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Abstract—We present NADA, a Network Attached Deep learn-
ing Accelerator. It provides a flexible hardware/software frame-
work for effectively training deep neural networks on ethernet-
based FPGA clusters. The NADA hardware framework instan-
tiates a dedicated entity for each layer. Features and gradients
flow through these layers in a tightly pipelined manner. From
a compact description of a model and target cluster, the NADA
software framework generates specific configuration bitstreams
for each particular FPGA in the cluster. We demonstrate the
scalability and flexibility of our approach by planning an example
CNN on a cluster consisting of three up to nine Intel Arria
10 FPGAs. To verify NADAs effectiveness for commonly used
networks, we train MobileNetV2 on a six-node cluster. We
address the inherent incompatibility of the tightly pipelined
layer parallel approach with batch normalization by using online
normalization instead. Since the presented framework is work in
progress some important topics will not be discussed. Especially
power efficiency measurements have not been taken, as the
implementation is not yet optimized towards practical clock
frequencies.

Index Terms—FPGA, Network Attached Accelerator, Mo-
bileNetV2, CNN, Layer Parallelism

I. INTRODUCTION

Machine learning is taking over more and more aspects of
our everyday life. As Deep Neural Networks (DNNs) grow
in complexity and training datasets grow in size, there is an
ever growing demand for computational resources. Training a
large DNN to a competitive accuracy today essentially requires
a high-performance compute cluster [1].

There are different approaches to the acceleration and hence
parallelization of DNNs: Today, Data Parallelism (DP) is most
commonly utilized and supported by most popular frameworks
such as PyTorch, TensorFlow and Caffe. A batch is split
into micro-batches and each is processed in parallel on a
separate compute node (e.g. GPU). The downside of this
approach is that, after each batch, all parameter gradients from
the individual compute nodes need to be added together to
compute the parameter update. This communication overhead
leads to diminishing returns for large clusters. In addition, all
parameters have to be stored on each compute node which
poses a problem for FPGAs with limited on-chip memory.

Training DNNs using Layer Parallelism (LP), where the
individual layers are processed in a pipelined manner, already
yields a significant speedup on GPU clusters [2]–[4]. On
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FPGA clusters, FPDeep [5], which also leverages the LP
approach, shows promising results. However, it only supports
a 1D cluster topology and neglects any form of normalization
as is used by most modern DNNs, limiting its applicability.

Data centers are increasingly being set up as heterogeneous
systems, in which FPGAs are used to complement CPU and
GPU-based nodes [6]. FPGA-based Network Attached Accel-
erators (NAA) will be used for higher integration flexibility.
These accelerators can be directly integrated into an existing
data center infrastructure through a network interface, and are
no longer housed in a carrier system. In order to use these
NAA clusters for training ML methods, it is necessary to
implement architectures that can scale beyond FPGA limits
and use the existing network infrastructure.

This paper introduces our Network Attached Deep learning
Accelerator called NADA. NADA is a flexible framework
which provides a flow from a high-level, functional description
of the DNN through generating register-transfer level code for
an FPGA cluster to orchestrating the training.

Our contributions include:
• We evaluate NADA’s flexibility by planning one model

for various clusters.
• We give an example of our high-level model description.
• We use this example to illustrate our tool flow.
• We demonstrate the viability of NADA for real-world

CNNs by training MobileNetV2 on the ImageNet dataset.
The structure of the paper is as follows: Related work is dis-

cussed in Section II, followed by an overview of the different
parallelization strategies for DNN training in Section III. We
explain our tool flow in Section IV, evaluate our framework in
Section V and finally draw a conclusion with focus on future
work in Section VI.

II. RELATED WORK

The training of Convolutional Neural Networks (CNNs) on
GPUs is a well-researched field. Popular frameworks provide
a user-friendy interface which hides the workload balancing
and distribution from the developer. An overview of parallel
deep learning techniques is given in [1], [7]. FPGA clusters
already deliver promising results for inference of DNNs [8]–
[12]. Much less work can be found on FPGA-based training
frameworks, especially ones targeting whole clusters.

Zhao et al. [13] presented a reconfigurable framework which
they call F-CNN. It focuses on a single-FPGA implementation,



using single precision floating point and batch parallelism.
They evaluated their framework by training LeNet-5 on the
MNIST dataset for handwritten digit recognition.

