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Abstract—The design and optimization of hardware have
traditionally been resource-intensive, demanding considerable
expertise and dependence on established design automation tools.
This paper discusses the possibility of exploiting large language
models to streamline the code generation process in hardware
design. In contrast to earlier studies, this paper aims to use
large language models that accepts high-level design specifications
through a single prompt to generate corresponding Register-
Transfer Level (RTL) code. The ability to use large language
models on RTL code generation not only expedites design
iteration cycles but also facilitates the exploration of design
spaces that have computational challenges for conventional tech-
niques. Through our evaluation, we demonstrate the shortcoming
of existing attention mechanisms, and present the abilities of
language models to produce functional, optimized, and industry-
standard compliant RTL code when a novel attention mechanism
is used. These findings underscore the expanding role of large
language models in shaping the future landscape of architectural
exploration and automation in hardware design.

Index Terms—hardware design, large language models, atten-
tion mechanisms, design automation, RTL code generation

I. INTRODUCTION

The advanced manufacturing technology has led to the
creation of increasingly complex hardware architectures, pro-
pelling progress in various sectors including healthcare,
telecommunications, and autonomous systems. However, the
process of designing and optimizing these architectures re-
mains cumbersome, inefficient, and highly dependent on hu-
man expertise. Current methodologies necessitate specialized
skills in hardware description languages, such as Verilog or
VHDL, and a thorough understanding of design automation
tools. This complexity not only results in labor intensive
design processes, but also poses limitations on exploring the
vast and intricate design spaces. As a result, the industry has
been struggling with higher costs and prolonged development
cycles.

Recently, the application of machine learning techniques,
specifically large language models (LLMs), has been explored
[1]-[5] as a solution to automate and optimize code generation
tasks. These models show potential in generating module-
level code in industry standards. However, their capabilities
have been largely confined to writing single, isolated modules,
leaving a gap in the full-scale architectural exploration and
design automation.
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In the context of LLMs, zero-shot denotes the model’s
capacity to perform tasks for which it has not explicitly trained
on. In hardware design, this implies the model’s ability to
interpret high-level design specifications even in the absence
of prior examples related to similar tasks. This approach is
particularly valuable, as it facilitates adaptable and responsive
handling of a diverse array of design requirements, empow-
ering designers to explore innovative solutions without the
need for the model to undergo specialized training for each
distinct type of hardware design task. Note that while a given
LLM may have been trained on a corpus that includes RTL
code (e.g., Verilog), along with other non-hardware-related
information, it has not undergone direct training to translate
high-level design concepts into RTL. This distinction is crucial
for appreciating the contributions of this work.

Currently, existing LLMs struggle generating large code
bases that align seamlessly with the provided prompt, pri-
marily attributed to the limitations imposed by the context
window size. This work aims to demonstrate the feasibility
of zero-shot prompting to generate high quality RTL code.
To do so, we present an approach that leverages the power
of LLMs in conjunction with a recently introduced atten-
tion mechanism called attention sink [6]. In this scenario, a
singular prompt encapsulates high-level design specifications,
and the underlying language model, enhanced with attention
sink, is employed to generate the comprehensive RTL code.
This not only significantly expedites the design process, but
also enables tackling design spaces that have hitherto been
computationally infeasible for traditional methods.

Below is the summary of main contributions and novelty of
this work:

o survey the shortcoming of existing LLMs with available

attention mechanisms in RTL code generation;

o present a methodology that leverages LLMs for auto-
mated RTL code generation from high-level specifica-
tions, without the need for model fine-tuning specific
to RTL (note that fine-tuning for RTL is challenging
due to lack of industry-standard compliant comprehensive
training data);

o integration of a newly introduced attention mechanism,
attention sink, with LLMs that addresses the challenges
posed by traditional LLMs in managing long-sequence



tasks;

o demonstrate LLMs ability (with attention sink mecha-
nism) to interpret and generate functional, optimized,
and industry-standard compliant RTL code for an Neural
Processing Unit (NPU);

o provide insights for future innovations in LLM-based
hardware design automation tools.

