
Fully Quantized Graph Convolutional Networks for
Embedded Applications

Habib Taha Kose 1, Jose Nunez-Yanez 2,
Robert Piechocki 1 James Pope 1

1University of Bristol, Bristol, UK
2University of Linköping, SE

Abstract—Graph Neural Networks (GNNs) demonstrate re-
markable proficiency across diverse tasks involving graph data,
such as communication networks, physical systems, and chem-
ical bonds. However, GNNs require significant computational
resources compared to other machine learning approaches.
Significant memory is necessary to store graph information.
The problem is that GNNs are not well suited for resource
constrained devices that have limited memory, computation, and
energy. Most current solutions quantize Convolutional Neural
Networks (CNNs), such the Dorefa-Net algorithm. There has not
been a comprehensive quantization technique proposed for GNNs
that fully quantizes all network parameters. In this paper we
propose and evaluate using the Dorefa-Net algorithm integrated
with the Graph Convolutional Network (GCN). We compare
the accuracy performance of several quantization techniques
and three commonly used datasets. Our findings reveal that the
Dorefa-Net method quantizes network parameters down to 4-bit
integers with an acceptable accuracy loss (up to 2%) compared
to the base model. However, we find that Dorefa-Net does not
perform well for aggressive quantization levels (e.g. 1 and 2 bit),
which are necessary for specialized hardware, such as FPGAs.
To address this, we propose a modified version denoted Dorefa-
Graph. We show that Dorefa-Graph performs better than the
other quantization techniques, particularly when aggressively
quantized, making it better suited for bespoke hardware.

Index Terms—Graph Neural Networks, Network Quantization,
Dorefa-Net

I. INTRODUCTION

GNNs have emerged as an effective machine learning ap-
proach integrating graph data structures with Neural Network
(NN) architectures. For complex graph relationships, GNNs
have been shown to perform well for various inference tasks.
[1]. GNNs have been proposed for numerous application
domains that include social networks, molecular bonding, e-
commerce, product recommendations, particle physics, natural
language processing, traffic applications, anomaly detection,
and numerous academic studies [2]–[4]. However, the com-
plex nature of graph data poses computational challenges.
Quantization techniques emerge as a strategy to enhance
computational efficiency and reduce memory consumption by
representing activations and model weights with fewer bits.
While low-number of bits can accelerate matrix multiplications
[5], a delicate balance is required between model efficiency
and accuracy. Despite the well-established exploration of
quantization in NNs and CNNs [6], GNNs remain insuffi-
ciently investigated in this regard.

This study focuses on quantized Graph Convolutional Net-
works (GCNs) using the well known Dorefa-Net algorithm
[7], commonly used in CNN applications. Our approach under-
scores the advantages of matrix quantization in GCN schemes,
enabling swift and efficient computations in matrix multiplica-
tion operations. Quantizing the GCN model allows the efficient
utilization of limited computational resources, particularly in
embedded devices. This research proposes quantized GCN
models that can be implemented in efficient, high-speed, and
energy-efficient hardware. In this paper, we focus on the
accuracy loss of Post-Training Quantization (PTQ) with the
Dorefa-Net algorithm. Additionally, we examine the impact
of quantization on accuracy using common datasets in core
GCN layers. Our contributions include:

• We present inference accuracy results of the quantized
GCN model with the Dorefa-Net algorithm. To the best of
our knowledge, this is the first work showing the impact
of the Dorefa-Net algorithm for fully quantized GCNs.

• We explore a modified version of the Dorefa-Net al-
gorithm for GCNs, Dorefa-Graph, that performs better,
particularly at lower bit numbers.

• We compare our results with another common method
SGQuant [8]. We use a public available version of the
method and denote this version as SGQuant’ [9].

The source code for our technique and experiments is pub-
licly available here https://github.com/TahaKose/Quantized
GCN. The paper begins by providing context and discussing
prior research in Section 2. Section 3 presents the specifics
of the Dorefa-Net and Dorefa-Graph algorithms. Performance
evaluation and comparisons are conducted in Section 4. Fi-
nally, Section 5 concludes with a summary and outlines
directions for future research.