Luo et al. [14] proposed a framework called DarkFPGA
for training DNNs on a single FPGA. They also use batch
parallelism, but use an eight bit fixed point number format to
support low precision training. The evaluation was performed
with a small VGG-like CNN on the Cifar10 dataset.

Itsubo et al. [15] used an FPGA-based 10GbE switch to
implement the gradient accumulation and parameter update
part of training in hardware, serving a cluster of GPU workers.

Wang et al. [5] proposed FPDeep, an FPGA-cluster-based
training framework for CNNs and provided experimental re-
sults for the implementation of AlexNet and VGG16/19. They
used a deeply pipelined approach of hybrid Model Parallelism
(MP) and LP where they distributed the CNN model onto a
cluster of FPGAs. Due to this deeply pipelined approach, they
seem to avoid caching activations for the back propagation.
Claiming that a 1D topology outperforms a 2D topology, they
used a cluster of eight daisy-chained FPGAs to evaluate the
correctness and performance of their design by mapping a part
of VGG16 onto their cluster. Namely, the third to the fifth
convolution layer. Using a software simulator, they evaluated
the performance of their framework for larger clusters and
claimed linearity up to 100 FPGAs with 250 Gb/s bidirectional
bandwidth.

Lu et al. [16] used a reconfigurable approach to implement
a DNN training accelerator on a single FPGA. It is centered
around a reconfigurable processing element performing con-
volutions in eight bit fixed point and Batch Normalization
(BN) cores using half precision floating point. They trained
ResNet-20 on the Cifar10 dataset. Notably, they already raised
concerns about the FPDeep approach facing challenges on
models with BN.

Among these works, FPDeep is the only one targeting CNN
training on FPGA clusters. We advance upon the state of the
art by enabling CNN training on FPGA clusters while:

• Implementing directed acyclic graphs rather than just
sequences of layers.

• Utilizing off-the-shelf ethernet rather than custom point-
to-point connections.

• Optimizing the placement of layers across devices.

III. BACKGROUND

In classic CNN classifiers, data is fed through multiple
convolution-, bias- and activation layers to extract increas-
ingly complex features. The output of the final layer is then
flattened and fed into one or more dense layers, performing
the classification. The final layer of the network is typically a
Softmax layer, which outputs confidence scores for each of the
supported classes. CNNs can be structured as arbitrary directed
acyclic graphs, with layers as nodes and edges describing
which output connects to which input. We will subsequently
refer to the data carried on these edges as feature maps.

In order to train a CNN model, the classification is per-
formed on a labeled training dataset. In the context of training,
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Fig. 1. The three basic parallelization approaches.

this is referred to as the forward pass. The loss is then
calculated as the difference between the prediction and the
one-hot-encoded label. The gradients of the loss with respect
to the model’s parameters need to be computed to perform
the parameter update step using stochastic gradient descent
[17]. This is called gradient backpropagation or backward
pass and involves two steps: First, the gradients for all feature
maps are calculated by applying the chain rule going backward
through the model. Then, given these feature map gradients,
the gradients for the model’s parameters can be computed.
For some layers, this involves the feature maps from the
forward pass, which thus need to be buffered until they are
needed. For convolution, the most computationally expensive
layer in typical CNNs, the backward pass requires twice as
many operations as the forward pass [1]. Thus, in addition to
the much larger memory requirements, training of CNNs is
also approximately three times as computationally intensive
as inference.

Parallelization Strategies

Following Wang et al. [5], we distinguish three ways to split
the training task across multiple devices, illustrated in Figure 1
as the three dimensions of a cube.

• Data Parallelism (DP) splits the training data across the
cluster. Each device runs the full model on a subset of the
training set. Thus, if the subsets are already stored local to
the respective devices, no communication is required for
the forward and backward pass. However, because each
device holds a copy of the full model, parameter updates
need to be synchronized after each batch, incurring two
times the total parameter size in network traffic per node.

• With Layer Parallelism (LP), the individual layers of the
model are partitioned across the cluster. Features and
gradients are transferred over the network during the
forward and backward pass, while parameters stay local
to the device they were placed on.

• Model Parallelism (MP) further splits each layer into
multiple parts that are then individually placed onto
separate devices. For example, a convolution with 16
input channels could be split into two convolutions of
eight input channels each. Depending on the way the
layer is split, the resulting parts may or may not share
some or all of their parameters. If the parts have no
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shared parameters at all, MP can alternatively be seen
as a transformation of the CNN model before applying
LP.