In the following, we provide some background on existing
efforts within the domain and elucidate their limitations.
Subsequently, we provide the specifications of the NPU used
as a case study. Thereafter, we outline our proposed approach,
explain the methodology employed in evaluation, and present
our findings. Our findings suggest that LLMs that enhanced
with the novel attention mechanism can produce functional,
optimized, and industry-standard compliant RTL code. This
work contributes to the ongoing discussions about the potential
of LLMs in facilitating more efficient design automation and
architectural exploration.

II. BACKGROUND
A. Existing LLMs and their limitations in RTL code generation

The design of emerging hardware architectures (e.g., Al
accelerators) involves complex logic circuits and sophisticated
elements tailored to specific tasks, often demanding prompts
with long and detailed specifications. To generate effective
RTL code, the prompts must encompass comprehensive func-
tional requirements, specifying the design’s operational range,
data processing capabilities, and logical structures for the
desired computation. When utilizing large language models for
RTL code generation, accurate interpretation and implementa-
tion of these detailed specifications are vital for creating func-
tionally effective and technically accurate hardware designs.
Nevertheless, we note that existing LLMs often produce RTL
code that is either non-synthesizable or functionally incorrect.
Below, we outline the most prevalent failures observed in
LLMs when generating RTL code.

Redundant copies of variables: LLMs often forger the
original prompt (mainly due to the limited context window)
and regenerate the variables from the other modules, instead
of instantiating these modules, as shown in Listing 1.
Hallucinating Variables and Specifications: A notable chal-
lenge in LLM generated RTL code is hallucination, where the
model diverges from providing the requested code and instead
generates extraneous variables or specifications. In LLMs, the
Key-Value (KV) cache plays a crucial role in the transformer
attention mechanism [7], a core component that determines
how the model processes and generates text. The KV cache
is used to store and manage ’keys’ and ’values, which are
elements that represent aspects of the input tokens and their
associated contextual information.

In LLMs, using attention mechanisms like dense and win-
dowed attention reveals context window limitations, especially
when processing text longer than the KV cache size. Dense
attention may cause model to hallucinate, especially with
variable definitions, as shown in Listing 2, due to a weakened

Listing 1. Redundant Copies of Variables

module bfloat16_addsub #(
parameter WIDTH = 16

) (
input logic [WIDTH-1:0] a,
input logic [WIDTH-1:0] b,
output logic [WIDTH-1:0] result,
input is_sub

logic [WIDTH-1:0] a_sign, b_sign, result_sign;
logic [WIDTH-1:0] a_exp, b_exp, result_exp;

logic [WIDTH-1:0] a_mant, b_mant, result_mant;
logic [WIDTH-1:0] shift_amount;

logic [WIDTH-1:0] shifted_mant_a, shifted_mant_b;
logic [WIDTH-1:0] sum;

logic [WIDTH-1:0] carry;

module bfloat16_div #(
parameter WIDTH = 16

) (
input logic [WIDTH-1:0] a,
input logic [WIDTH-1:0] b,
output logic [WIDTH-1:0] result

module processing_element #(
parameter WIDTH = 16

)

input [WIDTH-1:0] b_in,

output logic [WIDTH-1:0] result

logic [WIDTH-1:0] shift_amount;

logic [WIDTH-1:0] shifted_mant_a, shifted_mant_b;
logic [WIDTH-1:0] sum;

logic [WIDTH-1:0] carry;

logic [WIDTH-1:0] product;

context mechanism that loses earlier code segments. While
windowed attention is more memory efficient, it can increase
language modeling perplexity, thereby reducing the model’s
coherence and accuracy in code generation.

Similarly, Listing 3 shows that instead of producing the de-
sired code, LLM continues to elaborate or invent specifications
that were not part of the original prompt. This behavior can be
attributed to the model’s difficulty in contextual understanding
and its tendency to fill gaps in its knowledge by generating
plausible-sounding, but ultimately useless content. Hallucina-
tion in code generation is particularly problematic as it can
lead to bloated, convoluted designs that stray significantly



