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Abstract—The rapidly evolving field of computer vision has
witnessed a paradigm shift with the introduction of Transformer-
based architectures, particularly Vision Transformers (ViTs).
As these models expand in complexity, ensuring their efficient
deployment on resource-limited devices becomes crucial. This
paper proposes a solution for the model compression problem,
emphasizing quantization, and highlights a notable gap in current
methodologies: their need to consider outliers in the quantization
process. We propose a distillation-guided quantization approach
for ViTs, leveraging the Centered Kernel Alignment (CKA)
similarity score. Empirical experiments are carried out on the
DeiT architecture using the ImageNet dataset, with our CKA
approach demonstrating promising results in retaining model
intricacies during compression.

Index Terms—Neural Networks, Model
Quantization-Aware Training, Embedded Systems

Compression,

I. INTRODUCTION

Model compression has emerged as a significant challenge
in deep learning and computer vision [8] in the context of
embedded systems. The introduction of Transformers [24],
originally for natural language processing (NLP), brought
to the computer vision a shift with attention-based models
like Vision Transformers (ViTs) [10] and other architectures
[21, 18, 1]. As models become increasingly powerful, they
often become complex, demanding more memory and compu-
tational resources. Such high-capacity models, while effective,
become challenging to deploy on resource-constrained devices
like mobile phones, edge IoT devices, or real-time applications
[7]. Thus, the quest for efficient methods to reduce model size
without compromising performance has become imperative.

To tackle this issue, knowledge distillation and quanti-
zation emerge as promising solutions: quantization, which
involves representing continuous values (model parameters
and activations) using fewer bits, and knowledge distillation,
which creates a smaller model that learns from a larger
one. Quantization can be done after training (Post-training
quantization - PTQ) or integrated into the training process
(Quantization-aware training - QAT), although the latter may
require more time to train. Knowledge distillation, meanwhile,
focuses on training a smaller model (the student) to mimic a
large one (the teacher) by learning from its output or internal
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features. Combining this with quantization, models become
more compact and run faster, particularly on devices tailored
for such optimized models.

In this scenario, the natural language processing domain
showcases the importance of outliers (e.g. that is, points that
deviate slightly from others) in activations of the attention
mechanism when compressing neural networks [5, 25, 6].
However, there needs to be more consideration for the role
of these abnormal values when compressing models in the
computer vision domain.

Inspired by this outlier problem outlined in the NLP context,
our research introduces a quantization scheme that leverages
the importance of outliers. We propose a quantization-aware
training scheme that compares the internal structure of the
quantized model with its full-precision counterpart. To do so,
this comparison is made using the centered kernel alignment
(CKA) metric. In this work, we opt for CKA due to its distinct
sensitivity to outliers, its consistent performance in evaluating
representational similarity compared to other metrics, and its
resilience against translation as evidenced by findings in [9]
and [14].

This work presents the ongoing experiments of compressing
vision transformers (specifically the DeiT [21] model). As a
result, the highlight of this investigation is the adaptation of the
CKA metric to a quantization scheme, guiding the quantized
model with the activations of the full-precision model. As this
research is still a work in progress, the main contributions thus
far include:

o Adaptation of the CKA similarity metric to knowledge

distillation

o A distillation-guided quantization-aware training scheme

for vision transformers

II. BACKGROUD AND RELATED WORK

Research into the quantization of Vision Transformers has
gained traction, indicating its significance in contemporary
machine learning. Before diving deep into the state-of-the-art
methods, it’s essential to understand the foundational concepts
upon which they are built.

A. Baseline quantization

We briefly introduce the method for neural network quan-
tization. A generic representation is given by
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where Q, and Q,, are quantization functions for the scalar
activation x and weight vector w, respectively. These functions
utilize scaling factors, denoted by «, and a., to adjust the
range of quantization, and the term [ is a zero-point bias.
The clip function restricts its input to a specified range, and
| ] refers to rounding to the nearest integer. When quantizing
the weights to b; bits and activations to b, bits (in this
paper referred to as wbyabs quantization), we have [QY =
=2l QW =207 1] and [QF = —2%71, QF = 20271 1]
, which are the negative and positive quantization limits for x
and w. Finally, £ and W represent the quantized outputs after
applying the respective quantization functions.

A particularly influential method, the LSQ [11], introduced
the idea of learning the quantization parameters (step size
Qy, Oy and bias f) during training. To achieve this, the
straight through estimator (STE) [3] is used in the backward
propagation, as
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where L is the loss function. This method was further explored
and refined in LSQ+ [4] and Q-ViT [15].

B. Knowledge distillation

Knowledge distillation is the process where a smaller, often
termed student, model is trained to replicate the behavior
of a larger, teacher, model. The underlying idea is that the
teacher, with its larger capacity, captures a more generalized
representation of the data, and the student can benefit from
this knowledge without bearing the computational burdens of
the teacher.