Note that some authors have used slightly different naming
schemes. For example, model parallelism in [2] refers to what
we call LP.

The different parallelization approaches influence the
scheduling of tasks across the devices. Both DP and LP first
run the forward and backward pass, then do the parameter
update (and synchronization). During the parameter update
and synchronization step, the available compute resources
are not meaningfully utilized. Thus, any delay induced here
directly costs compute efficiency. For DP, this delay consists
of the parameter update itself plus the time for collecting the
gradients and distributing the updated parameters. With LP,
we need to wait for the pipeline to drain before applying
the gradient descent. Thus, the total delay is equal to the
time required for the parameter update plus the latency of
the forward and backward pass.

This means that for LP to be efficient, the pipelining needs
to happen with very fine granularity. If the whole pipeline must
have only a few frames of latency, the delay for each layer
needs to be a small fraction of a frame. We call this approach
tightly pipelined LP. Alternatively, Narayanan, Harlap et al.
[2] operate in a batch-wise manner, inducing a whole batch
of delay for each stage in the pipeline. To enable this, they
buffer old versions of the parameters for the backward pass.
In the memory-limited environment of an FPGA cluster, this
would be prohibitively expensive.

The parallelization scheme will also influence the memory
footprint. This is important because accesses to external mem-
ory are an expensive resource. They are orders of magnitude
more energy-intensive than accesses to on-chip memory [18].
In addition, traditional FPGA accelerator cards often provide
very limited DRAM bandwidth. Because of the long delay
between forward- and backward pass and the limited amount
of on-chip RAM, feature maps will always need to be stored in
external memory. For DP, one additional read will be incurred
for the forward pass because batches of feature maps need to
be buffered between layers. If parameters do not fit into the
on-chip RAM of a single device, they will need to be stored
in external memory as well. With LP, the combined on-chip

RAM of all devices is available to store parameters and gradi-
ents. If this is not enough however, a lot of external memory
bandwidth will be required due to the tightly pipelined ap-
proach. The ratio between compute complexity and parameter
memory requirements changes drastically between the first
and last layers of a CNN. This means that fully utilizing the
combined on-chip RAM incurs either a substantial drop in
throughput or an increase in network bandwidth requirements.
Generally, for data parallelism, parameters are transferred
over the network, while for layer parallelism, feature maps
are transferred wherever two consecutive layers are placed
on separate devices. Here, the potential advantage of layer
parallelism is that feature map transfer occurs in parallel with
computation, while parameter transfer occurs in sequence with
it.

Online Normalization

Batch Normalization (BN) [19] is a layer type commonly
used in CNNs to improve training speed and achievable
accuracy. It operates channel-wise on each batch, scaling and
shifting the feature map to approximate a normal distribution
around zero. Because of this batch-wise operation, it is incom-
patible with our tightly pipelined parallelization approach. To
work around this, we replace BN with Online Normalization
(ON) [20]. Like BN, ON normalizes the features along the
spatial dimension. However, instead of operating on each batch
independently, it computes a frame-wise running average.
Thus, the output depends on all previous inputs, making back-
propagation non-trivial. Online normalization handles this by
applying some compensating transformations in the backward
pass, introducing two new hyper-parameters αfwd and αbwd.
According to Chiley et al. [20] online normalization achieves
approximately the same accuracy as BN for ResNet50 on the
ImageNet 2012 classification task.

IV. TOOL FLOW

Our tool flow, shown in Figure 2, consists of four steps:
Plan, Implement, Build, and Run. As a whole, it takes a CNN
model, cluster description, and training dataset and generates
trained model parameters.

To demonstrate our tool flow, we will illustrate the individ-
ual stages using a minimal demo network. The CNN model is
defined in Python as shown in Listing 1.



def residual_block(output_channels, stride, source):
x = conv(output_channels, 3, stride, source)
x = relu(bias(x))
x = bias(conv(output_channels, 3, 1, x))

y = conv(output_channels, 1, stride, source)
y = add(x, y)
y = relu(y)
return y

# input name, [vertical, horizontal, channels]
x = add_input("input", [32, 32, 3])
# output_channels, kernel_size, stride, input
x = conv(16, 5, 2, x)
x = relu(bias(x))

x = residual_block(32, 2, x)
x = residual_block(64, 2, x)
x = conv(128, 1, 1, x)

x = global_avg_pool(x)
x = dense(10, x)

ref = add_input("label_one_hot", [10])
x = soft_cross_loss(x, ref)
add_output("output", x)

Listing 1. Example CNN model description.

