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Abstract—Driven by the growing demand for efficient com-
putation, this paper explores the acceleration capabilities of
hardware accelerators in neural network inference, with a
particular focus on their potential applications and significance
within the aviation industry. This paper presents an exemplary
neural network inference implementation on the Xilinx Versal
VCK190 Evaluation Board, developed in collaboration with
Airbus Defence and Space. The work employs a TensorFlow-
trained multi-layer perceptron (MLP) to approximate the Man-
delbrot set. The inference process harnesses Xilinx AI Engines
for accelerated performance, resulting in remarkable results. The
computational time required for a singular inference operation
is approximately 15 microseconds, presenting a notable enhance-
ment when contrasted with CPU-based inference, which demands
approximately 330 microseconds. This translates to a speedup
factor of approximately 21, affirming the computational efficiency
of the proposed inference methodology. Notably, accuracy re-
mains consistent with the TensorFlow-based approach, courtesy
of the FPGA’s proficiency in processing float32 data, eliminating
the need for retraining or quantization to int8.

This research addresses the aviation industry’s essential deter-
minism requirements, making it suitable for safety-critical sys-
tems. Additionally, it potentially aligns with industry demands for
low power consumption and future-proof solutions, reinforcing
the relevance of FPGA-accelerated machine learning inference
in aviation applications.

I. INTRODUCTION

The pursuit of hardware acceleration for neural network
inference is a prominent topic in modern computational re-
search. In the "Related Work’ chapter, various approaches and
research endeavors are elucidated, offering a brief overview
of the existing literature in the field. It revolves around
the essential principle of parallelization, which is crucial for
efficient computation. Graphics Processing Units (GPUs) and
Field-Programmable Gate Arrays (FPGAs) are two avenues
offering highly parallel architectures for neural network im-
plementation. [1], [5]

The aviation industry places a premium on both computa-
tional speed and energy efficiency in its hardware solutions.
Efficiency is paramount in an industry that demands reliability
and strict determinism in safety-critical airborne systems,
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aligning with the DO-178B/C standards for stringent safety
and certification requirements. Here, GPUs exhibit certain
limitations compared to the capabilities of FPGAs. [1]-[3]

This paper focusses on the Xilinx Versal product line to
explore neural network inference, particularly in edge de-
vices. Edge devices, often constrained by limited power and
intermittent internet connectivity, present unique challenges
for hardware acceleration. The Versal product line, known
for its versatility, serves as a promising solution for diverse
requirements, from edge devices to data centers. [5]

This paper aims to elaborate, implement, and evaluate a
exemplary application to assess the suitability of FPGAs,
particularly the Xilinx Versal Product line, for Airbus Defence
and Space and the aviation industry’s neural network inference
needs. The focus is on developing a high-performance system
using the float32 data type, ensuring accuracy parity when
compared to TensorFlow inference conducted in the same data
format.

II. RELATED WORK

In the domain of hardware acceleration for neural network
inference, a substantial body of research and development has
been devoted to harnessing the computational capabilities of
GPUs and FPGAs. This section offers an overview of the
relevant literature and key findings that have informed the
current study.

A. GPU-based acceleration

GPUs, developed by NVIDIA, have long been recognized
for their parallel processing capabilities, making them pivotal
in accelerating various computational tasks, including neural
network inference. Previous research has showcased their
effectiveness in significantly expediting training and inference
processes. [6], [7]

However, GPUs, despite their prowess in parallel execution,
face certain trade-offs. A notable concern is power consump-
tion, particularly in applications where energy efficiency is
paramount, exemplified by the stringent requirements of the
aviation industry. Additionally, the potential overhead asso-
ciated with data transfer to and from GPUs can diminish the
benefits of acceleration, particularly in cases where low latency
is indispensable. [1], [3]



The challenge of non-deterministic behaviour exhibited by
CUDA warps, which can significantly impact the reliability
and repeatability of parallel thread execution within a warp,
a fundamental unit of execution on NVIDIA GPUs is of par-
ticular note. Non-deterministic behavior arises when threads
within a warp take different code paths due to conditional
branching, leading to serialization. This introduces unpre-
dictability in the execution of parallel threads, which may
be undesirable in safety-critical applications, such as aviation,
where deterministic performance is imperative. [3], [4]

The non-determinism of CUDA warps necessitates careful
consideration when utilizing NVIDIA GPUs for neural net-
work inference, especially in contexts where predictability and
repeatability are essential. These challenges were addressed by
the exploration of FPGA-based acceleration as an alternative
approach, given its potential for determinism and optimization,
which aligns with the unique requisites of aviation industry
applications.

