(eq. 12) to make its value significant on Mobilenet models
(≃ 10−1, tested on one batch of Imagenet). In the following
sections, we will first test the method without regularization,
then add it to verify its effect on entropy.

Finally we make the hypothesis that :
• Tanhβ clamping can effectively increase entropy of a

quantized model.
• Our regularizer RH helps increasing entropy.
• Higher entropy correlates in general to higher task per-

formance.



W/A Model Baseline FP32 Tanh0 MinMax Tanhβ

4 bits
MobilenetV1 Top 1 Acc (%) 71.83 68.93 71.07 69.65

Hnorm / 0.66 0.9 0.867

MobilenetV2 Top 1 Acc (%) 71.74 66.62 67.11 67.72
Hnorm / 0.815 0.756 0.908

3 bits
MobilenetV1 Top 1 Acc (%) 71.83 67.95 57.96 65.71

Hnorm / 0.908 0.447 0.897

MobilenetV2 Top 1 Acc (%) 71.74 65.47 56.63 63.21
Hnorm / 0.925 0.47 0.919

2 bits
MobilenetV1 Top 1 Acc (%) 71.83 59.27 NaN 58.22

Hnorm / 0.91 0.9

MobilenetV2 Top 1 Acc (%) 71.74 55.15 31.3 53.69
Hnorm / 0.941 0.331 0.939

TABLE III: ImageNet, Top 1 accuracy and Hnorm for different models, bitwidth and clamping functions. NaN is for a model
that didn’t converge. We notice a correlation between high entropy and high accuracy

IV. EXPERIMENTS

In this section we will validate hypothesis stated previously
using SAT quantization scheme based on DoReFa and PACT
on MobilenetV1, MobilenetV2 and ResNet34. We will com-
pare all 3 clamping functions introduced previously : Tanh0,
MinMax, Tanhβ on Imagenet and CIFAR100.

A. Datasets and Implementation Details

Datasets. The experiments are carried out on the ILSVRC12
ImageNet classification dataset. The ImageNet dataset is made
of 1.2 million training images, and 50k validation images with
1000 classes. CIFAR100 is a simpler dataset than Imagenet
and made of 50k training images and 10k validation images
for 100 classes. In our experiments, we use the classic data
augmentation method : resize and crop, horizontal flip.

Experimental settings In our experiments models are
trained from scratch with no pretrained weights to study in
detail the influence of clamping during training. We train our
models for 150 epochs for Imagenet and 100 for CIFAR100
with a learning rate 0.05, a weight decay 4e− 5 and a batch
size 256 with SGD optimizer. We initialize weights with a
uniform distribution and ∀l, βl = 0.01 so tanh(βx) ∼0 id(x)
because we don’t want to change entropy at the beginning
and let the model choose where to converge by itself during
training.

B. Effect of Tanhβ on entropy

First we study the influence of β on the model’s entropy for
different bitwidth on CIFAR100. Table I shows Top1 accuracy
and entropy for different models and bitwidth and we can see
that Tanhβ always has the highest entropy and is very close
to the maximum (0.933 for MobilenetV2 3 bits). Whereas
MinMax has a lower entropy and a non uniform distribution
due to its linearity that can’t flatten weights. MinMax is also
quite unstable and doesn’t always converge in 2bits. With these
first results we show that β can increase entropy and the model
seems to optimize it in this way without regularization on
CIFAR100.

Now we analyze the difference of entropy for each layer
between a quantization scheme with Tanh0 and Tanhβ in order
to visualize the effect of β in the network. Figure 2 shows

Fig. 2: Entropy gain G of Tanhβ for each layer compared to
Tanh0 for MobilenetV1 in 4bits. On average the entropy gain
is equal to Gmean = 0.843 bits

the difference between the entropy of Tanhβ and Tanh0 for
every layer and Gmean represents the average entropy gain. It
appears that for every layer except the first and last one Tanhβ
has increased entropy with an averaged gain of 0.848 bits for
MobilenetV1 and 0.324 bits for MobilenetV2.

C. Correlation between entropy and accuracy

Now we will study the link between high entropy and high
accuracy of a model. First we note that most of the time Tanhβ
on CIFAR100 (Table I) has the best performances and can
outperform non quantized model at very low precision (70.4%
on MobileNetV1 3 bits). These results show potential to this
new clamping function and seems to confirm our hypothesis.