Listing 2. Hallucinating Variables

Listing 4. Corrupt Output

logic [15:0] a_sign;

logic [15:0] b_sign;

logic [15:0] result_sign;

logic [15:0] result_exp;

logic [15:0] result_mantissa;

logic [15:0] a_exp;

logic [15:0] b_exp;

logic [15:0] a_mantissa;

logic [15:0] b_mantissa;

logic [15:0] a_mantissa_shifted;

logic [15:0] b_mantissa_shifted;

logic [15:0] a_mantissa_shifted_sub;

logic [15:0] b_mantissa_shifted_sub;

logic [15:0] a_mantissa_shifted_add;

logic [15:0] b_mantissa_shifted_add;

logic [15:0] a_mantissa_shifted_sub_normalized;

logic [15:0] b_mantissa_shifted_sub_normalized;

logic [15:0] a_mantissa_shifted_add_normalized;

logic [15:0] b_mantissa_shifted_add_normalized;

logic [15:0] a_mantissa_shifted_sub_normalized_result;
logic [15:0] b_mantissa_shifted_sub_normalized_result;
logic [15:0] a_mantissa_shifted_add_normalized_result;
logic [15:0] b_mantissa_shifted_add_normalized_result;
logic [15:0] a_mantissa_shifted_sub_normalized_result_final;
logic [15:0] b_mantissa_shifted_sub_normalized_result_final;

from the intended outcome, necessitating rigorous review and
correction by human experts. Addressing this challenge re-
quires refining the model’s ability to stay focused on the initial
prompt and its relevant context, ensuring that the generated
code remains aligned with the specific requirements of the
RTL design task.

Listing 3. Hallucinating Specification

module processing_element #(
parameter WIDTH = 16
) (
input logic clk,
input rst,
input [3:0] opcode,
input [WIDTH-1:0] a_in,
input [WIDTH-1:0] b_in,
output logic [WIDTH-1:0] result

logic [WIDTH-1:0] a_sign, b_sign, result_sign;
logic [WIDTH-1:0] a_exp, b_exp, result_exp;
logic [WIDTH-1:0] a_mant, b_mant, result_mant;
logic [WIDTH-1:0] shift_amount;
logic [WIDTH-1:0] shifted_mant_a, shifted_mant_b;
logic [WIDTH-1:0] sum;
logic [WIDTH-1:0] carry;
logic [WIDTH-1:0] product;
logic [WIDTH-1:0] quotient;

assign a_sign = a_in[
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modules.

Corrupt output: Corrupt output in the generated RTL code
can primarily be attributed to the inherent limitations of win-
dow attention mechanism in handling long sequences. While
this method is effective for shorter texts, it struggles with
longer sequences, such as detailed RTL code specifications.
In these situations, as the model progresses through the input,
crucial tokens from the initial sections might fall outside the
window’s reach, leading to a loss of context. This results in the

model generating code that is either incomplete or nonsensical,
as illustrated in Listing 4.

Variable type and size mismatch: The variable size or type
mismatches arise not from erroneous processing of data per
se, but from the context-dependent nature of tokenization in
fine-tuned LLMs. Tokenization involves breaking down the
given text into tokens. In fine-tuned models, this process is
often optimized for specific contexts or data types. However,
when these models encounter numeric values or specific syntax
outside their primary training scope, they may misinterpret
the context, leading to tokenization problems. For instance,
a model might incorrectly tokenize ’11° as ’111° if it is
not adequately attuned to the nuances of RTL code syntax,
as exemplified in Listing 5. Such mismatches in variable
sizes and values can result in significant logical errors in the
generated code. This limitation highlights the need for more
context-sensitive tokenization methods in LLMs, especially
in specialized domains like RTL code generation, where the
accuracy of every token is crucial for the integrity of the
output.

Inability to capture intended hardware behavior: LLMs
often struggle in adhering to specific conventions within RTL
coding, which are crucial for preventing undesired hardware
behavior. For example, LLMs often overlook the RTL design
principle of avoiding the direct assignment of a single ele-
ment from one buffer to multiple positions in another buffer,
favoring the assignment to a register first [5]. Furthermore,
the generation of unnecessary ports, as depicted in Listing 6,



Listing 5. Variable Size Mismatch

module instruction_decoder (
input [31:0] inst,
output logic [3:0] opcode,
output logic [1:0] srcl,
output logic [1:0] src2,
output logic [1:0] dest

)
assign opcode = inst[3:0];
assign srcl = inst[7:6];
assign src2 = inst[9:8];
assign dest = inst[111:10];
endmodule

deviates from the best design practices and not only complicate
the design but may also lead to conflicts or inefficiencies
in hardware implementation. Such deviations from the es-
tablished RTL coding conventions, underscore the need for
more sophisticated understanding and application of hardware
design principles in LLMs, ensuring that the generated code
not only meets the functional requirements, but also adheres
to the practical and efficient design standards essential in RTL
development.