Plan

The Plan step ingests Python files describing the FPGA
cluster as well as the CNN model and places each layer in the
model on one of the FPGAs in the cluster. Using the model
from Listing 1 and a cluster of four FPGAs, the performed
mapping is illustrated in Figure 3.

We want to find mappings of L layers to N FPGAs,
represented as dl,n ∈ {0, 1} with 0 ≤ l < L and 0 ≤ n < N ,
where dl,n = 1 means layer l is placed on FPGA n. Each
layer must be placed exactly once:

∑N−1
n=0 dl,n = 1 for

all layers l. These mappings need to respect the available
resources Ddev

n ,M dev
n , Bdev

n , Cdev
n ∈ R, refering to DSP cores,

on-chip RAM bits, DRAM bandwidth and network bandwidth
for FPGA n, respectively. For each layer type, we manually
define estimates of the implementation’s resource consump-
tion: Dlayer

l (t),M layer
l (t), Blayer

l (t) ∈ R as functions of the
throughput t ∈ R. The required bandwidth C layer

l,k (t) between
layers l and k can be calculated as tFl,k, where F is the
sum over all connections between l and k of the connection’s
feature map size.

Given these definitions, our mapping should maximize the
throughput t, while satisfying all resource constraints:

Maximize t subject to
L−1∑
l=0

dl,nD
layer
l (t) ≤ Ddev

n ∀n < N,

L−1∑
l=0

dl,nM
layer
l (t) ≤M dev

n ∀n < N,

L−1∑
l=0

dl,nB
layer
l (t) ≤ Bdev

n ∀n < N,

L−1∑
l=0

L−1∑
k=0

dl,n (1− dk,n)C
layer
l,k (t) ≤ Cdev

n ∀n < N,

N−1∑
n=0

dl,n = 1 ∀l < L

Note that the resource estimates can depend on the through-
put in complicated ways and are generally not differentiable,
ruling out any gradient based optimization approaches. We
approach this problem by doing a binary search for the highest
implementable target throughput. For each given throughput
we check the satisfiability of the above constraint using the
CP-SAT solver from the Google OR-Tools library.

Our actual implementation adds three additional constraints:
• For reasons explained in the next subsection, the number

of network connections for each FPGA is limited to a
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TABLE I
CONVOLUTION LAYER SPECIFICATIONS

Specification Parameter Conv(ϕ) Conv(ψ)

Output channels poc 16 64
Kernel shape

(
pkv, pkh

)
(5, 5) (3, 3)

Padding (2, 2, 2, 2) (0, 0, 1, 1)
Stride

(
psv, psh

)
(2, 2) (2, 2)

Parallel input channel ppic 1 2
Parallel output channel ppoc 4 2
Parallel horizontal pph 2 2
Parallel I/O

(
pi, po

)
(1, 1) (1, 1)

Cache size [frames] 10 10
Input Shape

(
piv, pih, pic

)
(32, 32, 3) (8, 8, 32)

Induced delay [frames] 0.23 0.91
Target throughput [fps] 3906.25 3906.25
Actual throughput [fps] 3906.25 4069.01
Output shape

(
pov, poh, poc

)
(16, 16, 16) (4, 4, 64)

maximum of P ∈ N+.
• Each network hop introduces some amount of latency,

which can lead to stalls when two branches that have
taken different paths across the cluster join. In order
to avoid having to calculate and compensate for these
delays, joining branches are required to have taken an
equal number of network hops from the input.

• Input- and output layers are forced onto FPGA 0. We
transfer inputs and outputs via PCIe and in our cluster,
only one FPGA is directly connected to the host.

For each FPGA, the Plan step emits a json file describing
the layers to be implemented and their internal connections.
For the convolution layer, the required specifications are listed
in Table I. An additional json file contains information about
the connections between the FPGAs.

Implement

NADA is built on top of an accelerator framework [21]
previously developed in our group. It provides access to
DRAM, a UDP stack, and a Command Control Interface (CCI)
which can be accessed via either PCIe or over the network.
We use SpinalHDL to implement a socket for the accelerator
framework, which executes the part of the CNN mapped to
the specific device.