II. BACKGROUND AND RELEATED WORK

In this section, we provide an overview of Graph Neural
Networks (GNNs), Graph Convolutional Networks (GCNs),
and quantization approaches. We also discuss relevant litera-
ture.

A. Graph Neural Networks

GNNs prove to be effective instruments for learning graph
data by taking into account the graphical structure along with
the properties of nodes and edges. A graph is denoted in
terms of edges and vertices as G = (V,E), Here, V signifies

https://orcid.org/0000-0003-3568-6826
https://orcid.org/0000-0002-5153-5481
https://orcid.org/0000-0002-4879-1206
https://orcid.org/0000-0003-2656-363X
https://github.com/TahaKose/Quantized_GCN
https://github.com/TahaKose/Quantized_GCN

Fig. 1: N-Layer Graph Convolutional Neural Network Overview

vertices (e.g., users, molecules, citations), and E represents
edges, capturing the intricate relationships between vertices.
As depicted in Figure 1, GNN models typically encompass two
phases: the Aggregation and Combination (Update) Phases.
The aggregation phase computes a new feature vector by
summing the features of neighboring nodes, as illustrated in
Equation 1. Methods such as weighted average, maximum,
or summation are employed in this phase to generate a new
feature vector. These feature vectors are then combined in
the combination phase, as depicted in Equation 2, forming
a high-level feature matrix. In this phase, the new feature
vector of each node merge with the original feature matrix.
The resultant feature matrix encapsulates high-level features
and finds applications in classification or regression tasks.

al
v = Aggregation

(
h(l−1)
u : u ∈ N (v)

)
(1)

hl
v = Combination

(
al
v

)
(2)

In Equations 1 and 2, hl
v represents the feature vector

of a node, and N(v) denotes the set of nodes that are
neighbors of a given node. The arrangement of the aggregation
and combination phases has been a focal point in studies
investigating system efficiency. The alteration in the size of
node feature vectors after the combination stage has a direct
impact on computational efficiency.

B. Graph Convolutional Networks

GCNs are GNN models that apply the convolution process
to graph data. GCNs can be expressed locally for a single edge

or vertex, or globally for all edges and vertices. Equation 3
shows the local expression of GCNs.

h
(l+1)
i = σ

W(l) ×

 ∑
j∈N̂(i)

1√
didj

h
(l)
j

 (3)

In Equation 3, the feature vector of node i is denoted by
h
(l)
i and W l is the trainable weight value. di is the degree

of node i and N̂(i) are its neighbouring nodes. The global
representation of GCNs is given in equation 4.

H(l+1) = σ(AH(l)W (l)) (4)

Where H(l+1) is the input feature matrix for layer l, A is the
adjacency matrix and σ is the non-linear activation function.
AH refers to the aggregation phase and HW to the com-
bination phase. However, in this equation, only the features
of the neighbour nodes are aggregated and the node itself
is not included. In addition, multiplication by the adjacency
matrix changes the scale of the feature vector. In this case,
higher-degree nodes will have more impact on the aggregation
because they have more neighbours, and the effect of low-
degree nodes will become insignificant. To overcome these
problems, equation 5 is proposed.

H(l+1) = σ(D̃− 1
2 ÃD̃− 1

2H(l)W (l)) (5)

To obtain the normalized matrix Ã, the identity matrix I
is added to the adjacency matrix A. D̃ is the diagonal node
degree matrix.