Listing 6. More Ports than Necessary

input logic clk,

input logic rst,

input logic [3:0] opcode,

input logic [15:0] a_in,

input logic [15:0] b_in,

input logic [15:0] scalar_in,

input logic [$clog2(4)—1:0] vector_wr_addr,
input logic vector_wr_en,

input logic [15:0] vector_wr_data,

input logic [$clog2(4)—1:0] scalar_wr_addr,
input logic scalar_wr_en,

input logic [15:0] scalar_wr_data,

input logic [$clog2(4)—1:0] vector_rd_addr,
input logic [$clog2(16)—1:0] vector_rd_elem_addr,
output logic [15:0] result

Improper treatment of user instructions: Oftentimes, users
provide custom directions to language models to guide the
process of RTL code generation. Nevertheless, these language
models can encounter difficulties when it comes to connecting
these instructions in natural language with the correct code
generation. For example, when asked to break down a given
module into specific sub-modules, they might have trouble
accomplishing it [5].

The problems described above limits the effective use of
LLMs in automated RTL code generation. Some of these
problems can be alleviated by employing multiple prompts.
In such scenarios, each prompt corresponds to a particular
module in the design, and as these modules often have
dependencies on one another: the outcomes of earlier prompts
need to be transferred to the subsequent prompts. This leads
to a lengthy chain of dependency tracking, requiring manual
effort, being error-prone, and consuming a significant amount

of time. Furthermore, the subsequent prompts in the sequence
might not effectively manage lengthy responses from earlier
prompts because of their limited context cache size. In this
work, however, we focus on automated RTL code generation
with a single prompt, which poses event more significant
challenges.

An orthogonal approach to address these problems is to
refine existing LLMs by fine-tuning them with annotated
RTL code. However, this approach encounters challenges
due to the limited availability of well-annotated RTL code
with accompanying design explanations and the absence of
advanced LLMs suitable for fine-tuning. Below, we provide
further details on instruction-tuning and fine-tuning of LLMs
for RTL code generation.

B. Instruction-Tuning and fine-tuning LLMs for RTL code
generation

We explore instruction-tuned LLMs specifically for code
generation tasks, a methodology that offers distinct advan-
tages over their non-fine-tuned counterparts. These instruction-
tuned models demonstrate a greater proficiency in adhering
to specified design parameters and enable iterative refine-
ment to correct errors, making them particularly suitable for
specialized tasks, such as automated RTL code generation.
This instruction-tuning process is crucial for enhancing the
precision and utility of the generated code, ensuring that
domain-specific nuances and technicalities are accurately cap-
tured. However, it is important to note that not all LLMs
available for RTL code generation are instruction-tuned. For
instance, VeriGen [4] represents an LLM developed for Verilog
code generation, but it is not instruction-tuned, which is a
primary reason for its exclusion from our analysis. Our focus
on instruction-tuned models is driven by the need for high
accuracy and relevance in generated RTL code, aligning with
the specific requirements of the design tasks at hand.

C. Attention Mechanisms in LLMs

In LLMs, the management of attention mechanisms, such
as window attention [8] and dense attention pose distinct
challenges and trade-offs. Window attention offer efficiency
during inference but can increase language modeling perplex-
ity, particularly when the text length exceeds the cache size.
This increase in perplexity is mainly due to the exclusion of
initial tokens from the focus of the LLM. In contrast, dense
attention, when used with a cache size exceeding the given
context size, results in significant memory consumption and
slower processing speeds. Moreover, it often leads to poorer
output quality, as the model is not trained on excessively
long sequences of inputs and struggles with extended contexts
beyond its training limits.