Each layer is implemented in a separate component which
provides a unified interface, as shown in Table II. It contains
an optional AXI master interface for DRAM access. A set
of control registers connected to the CCI interface is used
to check the status of the accelerator, to set learning rate
and momentum, to trigger parameter updates and to write
and read back parameters. Features and feature gradients are
transferred in a pipelined manner using stream interfaces with
valid / ready handshake. Layers can have multiple in- and
outputs. E.g. the add layer adds features from I = 2 inputs
and generates J = 1 output. To meet the desired throughput
for both the input and output of each layer, parallel transfer
of pi input features and po output features can be performed.
During the backward pass, when feature gradients stream in

TABLE II
UNIFIED LAYER INTERFACE

Description Direction Type #

Axi4 master Axi4 ≤ 1
Features input Stream(Vector(Float32)) I
Features output Stream(Vector(Float32)) J
Feature gradients input Stream(Vector(Float32)) J
Feature gradients output Stream(Vector(Float32)) I
Parameter input Stream(Float32) 1
Parameter output Stream(Float32) 1
Parameter read request input Boolean 1
Parameter update request input Boolean 1
Parameter update done output Boolean 1
Learning rate input Float32 1
Momentum input Float32 1
Frame done output Boolean 1

the opposite direction, parallel transfer of po input feature
gradients and pi output feature gradients is carried out.

Layers on different FPGAs are connected using the UDP
stack provided by the accelerator framework. UDP provides
neither flow control nor error handling. To work around this,
priority-based ethernet flow control [22] is used, assigning
each connection of an FPGA a dedicated priority. Ethernet
supports a maximum of eight different priorities, thus limiting
us to eight connections.

We detect packet loss by adding a counter to the beginning
of each packet. The receiving end checks that these packet
numbers always increment by one. In our current setup with
only a single switch, we have not yet observed any packet
loss. Because of this, errors are only detected but not handled
in hardware. Instead, the software controlling the accelerator
recovers from a previous state if necessary.

The SpinalHDL implementation emits Verilog code, which

FPGA

Socket

NetGraph

UDP
Stack

CCI

Network

PCIe DRAM

Control

Conv
(φ)

Bias Conv
(ψ)

Dense Soft
Cross

Axi4
Stream
Reader

Axi4
Stream

Read/Writer

Fig. 4. Architecture implemented on FPGA 0 in the cluster.



TABLE III
ESTIMATED AND ACTUAL RESOURCE CONSUMPTION OF CONVOLUTION

LAYERS.

Parameter Conv(ϕ) Conv(ψ)
Estimated Actual Estimated Actual

on-chip RAM [Kb] 272.9 518.4 1446.6 1659.5
DSPs 32 32 38 38

TABLE IV
RESOURCE CONSTRAINTS PER FPGA

Symbol Resource Available
Total for Planning

M on-chip RAM 55 Mb 35 Mb
D DSPs 1518 1500
B DRAM Bandwidth† 50 Gbps 50 Gbps
C Ethernet Bandwidth† 40 Gbps 40 Gbps
P PFC connections 8 6∗

Clock Rate 100 MHz 100 MHz
†Full duplex.
∗Maximum number supported by the switch.

TABLE V
EXAMPLE CNN

Input Operator t c n s

2242 × 3 im2col 3× 3 27 1
1122 × 27 bottleneck 32

27
16 1 1

1122 × 16 bottleneck 4 16 1 2
562 × 16 bottleneck 6 24 2 2
282 × 24 bottleneck 6 48 2 2
142 × 48 bottleneck 6 64 2 1
142 × 64 bottleneck 6 128 1 2
72 × 128 bottleneck 6 256 1 1
72 × 256 conv2d 1× 1 1024 1 1
72 × 1024 avgpool 7× 7 1024 1
12 × 1024 conv2d 1× 1 1000 1

TABLE VI
BOTTLENECK RESIDUAL BLOCK

Input Operator Output

h× w × k 1× 1 conv2d, ReLU6 h× w × (tk)

h× w × tk 3× 3 dwise s=s, ReLU6 h
s
× w

s
× (tk)

h
s
× w

s
× tk 1× 1 conv2d h

s
× w

s
× k′

is then synthesized for each FPGA.
Figure 4 shows a block diagram of the hardware architecture

implemented in FPGA0. Due to the third additional constraint,
the input- and output layers (Convolution layer ϕ, the softmax-
and cross entropy loss function) are placed onto this device.
Additionally, the bias layer following the first convolution and
the convolution layer ψ are implemented on FPGA0.