C. Quantization

Quantization stands out as a widely adopted technique for
creating scalable neural networks, aiming to reduce mem-
ory demands and accelerate computations. Two primary ap-
proaches, scalar quantization, and vector quantization, are
employed. Scalar quantization reduces the number of bits
used to store network parameters, while vector quantiza-
tion represents these parameters through codebooks. Both
approaches yield positive outcomes in terms of shrinking
network size. Although scalar quantization exhibits a limited
compression ratio, it proves to be a cost-effective alternative
to vector quantization, avoiding complex and expensive ad-
ditional computations. This makes it a powerfull choice for
implementing scalable GNNs on energy-constrained devices.
Quantizing the feature matrix, a substantial component of the
GNN model significantly reduces the network’s size. Vari-
ous quantization methods, including binary [10], vector [11],
scalar [8], and hybrid approaches [12], effectively minimize
the size of the feature matrix. Degree-based quantization
emerges as an efficient strategy for compressing features,
requiring specific preprocessing steps. Degree Quant [13] em-
ploys a Quantization-Aware Training (QAT) model, utilizing a
stochastic quantization mask to emphasize the importance of
nodes, ensuring nodes with crucial information (high degree)
retain full precision, while others are quantized. This will
be difficult to map to hardware, as different nodes will have
different levels of precision, and the hardware will have little
ability to adapt at the fine granularity level. QAT updates
network weights during training, considering the quantiza-
tion process. Compared to Post-Training Quantization (PTQ),
which quantizes a trained model after training, QAT exhibits
superior accuracy performance but demands additional com-
putational power, making it less suitable. While quantizing
only the feature matrix can significantly reduce network size,
more comprehensive approaches are necessary for embedded
devices. SGQuant [8] introduces a scalar quantization method
for PTQ working at various levels, quantizing features and
attention with automatically selected bits. Quantizing weights
and activations in GNNs is a common practice. LPGNAS [14]
enables quantization of weights and activations throughout
training and inference, employing the Network Architecture
Search (NAS) algorithm. Recent techniques aim to enhance
quantization strategies with additional methods. EXACT [15]
utilizes Random Projection for activation quantization. Recog-
nizing that the multiplication of adjacency, weight, and feature
matrices underlies the aggregation and combination stages in
GNNs, quantizing these matrices is imperative for enhanced
applicability and structural flexibility. For example, GCINT
[16] suggests a dynamic structure allowing the quantization
of weights, activations, error, and loss functions during both
forward and backward passes. Wang et al. [17] propose a
scheme quantizing weights, activations, messages, inputs, and
outputs during aggregation and combination phases, omitting
the quantization of the adjacency matrix. QGTC [18] treats
the adjacency matrix as binary, allowing node embeddings and

weights to be presented in any bit number.

III. METHODOLOGY

In this section, we explain the Dorefa-Net and Dorefa-
Graph techniques for quantizing GCN parameters. We provide
a thorough explanation of the formulas that describe the
quantization algorithm and the methods of implementation.

A. Dorefa-Net Quantization

The Dorefa-Net algorithm, a well-established quantization
technique for Convolutional Neural Networks (CNN), has
garnered widespread recognition. While extensively applied
in CNN, its implications for GCN necessitate exploration. Our
study employs the Dorefa-Net quantization method to create
a lightweight GCN model. Leveraging Dorefa-Net enables
the creation of a network model that proves both time and
memory-efficient during the inference phase. This efficiency
is achieved by utilizing a reduced number of bits, accompanied
by an acceptable trade-off in accuracy. This paper specifically
delves into the investigation of the impact of quantization
during the inference stage, with no implementation of the
quantization method during the training phase. Our experi-
ments showed that the Dorefa-Net scheme is not useful for
QAT in GCN models due to the activation distribution. Figure
2 visually outlines how the effects of PTQ on the GCN are
replicated in our study.

In the DoReFa-Net algorithm, the k-bit (k > 1) weight
and the activation quantizations are shown in Equation 6 and
Equation 7, respectively.

fk
ω (ri) = 2 quant k

(
tanh (ri)

2max (|tanh (ri)|)
+

1

2

)
− 1 (6)

fk
α(r) = quantk(r) (7)

In equation 6, tanh is used to express the weights in the
range [−1, 1]. After normalization, the integer output ro is
obtained. In equation 7, the input activation r is quantized as
k-bits, so that r can take 2k different values. The resulting

Fig. 2: Quantization Effect Simulation Scheme

Fig. 3: Inputs/Outputs of Quantized Layer

values are used to update the weights. This technique imple-
ments Equation 8 to achieve quantization of both weights and
activation

quantize(num bits) =
round(x · (2num bits − 1))

2num bits − 1
(8)