To mitigate the challenges posed by both window and dense
attention mechanisms, an effective approach was introduced,
recently, called attention sink in the StreamingL. LM work [6].
This attention sink concept underscores the crucial role of
initial tokens in maintaining the stability of LLM outputs,
addressing the instability issues associated with the exclusion



of these tokens in window attention techniques. The attention
sink approach recognizes the significance of initial tokens,
regardless of their distance from the tokens currently being
predicted, offering a nuanced understanding and enhance-
ment of attention mechanisms in the LLMs. Furthermore,
StreamingLLM refines the approach to token selection and
context caching, which are critical to overcoming the limita-
tions of conventional LLMs. By intelligently managing token
retention and context caching, StreamingLL.M mitigates the
common challenges of handling of extended sequences and
ensures a consistent and stable attention mechanism while the
model operates on sequences of unlimited length.

In this work, we use attention sink mechanism to augment
an LLM’s ability to preserve specifications during the whole
generation of RTL code. Attention sink mechanism addresses
the challenges associated with high memory demands and
the traditional constraints of LLMs handling of long-sequence
data. It enables LLMs to maintain critical hardware spec-
ifications consistently, thereby enhancing the accuracy and
coherence of the generated RTL code.

IITI. A CASE STUDY: NPU

To analyze the RTL code generation capabilities of LLMs
with different attention mechanisms (dense, window, and at-
tention sink), we design Neural Processing Unit (NPU) that
accelerates bfloat16 vector operations. This design serves as
a practical illustration of how these attention mechanisms can
be harnessed in a real-world RTL design scenario, thereby
providing a tangible comparison of their performance and
efficacy in managing complex design tasks.

Below is an overview of the critical design choices made for
the Neural Processing Unit (NPU), focusing on the adoption
of the bfloat16 data type and the implementation of a pipelined
architecture (see Fig. 1). These choices are pivotal, influencing
the performance, efficiency, and capability to manage complex
vector operations of NPU for testing RTL code generation of
LLM with different attention mechanisms.

o Accelerator Design: We employed an NPU vector co-
processor in our evaluation design to comprehensively
explore the capabilities of LLMs in generating code for
non-standard architectural designs.

o Data Type: We chose bfloatl6 as the data type to test
the capabilities of LLMs’ to work with non standard/less
used data types.

o Pipelined Architecture: We chose a pipelined design
to test the abilities of LLMs’ usage of signals across
modules.

The incorporation of bfloatl6 and a pipelined architecture
into the NPU design allows testing various attention models,
maintaining a balance between efficiency and high perfor-
mance standards.

IV. EVALUATION

A. Evaluation Setup

We picked four large language models for evaluation: GPT-
4 and the top four models from the BigCode LLM Leader-
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Fig. 1. Block diagram of pipelined NPU datapath.

board [9]. The details of these LLMs are given in Table I.
Initially, we assessed the ability of these models to accurately
follow prompts for converting high-level specifications into
RTL code. Subsequently, with the model that best adhered to
these instructions, we tested attention sink mechanism against
commonly used attention caching techniques in the field. Note
that we haven’t fine-tuned any LLMs specifically for Verilog
code generation. Rather we use existing LLM models with
instruction-tuning. This is simply because of the limitations
of training large models (scarcity of industry-standard high
quality training dataset) and we want to show that it is possible
to generate high quality RTL code, even without fine-tuning
for Verilog.

In the evaluation of attention sink enhanced LLMs, we
employed a specialized streaming cache (part of the KV
cache), tailored specifically for our RTL code generation tasks,
using the Streamingl.LLM framework. This streaming cache is
configured to enhance the RTL generation capabilities of the
model. Basically, we set the size of the streaming cache to
the size of the initial prompt, thereby designating all tokens
within the prompt as attention sinks. These tokens, which are
critical for retaining the context and specifications of the initial
prompt, are permanently kept in memory within the cache.
The remainder of the KV cache is dynamically allocated to
the newly generated code, effectively combining the static
prompt with the dynamic output in a seamless manner. The
total KV cache, thus, comprises the streaming cache and the
latest generated tokens, filling the context window to optimize
both retention of essential context and incorporation of new
code. This configuration of the cache ensures that the model
efficiently manages extended sequences while maintaining the
integrity of both the static and evolving elements of the code
generation process.