The usual practice is using distillation through attention as
described in [22]. In the case of hard distillation, the output
of the teacher network is first evaluated as a predicted class
Yg, s in:

yr = argmax z;(c) 5)

where z, are the logits output for each class c. Then the
usual cross-entropy loss can be calculated both for the correct
label y and the teacher hard decision y;, as in:
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Liist = §£CE(U(ZS)7y) + §£CE(U(Zs),yt) (6)

where Lcg stands for the cross-entropy loss, z, are the logits
of the student network and o is the softmax function.

Distillation through attention, as described in [22], has
become a common practice in the field. Building on these
foundational concepts, there have been notable advancements
in the field:

o The Q-ViT study [15] highlighted the challenges of infor-
mation distortion within the attention mechanism. They
introduced the Information Rectification Module (IRM)
and utilized a distribution-guided distillation strategy.

o Mixed precision techniques have grown in appeal. For
instance, Mixed-Q-ViT [16] proposed an approach for
learning quantization scales and bit-widths concurrently,
driven by the classification loss.

o Post-training quantization, as seen in FQ-ViT [17], has
also made significant progress. The study presented in-
novative methods like Power-of-Two Factor (PTF) and
Log-Int-Softmax (LIS) to address certain complexities.

III. METHODOLOGY
A. Centered kernel alignment

The centered kernel alignment (CKA) shows the simi-
larity between pairs of activation matrices, as presented in
[19]. Given CKA’s inherent sensitivity to invertible linear
transformations [9], our hypothesis is that it might become
especially effective in spotlighting outliers. Also, CKA is
notably superior in evaluating potential representations more
consistently than other metrics, such as canonical correlation
analysis and cosine similarity [14].

To formalize this idea, we first define the following terms:
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where:

e L; and M, are linear kernel matrices derived from ac-
tivation matrices in the i*"* minibatch from a total of k
minibatches comprising n samples [19].

« HSIC, the Hilbert-Schmidt Independence Criterion, is a
method to measure statistical dependence between two
sets of random variables [12, 13].

With these definitions in place, the CKA for a minibatch is

given by:



Fig. 1: Visual representation of the transformation. This rep-
resentation was inspired by [9].
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Fig. 2: Comparing the outlier sensitivity between the CKA and
the correlation metric used in [15, 23].
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We designed an experiment to assess an outlier sensitivity:
a dataset is created from a Gaussian distribution, 2% of its
points are shifted to simulate outliers, and similarity metrics
are compared between original and shifted sets, as in Figure 1.
Formally, let X € RV*? be a set of N d-dimensional points
with subsets C; C X and Cy = X \ C;. A new set Y can be
constructed as Y = {x |x € (1 }U{x+cv|x € Co} where v
is a d-dimensional unit vector and c is a scalar for translation
distance.

It is possible to see, as presented in Figure 2, that when few
data points are selected (e.g., Igfi ~ 0.02, with |A] the size of
the set A), the CKA similarity is much more sensitive than the
patch-based correlation metric used in [15, 23]. Considering
matrices X and Y, the patch-based correlation is given by:

CKAminibatch = ( 10)
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where ||.||2 is the Lo row-wise norm and ||.||F is the
Frobenius norm.

corr(X,Y) = HH (11)

B. Proposed approach: CKA-ViT quantization

Now, we introduce the proposed apprach, which is a
quantization-aware training scheme that uses the CKA to

leverage the information of outliers in activations of the
attention mechanism. The attention block takes three matrices:
query Q € RV*n key K € RV*?:  and value V € RV*dv
with dimensions defined by d;, (for Q and K), d, (for V),
and N (input patches) [10]. The output is:
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Fig. 3: Architecture of the proposed distillation loss. The cen-
tered Kernel Alignment (CKA) aids in gauging the similarity
between representations. This diagram was inspired by [23].

To adapt the CKA metric, the queries and keys are gathered,
and this information is summarized in the similarity matrices,
as presented in Figure 3. For instance, the similarity matrix for
the queries is defined as (Qf x4 )ij = C'K Aminivaten (QF, Qj),
where Q; and Qj are the queries of the quantized model for
the ¢-th and j-th blocks, respectively. The same is done for
the keys K¢, 4. The representation loss, which is the extra
loss that represents the discrepancies between the query and
key internal representation of the models, is defined as:

—Kegallz (13)

with Q% 4 and K& ;- , the similarity matrices of the full-
precision model. The CKA loss is added to the cross-entropy
losses using a balancing factor . The chosen knowledge
distillation scheme is presented in [21]. As such, the final loss,
as presented, is given by:

Lorxa=Qbxa— Qoxallz + [ KExa

L =7Laist + (1 —v)Lcra (14)

where L4, is the distillation loss as in Equation 6. This loss
ensures that not only are the final predictions of the student and
teacher aligned, but also their intermediate learned features,
thus extracting a richer representation from the teacher.