The intensive of GCNs poses challenges in deploying them
on edge devices with constrained capacities [19]. Hence, an
important solution lies in the adoption of a fully quantized
network. The Dorefa-Net algorithm stands out as a uniform
quantization method for network parameters. Algorithm 1
provides a comprehensive illustration of implementing the
Dorefa-Net scheme on GCN. In this scheme, the Dorefa-
Net technique is applied to quantize the final model weights,
which are initially trained with full precision and subsequently
fed back into the model, as delineated by Equation 6. Cor-
respondingly, the feature vector and layer activation outputs
undergo quantization using the activation quantization method
specified in Equation 7. The comprehensive impact of a fully
quantized network is assessed by scrutinizing structural alter-
ations in the adjacency matrix, which is quantized according to
Equation 7. The adjacency matrix, portraying interconnections
among nodes in GCNs, solely consists of binary values, 0
or 1. However, during the aggregation phase, the matrix A
in AH multiplication aligns with matrix AD multiplication.
To account for this, a weighted adjacency matrix is intro-
duced, derived from the outcome of AD multiplication upon
quantizing the adjacency matrix. Consequently, this matrix
incorporates floating-point weight expressions obtained from
the diagonal degree matrix D instead of only 0 and 1 values.
Figure 3 visually explains the utilization of quantized values
in a GCN layer during the inference phase. Furthermore, a
flexible model structure is adopted to facilitate mixed-precision
quantization at layer level with varying bit numbers. This
strategic approach not only addresses resource constraints but
also provides adaptability to different precision requirements,
making it conducive to the deployment of GCNs in embedded
systems.

Algorithm 1 Training and Testing with Dorefa-Net Quantiza-
tion. Feature matrix and edge information are used as input.

1: for epoch← 1 to args.epochs do
2: #Train the model:
3: model.train()
4: output← model(features, adj)
5: loss← compute loss(output, labels)
6: loss.backward()
7: Optimize the model parameters:
8: optimizer.step()
9: Save the model after training:

10: torch.save(model.state dict(), ”model.pth”)
11: end for
12: #Test the quantized model:
13: model.eval()
14: model.load state dict(quantize weights(”model.pth”))
15: output← model(features, adj)
16: #Quantize activations and perform inference:
17: q features← quantize activations(features)
18: q adj ← quantize activations(adj)
19: quantized output← model(q features, q adj)

B. Dorefa-Graph

Dorefa-Net was designed for use with CNNs, but in some
cases, it may not be suitable for GCNs. Our investigations
have shown that the distribution of activation outputs of GCN
layer 2 changes gradually with the number of epochs. This
gradual shift hinders the Dorefa-Net system, which quantizes
the activation outputs between 0 and 1, leading to accuracy
losses when bit values are low and optimal quantization
levels are difficult to determine. We suggest using Dorefa-
Graph to address these issues. This method differs from the
initial quantization algorithm as it uses a dynamic approach
to activation quantization. The modified technique computes
the quantization parameters for every activation input tensor
and establishes the best levels. The quantization parameters
of Dorefa-Graph are recalculated for each input’s activation
using Equations 9, 10, 11.

Scale =
fmax− fmin
qmax− qmin

(9)

qmin = −2(num bits−1) (10)

qmax = qmin + (2num bits − 1) (11)

In the Equation 9, fmin and fmax are the smallest and largest
values of the input respectively, whilst qmin and qmax deter-
mine the boundaries of the quantization range. Scale refers to
the equal intervals between quantization levels. Input tensors
may include both positive and negative values. It is crucial to
locate the point where the numbers in the coordinate system
change from negative to positive, known as the zero point, for
proper comprehension and handling of the distribution. The

Equation 12 indicates the position of the zero point in the
quantized range.

Zeropoint = qmin− fmin
Scale

(12)

This enables Dorefa-Graph to adapt more effectively to dif-
ferent activation ranges and data distribution. As a result, it can
achieve better accuracy, especially in aggressive quantization
operations, which are essential for embedded systems. In our
research, we investigate the effect of quantization for accuracy.
We convert the quantized values (qval) back to floating-point
values (dqval) for use with conventional hardware (as shown
in Equation 14) and then apply the remaining parameter
quantization using the original Dorefa-Net scheme described
in Section III.

qval =
input
Scale

+ Zeropoint (13)

dqval = Scale(qval + Zeropoint) (14)

IV. PERFORMANCE EVALUATION

In this section, we present examinations of various GCN
models with commonly used data sets. Our aim is to demon-
strate the quantization effects of the Dorefa-Net and Dorefa-
Graph quantization techniques.