The evaluations were performed on the GPU cluster that
features NVidia A100 GPUs. The details of the evaluation
platform is given in Table II.

We observed distinct differences in how these models
responded to our prompts. A notable issue with some of
the models was their tendency to rely heavily on comments
or non-executable segments, rather than producing functional



TABLE I
LisT oF LLMS EVALUATED

Model Name Number of Parameters
GPT-4 [10] Not Specified
WizardCoder-Python-34B-V1.0 [11] 34B
Phind-CodeLlama-34B-v2 [12] 34B
CodelLlama-34b-Instruct [13] 34B

TABLE IT
EVALUATION PLATFORM SPECIFICATIONS

Component Specification
Server HP Proliant XL.675d Genl10 Plus
GPUs 8x A100 80GB SXM
CPUs 2x AMD EPYC 7742 @ 2.24GHz
RAM 1TB

RTL code. This pattern is exemplified in Listing 7, where the
model generates extensive comments outlining the intended
logic, but falls short in translating these concepts into concrete
RTL code. Such outputs, while descriptive, do not fulfill the
practical requirement of generating usable RTL code. Among
the LLMs being used, WizardCoder able to interpret our
prompts more effectively, translating high-level specifications
into precise and synthesizable RTL code with greater relia-
bility and less reliance on non-executable textual fillers. This
ability to generate functional code with minimal extraneous
content made WizardCoder a more suitable candidate for
further testing and analysis, particularly in assessing attention
sink mechanism against other attention mechanism. Again,
the selection of WizardCoder for the rest of the analysis was
driven by its demonstrated proficiency in adhering closely to
the instructions and generating practical, executable RTL code
in response to our prompts.

To rigorously evaluate the correctness of the code generated
by the selected LLMs, we employed a comprehensive testing
methodology focusing on error rates. The error rate is deter-
mined by the percentage of code that is generated incorrectly
or not generated at all. For cases where an entire module is
missing in the generated code, we calculate the error rate
by comparing the token size of the correct implementation
with the generated output. In cases where all modules are
generated, but contain errors, we utilize the DVT IDE, a
specialized Verilog compiler, to identify these errors [14].
Then, we calculate the error rate by assessing the number of
tokens that are incorrect or need to be added to make the code
functionally correct. This approach allows us to quantitatively
measure the correctness of the code produced by the LLMs,
providing a clear metric for comparing their performance and
effectiveness in generating RTL code.

B. Results

We tested the quality of code produced for the NPU design
by the LLM using dense attention, window attention and
attention sink mechanism. The results are shown in Fig. 2
that demonstrate the superiority of attention sink mechanism
over others. The total number of tokens in the correct code
is 4312. LLM with attention sink mechanism generates 4293

Listing 7. Unfunctional Module

module bfloat16_addsub (
input logic [15:0] a,
input logic [15:0] b,
output logic [15:0] result,
input is_sub

/I Extract sign, exponent, and mantissa
logic [1:0] sign_a, sign_b, sign_res;

logic [7:0] exp_a, exp_b, exp_res;

logic [7:0] mant_a, mant_b, mant_res;

/I ... (extract sign, exponent, and mantissa)

/I Subtract exponents and shift mantissa

logic [7:0] exp_diff;

logic [15:0] mant_shifted;

/I ... (calculate exponent difference and shift mantissa)

/I Add or subtract mantissas
logic [15:0] mant_sum;
/I ... (perform addition or subtraction)

// Normalization
logic [15:0] mant_norm;
/I ... (perform normalization)

/I Combine sign, exponent, and mantissa
result = {sign_res, exp_res, mant_res};
endmodule
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Fig. 2. Success percentage of generated tokens with different attention
mechanisms using WizardCoder-Python-34B-V1.0.

of 4312 (99.56%) tokens correctly. Only 16 tokens needed to
be fixed for successful compilation of the code for attention
sink, whereas dense attention and window attention require
249, and 1957 tokens to be fixed, respectively.