B. FPGA-based acceleration

FPGAs represent an alternative approach that has gained
increasing attention in the realm of hardware acceleration for
neural network inference. FPGAs offer the distinct advantage
of customizable, hardware-level parallelization. The ability
to tailor hardware to a specific inference task bestows an
unmatched level of optimization. Furthermore, FPGAs are
renowned for their potential to minimize power consumption,
a critical attribute in safety-critical applications. [1], [8]

Recent studies have delved into FPGA-based acceleration,
demonstrating impressive results in terms of both performance
and power efficiency. These efforts have underscored the
potential of FPGAs in addressing the specific requirements
of edge devices and scenarios where determinism and low
power consumption are paramount. A noteworthy feature is
the capacity of Xilinx Versal products to handle floating-
point precision (float32) data without necessitating retraining
or quantization to int8, aligning with the objectives of precise
neural network inference. [9]

The selection of the Xilinx Versal FPGA, a member of the
Versal product line, for the study is underpinned by its repu-
tation as a versatile hardware accelerator capable of meeting
the diverse needs of edge devices. Versal FPGAs are explicitly
promoted as a suitable fit for both edge devices and data
centers, showcasing their adaptability in a range of scenarios.
The reconfiguration capabilities inherent in FPGAs render
them well-suited for applications necessitating serviceability,
updates, or scalability, positioning them as highly resilient
candidates for hardware acceleration tasks with considerable
future-proof attributes. This paper extends previous research
by developing a exemplary application on the Versal platform,
with the aim of evaluating its suitability for Airbus Defence
and Space and the aviation industry, especially concerning
the unique requirements of deterministic, energy-efficient, and
future-proof hardware. [5]

The subsequent sections delve into the methodology and
results, shedding light on the practical implications of this
research.

III. IMPLEMENTATION OF A MULTI-LAYER-PERCEPTRON
ON XILINX Al ENGINES

A. Introduction to multi-layer-perceptrons

A Multi-Layer Perceptron, or MLP, is a type of artificial
neural network composed of multiple layers of interconnected
neurons. It consists of an input layer, one or more hidden
layers, and one output layer. Each neuron in a layer is
connected to every neuron in the subsequent layer. [10]

In its basic form, an MLP is a feedforward neural network,
meaning that data flows in one direction, from the input layer
to the output layer. Each connection between neurons is asso-
ciated with a weight, and each neuron typically employs an
activation function to introduce non-linearity into the model.
[10], [11] The weights can be represented in a weight-matrix.
This weight-matrix W and the input-vector x in a Multilayer
Perceptron can be multiplied as follows:
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This relationship can be expanded to represent each layer
in the MLP as a calculation involving the matrix-vector-
multiplication followed by elementwise application of the
activation fucntion [12]. Figure 1 illustrates this expanded
relationship.
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Fig. 1. Tllustration depicting the matrix-vector multiplication of a Multilayer
Perceptron (MLP) layer. The subsequent activation function applied elemen-
twise to the resulting vector, makes the layer complete. [12]

The initial hidden layer manifests as a matrix-vector mul-
tiplication, coupled with subsequent element-wise activation
functions, as illustrated in Figure 1. Subsequent layers un-
dergo analogous computational processes. This matrix-vector-
multiplication (or matmul) can be computed in a highly



parallelized way by the Xilinx Al Engines, that are introduced
in the next subsection. [13]

B. Introduction to Xilinx Versal VCKI190 evaluation board

Xilinx AI Engines are a key component of Xilinx’s Versal
system-on-chip (SoC) family. These Engines offer highly
customizable, power-efficient hardware acceleration for Al
workloads, while being optimzed for inference tasks and not
training of neural networks. These engines excel in parallel
processing, supporting various data precision formats, and
are tightly integrated into the Versal SoC. Xilinx provides
development tools and frameworks to facilitate Al workload
design and programming. [13]