A. Datasets

This study derives its results from the exploration of com-
monly used datasets, with a focus on assessing the impacts
of the Dorefa-Net and Dorefa-Graph schemes on GCNs. The
investigation employs datasets from the citation dataset family,
encompassing the Cora, PubMed, and Citeseer datasets. The
key characteristics of these datasets are summarized in Table
II, delineating variations in node and edge numbers. Despite
these variations, there are shared features among the datasets,
including sparsity in the feature and adjacency matrices,
alongside density in the weight matrix.

B. Graph Convolutional Network Layers

Two distinct and commonly employed GNN layers were
selected to construct the network architectures. The first of
these is the GCN layer, a structure derived from the work
of Kipf et al. [20]. GCN holds prominence in contemporary
implementations and is extensively utilized. The second layer
employed in the GNN is the Graph Isomorphism Network
(GIN) layer, introduced in the study by Xu et al. [21], widely
applied across various tasks in GNNs. While GCNs focus
solely on adjacent nodes when updating node properties, GINs
incorporate rules beyond adjacent nodes in their computations.
This distinction renders GCNs effective for tasks involving
local information, whereas GIN layers are apt for global tasks
such as graph classification. In this study, both layer types are
configured with a layer size of 2 and a hidden size of 64.

C. Quantization Performance

To evaluate the system performance of the quantization
techniques, we fully quantized the model parameters using
the Dorefa-Net, Dorefa-Graph and SGQuant’ methods. These
methods quantized the weighted adjacency matrix, input fea-
ture matrix, weight matrix and activations. Our results diverge
from the original paper for SGQuant because the authors
only quantized features and activations. Quantization bits were
chosen as powers of 2 and we followed the quantization
process until the precision reached 1 bit. The experiments
were performed on the Google Co-Laboratory environment.
T4 GPU, Intel Xeon CPU, and 12 GB RAM provided by
Co-Laboratory were used as test hardware. In this research,
training and testing applications were done using the Py-
Torch framework. Note that conventional hardware was used
in the experiments, but this was done to demonstrate our
methodology. Future work will integrate the approach with
FPGA hardware. The identical hardware setup was applied
for both training and inference phases. Every model initiated
the training phase with 32-bit floating point accuracy, and no
quantization was executed during this phase. Quantization was
applied to reach the desired bit value. Then, the quantized
model was used for inference to test datasets with the trained
model. The experimental findings are presented in Table I.
According to the results, the Dorefa-Net and Dorefa-Graph
methods consistently give higher or equivalent accuracy values
compared to the SGQuant method up to the 4-bit integer
quantization level. However, for some specific cases, including
Citeseer 4-bit int (GCN/GIN) and Pubmed 4-bit int (GIN),
Dorefa-Net has significantly less accuracy than the SGQuant
method when quantized to 4 bits. At lower levels of quanti-
zation (2-bit and 1-bit), Dorefa-Net is not successful, whereas
SGQuant sometimes achieves model quantization with an
acceptable loss of accuracy. Dorefa-Net uses only the sign
of the value for 1-bit quantization, unlike other cases. This
causes the quantization results to be more accurate for 1-
bit quantization than for 2-bit quantization. In addition to
this, Dorefa-Graph has the best accuracy performance for
all bit values except in rare cases. The modified scheme
has prevented the deterioration of the aggressive quantization
results of the original Dorefa-Net scheme and has placed it
ahead of the methods compared. A standard number of tests
were done for both approaches to get the precision values and
the confidence interval for the final value was set to 80%. The
assessments revealed that the Dorefa-Net algorithm is able to
quantize up to 4-bit integer accuracy in most instances, while
the Dorefa-Graph algorithm can achieve 1-bit integer accuracy
with relatively superior loss of accuracy.