C. Prompt Generation

We started the evaluation by creating an initial prompt
describing the structure of the NPU design and then made
gradual improvements based on the errors we observed as the
LLM generates RTL code. The final version of the prompt
includes high-level specifications, ports for certain modules,
such as the top module with wishbone signals (since these
can change from one design to another) and basic reminders
on maintaining code quality. Listing 8 outlines the content of
the initial prompt. We begin the prompt with a very high level
specification that indicates the native data type and supported
operations.



Listing 8. Initial Prompt

Design and implement these modules for an NPU coprocessor.
This NPU uses bfloat16 as the native data type. This NPU
accelerates vector—vector and vector—scalar addition,
subtraction, multiplication, division.

When ports are not listed in a prompt, LLM tends to add
internal signals to the port list. The language model specified
the necessary ports like opcode and operators but also outputs
the modules’ port that it itself initializes that’s needed to be
controlled in module. To prevent this, we specify the ports on
arithmetic modules. This can be seen on some runs within the
processing element module that contains bfloatl6 arithmetic
modules. Port specifications are given to the LLM as shown
in Listing 9.

Listing 9. Prompt given ports

ports:

input logic [WIDTH-1:0] a,
input logic [WIDTH-1:0] b,
output logic [WIDTH-1:0] result

Also, every module outlined within the prompt is enhanced
with a brief, yet comprehensive explanation that details its
intended design and functionality. An example explanation is
shown in Listing 10. These explanations are crucial as they
offer a clear overview of each module’s role, particularly in
relation to the overall architecture of the design. They articu-
late the purpose of each modules, data handling strategies, and
how to interact with other modules, thereby guiding LLMs to
generate more precise and contextually relevant RTL code.

Listing 10. An excerpt from the prompt that explains a module

explanation: instantiates scalar_regs, vector_regs,
16 processing_elements. Handles load, store, execution
and writeback.

Overall, the creation of prompts for RTL code generation
followed an iterative approach. Starting with a basic prompt
outlining high-level specifications for an NPU design, we con-
tinuously refined the prompts based on the output generated by
the LLMs. Rather than prescribing specific fixes for the errors,
we focused on enriching the prompts with general coding
guidelines whenever the model made a mistake. This approach
ensured that the LLMs were not just corrected, but were also
guided towards a better understanding of the desired coding
standards and practices. For instance, when the models added
unnecessary internal signals or missed critical functionalities,
we did not provide explicit corrections. Instead, we augmented
the prompt with more detailed port definitions and operational
parameters, along with clear and concise explanations for each
module’s intended role. This method of iterative enhancement,
driven by providing general guidelines rather than specific
fixes, allowed LLMs to progressively generate more precise,
accurate, and contextually appropriate RTL code. Once a

prompt includes all necessary detils, LLMs with augmented
with attention sink mechanism allow single-shot industry-
standard high quality RTL code generation for the desired
design.

V. DISCUSSION AND FUTURE WORK

As mentioned in Section II-C, the role of the attention cache
mechanism for code generation is crucial. Dense attention,
which stores a complete set of specifications in memory, en-
sures uninterrupted access to all prompt details. This extensive
memory utilization helps in preserving the original context’s
fidelity, a key aspect in intricate coding tasks. However, there
are notable downsides. The extensive data volume not only
slows down computation but also may cause the model to re-
peat or create irrelevant lines of code, particularly in scenarios
like signal definitions. Such issues often stem from a weakened
context mechanism when handling longer sequences.

On the other hand, the window attention mechanism in
LLMs faces challenges in fully capturing the initial spec-
ifications in extended sequences, despite its computational
efficiency arising from concentrating on smaller input seg-
ments. This limitation can cause the model to overlook key
elements of the specifications, potentially leading to outputs
that don’t meet the intended requirements. Thus, while dense
attention preserves specifications at the expense of slower
computation and a risk of content repetition or inaccuracies,
window attention enhances computational speed but risks
losing comprehensive context and potentially compromises the
accuracy in aligning with the initial prompt.

In contrast to other attention mechanisms, the attention
sink mechanism that focuses on the selective retention of
initial tokens can theoretically offer a way to mitigate these
challenges. By preserving key initial tokens, LLMs can expand
the effective context window, potentially enabling more robust
in-context learning over longer text sequences. Nevertheless,
LLMs that utilize the attention sink mechanism may face
challenges when the size of the prompt surpasses the total
context window size. Although attention caching is effective
in overcoming limitations of context size, if the prompt itself is
larger than the available context window, the inability to fully
store the prompt in the cache can lead to problems similar to
ones shown in Background section.