IV. EXPERIMENTS
A. Dataset and training details

All results are obtained using the ImageNet-1K dataset [20],
a dataset composed of 1.2 million images and 1000 classes.
The images are resized to 224 x 224 pixels, and normalized
using the mean and standard deviation of the ImageNet dataset.
The dataset is split into three parts: the training set, the
validation set and the test set.

The training process used an NVIDIA A100 GPU, com-
plemented by AMD EPYC 7502 processors. The CKA-ViT
model, which we proposed, adopted a cosine learning rate
scheduler that started at a rate of 3.75e-05, without any
warmup phase. For optimizing the model’s weights throughout
the backpropagation, we opted for the Lamb optimizer [26].
This entire training was structured to run across a maximum
of 50 epochs. Furthermore, for quantization-aware training,
we integrated data augmentation strategies inspired by the
methods presented in [22].

B. Results

Table I shows the effects of different quantization techniques
on the DeiT Tiny model’s size, FLOPs, and Top-1 accuracy.

Method #Bits  Size(p;5) FLOPS(y)  Top-1 Ace. (%)
Full precision w32a32 20.00 1382 72.21
FQ-ViT w8a8 5.00 345 71.61
LSQ wéad 2.50 172 73.10
Q-ViT wéad 2.50 172 74.30
Mixed-Q-ViT *w4ad 2.50 172 72.80
CKA-ViT (Ours) wda4 2.50 172 75.39
LSQ w2a2 1.25 86 46.44
CKA-ViT (Ours) w2a2 1.25 86 51.31

TABLE I: Quantization outcomes for the DeiT Tiny model
across different precision settings. The nomenclature wb;abs
refers to the bit precision b; of the weights and bs of the
activations. * This method uses mixed precision, bounding to
4-bit quantization.

The study [21] found that the full precision model had
72.21% accuracy at 32 bits, dropping slightly to 71.61% with
8-bit FQ-ViT quantization. Intriguingly, some QAT methods
even outperformed full precision in 4-bit quantization, likely
due to extended training and regularization effects of quanti-
zation [2]. As shown in Figure 4, the typical similarity metric
(in green) exhibits extreme values in the query matrix when
compared with the CKA (blue). This confirms that the CKA-
ViT method successfully enhances information extraction in
quantization, outperforming other techniques.

To evaluate the effect of the CKA quantization, the infinite
norm (||x||sc = max; |z;|) of the values from the query
matrices were calculated for the CKA-ViT, the full precision
model and the commonly used correlation [15, 23] as base-
line. Given that outliers in this context are values that are
exceptionally low or exceedingly high, the use of the infinite
norm is justified due to its inherent capability to capture these
extreme absolute values. In the context of quantization, outliers

can induce significant distortions, especially if not properly
addressed during the quantization process. And by using the
infinite norm, we aimed to examine these extreme values.

It is possible to see that the usual similarity metric (repre-
sented in green) presents more extreme values in the query
matrix, which will later influence the attention scores, as
presented in Equation 12. This result is in line with the
expected observations and justifies the use of the CKA metric.
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Fig. 4: Infinite norm (||x||ooc = max; |x;|) of the values of the
query matrix, comparing the CKA-ViT (blue), the baseline
correlation used in the Q-ViT approach (in green) and the full
precision model (in red).

V. CONCLUSION AND FUTURE DIRECTIONS

This study embarked on an exploration of quantization
techniques, with a particular focus on the DeiT Tiny model,
demonstrating the potential of strategic quantization in neu-
ral network optimization. Our proposed CKA-ViT model, a
quantization-aware training method for vision transformers
using the CKA metric, was examined using the ImageNet-1K
dataset. The results, as highlighted in Table I, showed that our
model could achieve significant model size reductions, ranging
from 4x to 8x, with only a minimal compromise in accuracy.
These findings not only highlight the efficacy of our CKA-ViT
model but also bring into focus the significance of outliers in
the quantization process. This is particularly relevant in light
of our hypothesis.

The study’s results indicate that our CKA-ViT model
consistently outperformed other quantization methods across
different precision settings, emphasizing the advantages of
strategic quantization. However, it is crucial to note the time
inefficiency and the computational complexity of the CKA
metric in our approach. These aspects suggest potential areas
for improvement and developing an approximation for the
CKA could potentially alleviate this.

Furthermore, the experiments’ scope was limited to the
DeiT-Tiny architecture. For a comprehensive understanding
and to fully harness the benefits of this method, future research
should broaden its focus to encompass other ViT architectures,
particularly the larger models, and also consider alternative
similarity metrics to the CKA.
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