V. CONCLUSION

In this work, we investigated the impact and performance
of the Dorefa-Net quantization algorithm on GCNs. To our
knowledge, this is the first comprehensive study of the Dorefa-
Net algorithm’s impact on GCN inference accuracy. Our
research indicates that both the Dorefa-Net and Dorefa-Graph
algorithms successfully perform weight, adjacency, feature,

Accuracy %
Dataset Network Base Model F16W16A16 F8W8A8 F4W4A4 F2W2A2 F1W1A1

Cora
Dorefa-Graph GCN 81.5±0.35 80.1±1.04 80.6±0.06 80.1±0.63 67.8±0.21 67.4±1.44

Dorefa-Net GCN 81.5±0.35 79.9±0.67 80.3±0.13 79.1±0.72 26.1±3.3 31.2±5.35
SGQuant’ GCN 81.5±0.35 76.7±1.07 76.1±1.2 78.1±0.97 65.4±3.26 37.3±2.53

Cora
Dorefa-Graph GIN 74.3±0.27 74.6±0.63 75.1±0.47 74.4±0.27 64.7±0.72 52.4±4.32

Dorefa-Net GIN 74.3±0.27 71.7±0.88 71.3±1.4 71.3±1.11 19.4±4.81 23.7±2.32
SGQuant’ GIN 74.3±0.27 71.1±0.57 70.7±0.94 71.6±0.77 64.2±1.23 33.0±2.05

Citeseer
Dorefa-Graph GCN 70.4±0.59 68.0±1.26 66.7±0.94 63.0±0.9 57.2±1.27 52.2±1.64

Dorefa-Net GCN 70.4±0.59 65.8±1.22 68.2±0.84 41.2±9.05 18.01±0.03 23.2±1.59
SGQuant’ GCN 70.4±0.59 63.1±1.07 58.9±2.91 57.9±3.15 48.6±3.29 17.0±1.87

Citeseer
Dorefa-Graph GIN 66.4±0.24 68.1±0.68 66.5±0.22 65.7±1.04 56.6±0.57 40.4±5.71

Dorefa-Net GIN 66.4±0.24 63.9±0.67 64.7±1.15 41.6±1.46 17.3±3.29 24.2±8.02
SGQuant’ GIN 66.4±0.24 60±2.05 63.8±0.69 60.9±2.03 52.5±2.72 29.9±1.82

Pubmed
Dorefa-Graph GCN 79.7±0.23 79.2±0.5 79.8±0.2 78.4±0.67 60.5±0.57 69.2±0.54

Dorefa-Net GCN 79.7±0.23 78.2±0.36 78.4±0.51 75.3±1.3 32.6±6.76 47.9±6.25
SGQuant’ GCN 79.7±0.23 76.7±0.95 75.7±0.94 75.1±0.98 72.2±0.92 51.4±2.21

Pubmed
Dorefa-Graph GIN 74.4±0.60 75.1±0.26 74.9±0.18 74.6±0.34 68.0±0.73 66±2.42

Dorefa-Net GIN 74.4±0.60 75±0.55 73.9±1.12 70.3±0.60 32.9±6.3 56.5±4.17
SGQuant’ GIN 74.4±0.60 74.8±0.55 74.8±0.37 74.5±0.28 69.1±0.88 56.1±2.14

*SGQuant’ results are generated using publicly available quantization code [9].
*The base model comprises 32-bit floating point values. In other cases, the bit values shown are used as integers.

TABLE I: Accuracy Results for Different Bit Levels

Cora Pubmed Citeseer

Graph Nodes 2708 19717 3327
Graph Edges 10556 88648 9104
Graph Features 1433 500 3703
Number of Classes 7 3 6
Adjacency Sparsity 99.85% 99.97% 99.91%
Feature Sparsity 98.73% 89.97% 99.14%

TABLE II: Characteristics of graph datasets

and activation quantization on GCNs with acceptable loss of
accuracy. Dorefa-Net quantizes all network parameters up to
4-bit integer precision, resulting in a loss of only 2% accuracy
in the best-case scenario. For low bit values (e.g. 1 or 2
bits), our proposed method, Dorefa-Graph, achieved relatively
superior accuracy improvement over other models. Except for
a couple of cases, Dorefa-Graph was significantly better (up to
10%) than SGquant for all quantization levels. These results
provide evidence of the effectiveness of Dorefa-Graph in GCN
architectures. Future research is to improve the Dorefa-Graph
algorithm with additional methods to achieve more aggressive
quantization while minimizing loss of accuracy. Future work
includes the development of accelerators specifically designed
for embedded systems with low-precision quantized matrices.