On ImageNet (Table III) this correlation holds for all models
and bitwidths. The best model is the one with the highest
entropy which is in line with the maximum entropy principle.
This trend seems more important for very low bits (3 or 2 bits)
of quantization as we can see a huge drop of performance
for MinMax (-10% Top1 accuracy in 3 bits) which is also
correlated with a drop of entropy (-0.45 on Hnorm).

To quantify this correlation we compute the Pearson’s corre-
lation

(
ρX,Y = cov(X,Y )

σXσY

)
betweeen Top1 Acc and Hnorm for

CIFAR100 and Imagenet and we get 0.7 and 0.58 respectively.
Now we want to know if the value of entropy is sufficient

to explain this correlation so we analyze the evolution of β
and Hnorm during training



D. Evolution of β

The value of β is very important parameter as it defines
the entropy of a layer and, the shape of its distribution. We
first notice that β is optimized differently on convolutional
and linear layers (figure 3). We see that β converge to a very
high value for linear layers which represents a distribution
almost binary with 2 long bins at -1 and 1. On the figure 2
we see this drop of entropy on the last layer that reaches -4.1
and -5.1 bits of entropy for MobilenetV1 and MobilenetV2
respectively. We interpret that result as over-parametrization
of linear layers which need less information to be efficient.

(a) Mean of βconv (b) βlin

Fig. 3: Evolution of β during training for MobilenetV1 4 bits.
βconv is the average of β for all convolutional layers and βlin

is for the last linear layer.

E. Regularization RH

As presented in (eq. 11) we can use a regularizer to increase
entropy and help the model to optimize β. As we can see in
figure 4, minimizing quantization error seems to be a good
objective as it increases entropy for a gaussian distribution
quantized in 4 bits. But it is not perfect and entropy can
decrease for very low quantization error due to approximations
made to compute H in 4 bits of quantization.

Fig. 4: Entropy over Quantization error for a Gaussian distri-
bution using different values of β. 4 bits being the maximum
H can reach

We now test this regularizer on Imagenet with MobilenetV1
and MobilenetV2 quantized in 4 bits (figure 5). We validate
that RH increases entropy compared to Tanhβ without reg-
ularizer during training with MBV1 + Tanhβ converging to
0.901 (0.867 without RH ) and MBV2+Tanhβ to 0.932 (0.908
without RH ). Moreover we see that RH increases entropy at

the very beginning of training and seems to remain almost
constant.

However Top1 accuracy decreased with this regularizer
(around 2%) which means that only looking to the value of
entropy is not enough to understand its effect. Maximizing
entropy at the beginning could be a part of the issue as seen
in [11] they set a threshold to decide when to start maximizing
entropy. It’s also in line with the results from [22] where they
stated there are 2 phases during training :

• Generalization. A first short phase where the model tries
to fit data and increase accuracy

• Compression. A long phase where the model compresses
its information

We state that the model first need to fit labels before
optimizing its inner information with an entropic regularizer.
To go further in this study we could try to set a threshold to the
regularizer, use a pre-trained model which already converged
and could be easier to compress with entropy constraint, use
a scheduler to gradually add the regularizer in the loss.

Fig. 5: Entropy over time for a MobilenetV1 and MobilenetV2
in 4 bits with and without RH

V. CONCLUSION

In this paper we studied the impact of clamping functions
on the entropy of a quantized neural network. We introduced
a parameter β in the classic clamping function tanh in order
to study its effect on entropy and accuracy. We found that
high entropy is correlated to high accuracy in most of the
cases on CIFAR100 and Imagenet. On CIFAR100 the model
naturally optimizes β to increase its own entropy but it is
the not case on Imagenet and it needs to be regularized. We
built a regularizer RH minimizing quantization error which is
equivalent to maximizing entropy for a gaussian distribution
and used it during training. We showed that combining Tanhβ
with this regularizer allows us to control and increase the
entropy of weights. Entropic regularization also showed that
only focusing on the value of entropy is not sufficient to
explain the correlation with accuracy and that we need to study
entropy over time during training.
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