The layer specifications for both convolutions on FPGA0,
emitted by the Plan stage, are given in Table I. Each layer
must at least support the overall target throughput.

For the given model and cluster, placement was successful

at 3906 fps. The estimated and required resource consumption
of the convolution layers ϕ and ψ are given in Table III.

Run
To run the actual training, the bitstream files generated in

the previous step need to first be programmed to the FPGAs
in the cluster. The training script then uses the information
passed on from then Plan and Implement steps to discover the
FPGAs on the network by a unique ID assigned to their socket
and to set up the network connections between them.

Initial parameters are written to each layer via CCI. Then,
for each batch, inputs are written to the DRAM of FPGA 0,
and all FPGAs in the cluster are signaled to start processing.
Once all layer implementations have finished processing the
batch, parameters are updated with the accumulated gradients
and the next batch is started. At any point, the current
parameters can be read back via CCI. Currently, this is done
once at the end of each epoch. But should the network become
less reliable, more frequent snapshots are easily implemented.

V. EVALUATION

The evaluation of NADA is split into two parts: 1. Eval-
uating the scalability and flexibility by planning an example
CNN on a cluster of three up to nine FPGAs. 2. Building
and training MobileNetV2 [23] utilizing real hardware. We
have access to a cluster of six Arria 10 GX1150 FPGAs
connected via 40 Gbps Ethernet using a Mellanox SN2100
switch. Resource constraints per device are given in Table IV.

Scalability
The example CNN is defined in Table V. Each line describes

a sequence of one or more layers repeated n times, where the
first has stride s, while all others have stride 1. All layers in
the sequence have c output channels. The bottleneck residual
blocks, described in Table VI, have k input- and k′ output
channels with stride s and expansion factor t. All convolutions
are followed by normalization and bias.

Training of this CNN on the ImageNet dataset requires
∼700 MOPS / frame. It has ∼1.8 M parameters in total of
which ∼1.0 M belong to the Dense layer whose parameters
are stored in DRAM. As we train in single precision floating
point, a minimum of 50 Mb of on-chip RAM is required just
for the parameters and corresponding gradients. Considering
overheads (e.g. UDP and PCIe), successful placement requires
at least three FPGAs. Figure 5 shows the throughput for the
example CNN on a cluster of up to nine nodes. Without MP
planning, it shows linearity up to six devices. Utilizing straight
forward MP for the first two bottleneck groups results in a
continued linear rise. In each bottleneck group, the output
of the first convolution layer is sliced and then processed in
separate layers. Designs MP2 and MP4 were sliced two and
four times, respectively. From seven devices onwards, planning
MP2 results in a better throughput and only for nine devices
is MP4 beneficial.

Figure 6b shows the resource utilization planned for MP4.
Clearly, it is DRAM bandwidth bound with all devices uti-
lizing well over 90% and an average of 97%. Figure 6c



shows the device utilization for the example CNN without MP.
Single layer implementations become so resource intensive
that is impossible to have a high resource utilization across
all devices, resulting in a lower throughput.

As shown in Figure 6a the most computationally complex
layer type is the convolution, but a non-negligible share of the
resources is spent on the normalization. Especially the DRAM
bandwidth required for the backward pass should be easily
alleviated in the future by computing the output of the forward
pass again instead of buffering it in DRAM.

As shown in Table IV, we allow the planning step to utilize
only 35 Mb of the 55 Mb of on-chip RAM available on each
FPGA. This is to compensate for overheads not captured in our
resource estimates. On one hand, the estimates neglect some
components of our hardware architecture, like the memory
interconnect and the UDP/IP stack. More significantly though,
on-chip RAM bits are simply a poor proxy metric for the
actual constrained resource, the Block RAM (BRAM) block.
On the Arria 10 FPGA, each BRAM block has a fixed size of
20 kb and a minimum depth of 512 words. If the memories
in the design do not partition nicely into these blocks, large
overheads can quickly accumulate.