The Graph Programming Model is the design model chosen
for this task, multiple kernels are connected to each other mak-
ing up a graph that represents the inference. Each kernel will
be executed on one Al Engine, therefore the parallelization
is the task of the developer. In this project the inference will
be split up into kernels that compute the matmuls and the
activation function. The kernels can compute multiple vector-
elements at the same time. The amount of data processed
in parallel varies depending on the datatype. The diagram in
Figure 2 shows a comparision of the various datatypes. [14]
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Fig. 2. Comparison of operational capacity per cycle relative to data types.
Highlights the support of 16 operations for the float32 data type, affirming its
preferred utilization in this paper.

The primary objective of this research was to achieve the
seamless implementation of the float32 data type. The aim
was to enable inference without the necessity for quantization
or retraining procedures. The goal was to establish a direct
pathway for the effortless migration of a TensorFlow model
to the Xilinx System-on-Chip (SoC) platform.

C. Inference build

The inference model employed in this approach is a MLP
designed with distinct architectural elements. The typology
used for this inference is provided by Airbus Defence and
Space to facilitate a comparative analysis of the results against
internal research findings. It consists of an input layer that
receives two-dimensional coordinates, denoted as ’x’ and ’y.
Subsequently, the model features a hidden layer comprising 50
neurons, followed by a second hidden layer with 43 neurons.
The output layer, which produces the final inference, com-
prises a single neuron. Each layer of the MLP is characterized

by the utilization of the sigmoid activation function. Notably,
a skip connection has been introduced, facilitating a direct
linkage from the input layer to the second hidden layer.
The machine learning framework TensorFlow was employed
for model construction and training execution. The model
was leveraged for a regression task, delineated by the binary
classification of pixels, represented by coordinates, as either
part or not part of a predefined set. The model was provided
with coordinates representing individual pixels, and its training
was centered on the task of determining, based on the learned
features, whether a given pixel belongs to the Mandelbrot set.
Figure 3 shows the original Mandelbrot set, plotted with a
resolution of 100x100 pixels and the TensorFlow inference
also plotted with 100x100 pixels.
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Fig. 3. Visualization of the Original Mandelbrot set @ and the TensorFlow-
inferred Mandelbrot set (). Demonstrates TensorFlow’s capability in approx-
imating the intricate details of the Original Mandelbrot set.

Subsequent to training, the model’s weights were extracted.



This weight extraction process was pivotal in enabling the
subsequent design and implementation of the inference model
on the FPGA hardware, emphasizing the essential continuity
between the training phase and the deployment phase.

D. Kernel for the matrix-vector-multiplication

The primary computational method employed to achieve
matrix-vector multiplication entailed the utilization of the
Jfpmac (floating point multiply and accumulate) intrinsic func-
tion, sourced from the Xilinx intrinsic functions C++ library.
Notably, the matmul (matrix multiplication) function within
the Xilinx Al Engine API C++ library was not deemed suitable
for the given purposes due to its restriction on supporting
vectors as integral components of the operation, necessitating
a minimum matrix size of 2x2. Consequently, the intrinsic
Jfpmac function was adopted to implement the algorithm for
matrix multiplication, designed to process vectors of eight
float32 elements within one cycle. The algorithm iteratively
traversed the weight matrix until the complete matrix had been
computed, subsequently producing the resulting vector. [14]-
[16]

In the case of the initial layer, which featured 50 neurons,
zero-padding was introduced to accommodate the last six
elements of the resultant vector, aligning with the vector size of
56. Subsequent layers were constructed accordingly, tailored
to suit the matmul kernel.

E. Kernel for the skip connection

The skip connection was implemented by shifting the ele-
ments in the output vector of the first hidden layer. Then the
inputs to the neural network were added as elements to the
vector. Intrinsic functions, that are able to compute a vector-
wise” shift, are not supported by Xilinx. Thus the shift has to
be computed scalar-wise, introducing a potential bottleneck to
the inference.