As a future work, we plan to investigate on the mechanisms
of RTL code generation using LLMs with shorter, more
general prompts, especially in handling designs of varying
complexities. This approach would challenge the models to
interpret and elaborate on less detailed specifications, pushing
the boundaries of their inferential capabilities. By experiment-
ing with minimalist prompts, the research can uncover how
effectively LLMs can extrapolate intricate hardware design
details from limited information, a crucial aspect in eval-
uating their practical utility in diverse and complex RTL
code generation scenarios. This simplified prompt strategy
could potentially reveal new insights into the adaptability and
innovation of LLMs in architectural exploration and design
automation process.



VI. RELATED WORK

Code generation approaches utilizing LLMs mainly address
languages that are well-structured and resemble natural lan-
guages or concentrates on simpler tasks like code comple-
tion. However, these models are not capable of generating
complex, domain-specific hardware designs, which requires
well-described specifications and lower-level understanding of
modules and their interactions via interfaces. Recently, more
studies have been conducted on exploiting LLMs for code
generation targeting hardware design.

Hammond et al., conducted the first study on automating
the Verilog code generation by fine-tuning an LLM [15]. In
particular, they explored transfer learning to fine-tune GPT-2
and called their model as DAVE. They also built a tool to
generate custom dataset needed for fine-tuning the LLM that
exploits several natural language templates that encapsulate
different design specification scenarios.

Fu et al., introduced a framework that automates demo-
augmented prompt generation pipeline for Al accelerator
design [5]. They employ in-context learning to direct LLMs
in the process of automating HLS code generation. However,
their method still necessitates human intervention for rectify-
ing discrepancies in module interfaces and for merging them
to have a code suitable for synthesis. On the other hand, our
zero-shot code generation approach produces RTL code with
consistent interfaces and reduces the need for human interven-
tion. This is primarily because the modules are generated in
response to a single prompt, enabling more effective utilization
of the context cache and thereby facilitating the creation of
consistent interface implementations.

Thakur et al., performed fine-tuning on pre-trained LLMs
on Verilog datasets collected from GitHub and Verilog text-
books [2], [4]. While they created fine-tuned models for
RTL code generation, their evaluations demonstrated that the
syntactic and functional correctness of the generated code on
a large scale design are very poor, making it impractical to
automate RTL code generation in real world scenarios.

Chang et al., proposed ChipGPT framework that incor-
porates a prompt manager before using the LLM model to
enable designers to generate high-quality prompts [3]. Notably,
ChipGPT generates RTL code without the need for retraining
or modifying weights in the LLMs, making it easily integrable
into the latest LLM APIs. However, ChipGPT does not directly
modify inaccuracies or complexities in the generated code. In-
stead, it allows underlying LLM multiple attempts to generate
various code versions, refining them iteratively to achieve the
final code. Despite aiming to automate RTL code generation
using LLMs and reduce manual design efforts, ChipGPT
necessitates multiple prompts and manual corrections on the
generated code.

Blocklove et al., developed a set of benchmarks to evaluate
the capabilities of LLMs for functional hardware development
and verification [1]. In particular, they used ChatGPT-4 in
interactive mode, to demonstrate a case study that involves
a prolonged fully conversational scenario in which 8-bit mi-

croprocessor code generated. In their case study, fixing errors
in the generated code may require moderate human feedback.
If the errors persist, advanced human feedback is provided,
involving pinpointing the exact location of the error and
specifying the method for correction.

VII. CONCLUSION

In this paper, we demonstrated that off-the-shelf LLMs
can be used for high quality RTL code generation when
these models are enhanced with attention sink mechanism
introduced in [6]. We discuss the details and show how it can
help to mitigate the automated RTL-code generation problems,
especially for zero-shot prompting. Our findings indicate that
attention sink and similar mechanisms favorable for future
advancements in LLMs, suggesting a trajectory of continued
improvement in handling complex, long-sequence tasks in
RTL design and beyond.
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