To illustrate this, we take a look at two devices from the
no MP design on the nine FPGA cluster. According to the
resource estimates, device 2 has the lowest on-chip RAM
utilization, at just ∼0.16 Mb, while device 1 has the highest
at ∼26 Mb. The synthesis for both designs reports an actual
utilization of ∼4.8 Mb for device 2 and ∼31 Mb for device
1, consistent with a small static overhead of ∼5 Mb. Even the
smaller design however uses an astonishing 68% (1858 blocks)
of the available 2713 BRAM blocks. The larger design still
gets built successfully, but utilizes every single BRAM block
available. This is possible because once all BRAM blocks
are exhausted, the place-and-route tool (Quartus) will start
implementing smaller on-chip RAMs as distributed RAM or
even registers instead. This behavior makes it even harder to
select a proper threshold for the planning step. We arrived at
the current value of 35 Mb by trial and error, reducing the
target until builds started to consistently succeed.
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Fig. 5. Achieved throughput for training the example CNN on a cluster of
Arria 10 GX1150 FPGAs. Planned without Model Parallelism (no MP) or
with a factor of two (MP2) and four (MP4), respectively. For N ≤ 6, all
three perform the same. For N ≤ 8, MP4 performs the same as MP2.

ALMs and registers were not considered for the Plan step
because their utilization is negligible. The no MP design on
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Fig. 6. Planned resource utilization for training the example CNN with MP4
per layer (a) and per device (b) and also per device with no MP (c).
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Fig. 7. Training performance of the various model variants. The torchvision
models use a learning rate of 0.1 with cosine annealing and a momentum of
0.95. For our implementation, the learning rate is 0.04 with a step decay after
30 epochs and a momentum of 0.91. Training was stopped after 100 epochs
as no more accuracy improvement was observed.

the nine FPGA cluster required a maximum of 36% ALMs and
18% registers with an average of 25% and 13%, respectively.

MobileNetV2

We implement MobileNetV2 for our framework, replacing
BN with ON. We apply the NADA tool flow for our cluster
of six nodes and run training on the ImageNet dataset for 100
epochs. The planning and synthesis on an AMD-EPYC-7443
took 24 minutes and 3 hours, respectively.

Our design is not yet optimized for timing, running at
100 MHz, which results in 4 days to train 100 epochs.
At this clock rate, our six-node cluster (20 nm technology)



ideally provides 1.8 TFLOPS. At 1.8 GFLOP per frame, this
leads to a maximum theoretical throughput of 1000 fps. We
actually achieve a throughput of 395 fps, or 359 fps including
parameter update, equivalent to 35.9 % of the maxmimum.
As a point of reference, we train the same model using
PyTorch on one Tesla V100 GPU (12 nm). It provides 14
TFLOPS of theoretical performance and reaches a throughput
of 831 fps, i.e. 10.7 % of the maximum. Regarding DRAM
bandwidth utilization, the Tesla V100 provides 7.2 Tbps. Our
cluster provides a total of 600 Gbps, just 8.3 % of the GPU’s
bandwidth. While NADA’s absolute performance still lacks
behind the GPU for this model and cluster, it makes more
efficient use of the devices: By more than a factor of three
with respect to compute performance and a factor of five in
DRAM bandwidth.

Figure 7 shows the validation accuracy achieved after each
epoch of training. As a baseline, it contains the MobileNetV2
model from the torchvision library, trained using cosine an-
nealing. Replacing BN with ON in this model leads to a drop
in accuracy of ∼3%. To avoid randomness when comparing to
the reference implementation, our model does not contain the
Dropout layer used by the torchvision variant of MobileNetV2
before the final Dense layer. This is likely the reason our model
as implemented for NADA performs slightly worse still. To
ensure the correctness of our hardware implementation, we
export the model from NADA back to PyTorch. As expected,
this variant run on the GPU performs essentially the same as
on the FPGA cluster.

VI. CONCLUSION

NADA is an easy-to-use framework for flexible and scalable
DNN training on FPGA clusters. It operates in a tightly
pipelined layer-parallel manner, circumnavigating the inherent
incompatibility of this approach with batch normalization by
using online normalization instead. We showcased the scalabil-
ity of NADA using an example CNN, and we demonstrated its
viability for real world applications by training MobileNetV2.

Future Work

Our focus at the moment is on supporting larger models
and achieving more competitive throughput. The main obstacle
in supporting larger models is the limited on-chip RAM. In
order to make full use of the already available resources, we
are working on a more accurate memory estimation operating
with BRAM blocks rather than on-chip RAM bits. Much
larger gains can be made by integrating more modern FPGAs
into our setup. Heterogenous clusters will also serve as a
key enabler towards achieving more competitive throughput.
FPGAs supporting HBM can help utilize all the available
compute power, even for layers with a low ratio of compute
complexity to feature map size.

In general, we plan to use NADA as a testbed for further
exploration of parallelization and optimization strategies for
distributed DNN training.
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