F. Kernel for the activation function

The activation function employed in the neural network
architecture is the sigmoid function, which serves as a vital
element for non-linearity in neuron response modeling. It is
defined as follows:

1
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Where: o(x) is the sigmoid function, z is the input to the
function. To facilitate efficient computation, the representation
of the sigmoid function is to be implemented through the
utilization of look-up tables (LUTs), as dealing with expo-
nentials on an FPGA can be computationally demanding. The
sigmoid function is discretized within the range of -7.5 to 7.5,
yielding 1024 discrete values sampled at regular intervals of
0.014. These discrete sigmoid values are subsequently stored
in the internal 32kB memory of the AI Engine Tile. Each
value is being stored in a float32 format. This allocation of
memory space implies that approximately 1/8 of the available
memory capacity on a single tile is utilized to store the

precomputed values of the sigmoid function. This efficient use
of memory resources enables rapid and precise computation of
the sigmoid function during neural network inference. Figure 4
illustrates the sigmoid’s characteristic ’S’-shaped curve, where
its output gradually transitions from O to 1 as the input varies
from -7.5 to 7.5, showcasing the function’s suitability for
modeling non-linear relationships in artificial neural networks.
(8], [14], [16]

Fig. 4. Sigmoid function plot. 1024 data points were sampled for the LUT.

G. Graph for the inference

In the final step, all the kernels were combined to form
the complete inference system. This was achieved through
Xilinx’s graph programming model, allowing for the indepen-
dent design, testing, and optimization of individual kernels
before their integration into the overall system. This approach
facilitated smooth data transfer from one kernel’s output to
another’s input. The entire inference process was executed
within the Xilinx AI Engines, eliminating the need for external
memory access or transitioning out of the Al Engine segment,
resulting in efficient execution without data transfer delays.
[14]

IV. RESULTS

This section discusses the performance of the inference
implementation. All SoC simulation results were evaluated
in the Xilinx Al Engine Emulator in Xilinx Vitis IDE and
Xilinx Vitis Analyzer. As this inference can be interpreted as
a regression problem, metrics such as accuracy and loss of the
model are used to compare the performance of TensorFlow-
based inference with that of FPGA-based inference.

A. Model performance

The performance of the inference was evaluated using the
accuracy and the loss as metrics. In the context of neural
networks, accuracy is a commonly used metric to evaluate
the performance of a model. It is calculated as the ratio of
correctly predicted instances to the total number of instances in
the dataset. The accuracy metric is expressed mathematically
as:

Number of Correct Predictions

Accuracy =

2

In practice, accuracy is reported as a percentage. This
metric is crucial for assessing the model’s overall performance,
especially in classification tasks, and it helps gauge how well

Total Number of Predictions



the neural network’s predictions match the actual labels in the
dataset. [17]

In neural network regression tasks, the log(cosh) loss func-
tion measures the dissimilarity between predicted values and
true labels. It is expressed as:

N
1
og(cosh) Loss N;:l og(cosh(y; — 9i)) 3)

Where:

N : Total number of data points.
y; : True labels for data point 3.
y; « Predicted values for data point i.

The log(cosh) loss is a smooth, differentiable function often
used for regression tasks. It penalizes large errors while being
less sensitive to outliers, making it suitable for training neural
networks in regression problems. [18]

The F1 score encapsulates the balance between precision
and recall in a binary classification model’s performance
assessment. Precision reveals how accurately the model iden-
tifies true positives within its positive predictions, while recall
quantifies the model’s ability to capture the actual positives by
measuring the ratio of correctly identified true positives. The
F1 score can be expressed as:

precision x recall
X

Fi =2x ———M
! precision + recall

“4)

Where:
True Positives

precision = — —
True Positives + False Positives

True Positives
recall =

True Positives + False Negatives

By combining these metrics using the harmonic mean,
the F1 score offers a comprehensive assessment. With a
range from O to 1, higher F1 scores denote superior model
performance, making it a pivotal metric for robustly evaluating
classification models. [19]

In Table I, a noticeable reduction in accuracy and the
Fl-score is observed, attributed to the approximation of the
sigmoid function through the use of the LUT.

TABLE I
COMPARISON OF THE ACCURACY, LOSS AND F1-SCORE OF THE
TENSORFLOW- AND THE FPGA-INFERENCE

Platform Accuracy Loss Fl-score
TensorFlow on CPU 98.82% 0.0039 0.9660
FPGA @AI Engine 98.80% 0.0039 0.9654

The implementation of the proposed neural network model
was successful, and the use of float32 predictions has proven to
be instrumental in achieving results. In Figure 5 the inference
is visualized. The upmost graphic depicts the FPGA-based
inference results within the AI Engine simulation, followed by

the TensorFlow-based inference results. The third sub-figure
shows a visual comparison to highlight differences between
the two inference implementations, mainly due to the LUT
implementation on the FPGA compared to the MacBook Pro
realisation in TensorFlow.

B. Computation time comparison

The experiments demonstrated significant decrease in com-
putation time for the FPGA-inference when compared with
CPU-inference. The comparative results are presented in Ta-
ble II, illustrating the significant advantage of this approach
in terms of computational speed. The tests were produced,
by making predictions for 1000 samples and measuring the
execution time in simulation.

TABLE 11
COMPARISON OF THE COMPUTATION-TIME OF THE TENSORFLOW- AND
THE FPGA-INFERENCE

Hardware
TensorFlow on CPU
(MacBook Pro M1 Pro with 16GB RAM
FPGA Al Engine Simulation

execution time / prediction
330.000 ps
15.709 us

The efforts culminated in the successful implementation
of a deterministic inference system, including comprehen-
sive control over the codebase. Notably, the system operates
comparably well to TensorFlow inference while ensuring
the precision and predictability essential for aviation-centric
applications. This achievement underscores the viability and
potential of the solution in meeting the stringent demands of
the industry, promising a robust and controlled framework for
future developments.

V. DISCUSSION

A. Activation function: LUT vs. Linearisation

As the results show, the accuracy goes slightly down due
to the sampling of the sigmoid function. Enhancing the LUT
by increasing the number of entries allows for a more precise
approximation of function values, thereby bringing the FPGA-
inference closer to the TensorFlow-inference in terms of
accuracy. Xilinx has of summer 2023 announced that they
will release a AI-ML Engine that has more internal memory,
thus allowing the implementation of bigger LUTs [20]. An
alternative approach would be to use a linearized version of
the sigmoid function e.g. the hard_sigmoid [21]. This approach
would save memory space, as the computation of the value is
similar to the look-up-step for the LUT-based implementation,
without the need to actually store the function value. To
further advance this study and explore its implications, future
investigations could delve into the application and evaluation
of deeper neural network architectures. Conducting research
on power demand would present an intriguing prospect for
further exploration and experimentation.
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Fig. 5. Visual representation of inference capabilities through 100x100 pixel
plots: TensorFlow-inference (@, FPGA-inference (®), and their difference
(©. Demonstrates nearly consistent accuracy and minimal loss across both
inference methods.

VI. SUMMARY

In summary, this work underscores the inference capabil-
ities and expeditious processing afforded by the AI Engines
integrated into the Xilinx Versal series. The proposed imple-
mentation on the Versal FPGA SoC yielded significant accel-
eration when contrasted with traditional CPU-based inference
methods. The achieved performance boost is indeed promising,
signaling the potential of FPGA-based acceleration for ma-
chine learning workloads especially in the aviation domain. It
is crucial to acknowledge that this endeavor represents merely
an initial step in harnessing the full potential of the Versal
Al Engines. Future avenues for research encompass further
parallelization of the code and the utilization of additional Al
Engines, promising even greater strides in terms of inference
speed and efficiency. The synergy between adaptable hardware
and versatile software frameworks, as exemplified in this
study, offers a promising trajectory for the field of hardware-
accelerated machine learning inference.

Furthermore, the forward-looking perspective of the Xilinx
Versal series positions it as an intriguing candidate for the
aviation industry’s burgeoning requirements. The aviation sec-
tor places a premium on the concept of future-proofness,
where hardware longevity and adaptability are of paramount
importance. Xilinx Versal FPGAs align seamlessly with this
vision, given their capacity to evolve with changing techno-
logical landscapes. Additionally, their potential to meet low
power-demand requirements renders them a suitable candidate.
As these devices are poised for certification in safety-critical
applications following the DO-178B/C standards, their appeal
to the aviation industry is further enhanced.
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