REFERENCES

[1] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst,
“Geometric deep learning: going beyond euclidean data,” IEEE Signal

Processing Magazine, vol. 34, no. 4, pp. 18–42, 2017.
[2] X. Ju, D. Murnane, P. Calafiura, N. Choma, S. Conlon, S. Farrell,

Y. Xu, M. Spiropulu, J.-R. Vlimant, A. Aurisano et al., “Performance
of a geometric deep learning pipeline for hl-lhc particle tracking,” The
European Physical Journal C, vol. 81, pp. 1–14, 2021.

[3] J. Pope, J. Liang, V. Kumar, F. Raimondo, X. Sun, R. McConville,
T. Pasquier, R. Piechocki, G. Oikonomou, B. Luo et al., “Resource-
interaction graph: Efficient graph representation for anomaly detection,”
arXiv preprint arXiv:2212.08525, 2022.

[4] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” Advances in neural information processing
systems, vol. 30, 2017.

[5] J. Nunez-Yanez, “Accelerating graph neural networks in pytorch with
hls and deep dataflows,” in Applied Reconfigurable Computing. Archi-
tectures, Tools, and Applications, F. Palumbo, G. Keramidas, N. Voros,
and P. C. Diniz, Eds. Cham: Springer Nature Switzerland, 2023, pp.
131–145.

[6] J. Nunez-Yanez and M. Hosseinabady, “Sparse and dense matrix multi-
plication hardware for heterogeneous multi-precision neural networks,”
Array, vol. 12, p. 100101, 2021.

[7] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “Dorefa-net:
Training low bitwidth convolutional neural networks with low bitwidth
gradients,” arXiv preprint arXiv:1606.06160, 2016.

[8] B. Feng, Y. Wang, X. Li, S. Yang, X. Peng, and Y. Ding, “Sgquant:
Squeezing the last bit on graph neural networks with specialized
quantization,” in 2020 IEEE 32nd International Conference on Tools
with Artificial Intelligence (ICTAI). IEEE, 2020, pp. 1044–1052.

[9] M. Fey and J. E. Lenssen, “Fast graph representation learning with
pytorch geometric,” arXiv preprint arXiv:1903.02428, 2019.

[10] M. Bahri, G. Bahl, and S. Zafeiriou, “Binary graph neural networks,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2021, pp. 9492–9501.

[11] M. Ding, K. Kong, J. Li, C. Zhu, J. Dickerson, F. Huang, and T. Gold-
stein, “Vq-gnn: A universal framework to scale up graph neural networks
using vector quantization,” Advances in Neural Information Processing
Systems, vol. 34, pp. 6733–6746, 2021.

[12] L. Huang, Z. Zhang, Z. Du, S. Li, H. Zheng, Y. Xie, and N. Tan,
“Epquant: A graph neural network compression approach based on
product quantization,” Neurocomputing, vol. 503, pp. 49–61, 2022.

[13] S. A. Tailor, J. Fernandez-Marques, and N. D. Lane, “Degree-quant:
Quantization-aware training for graph neural networks,” arXiv preprint
arXiv:2008.05000, 2020.

[14] Y. Zhao, D. Wang, D. Bates, R. Mullins, M. Jamnik, and P. Lio, “Learned
low precision graph neural networks,” arXiv preprint arXiv:2009.09232,
2020.

[15] Z. Liu, K. Zhou, F. Yang, L. Li, R. Chen, and X. Hu, “Exact: Scalable
graph neural networks training via extreme activation compression,” in
International Conference on Learning Representations, 2021.

[16] Q. Wu, L. Zhao, H. Liang, X. Wang, L. Tao, T. Tian, T. Wang, Z. He,
W. Wu, and X. Jin, “Gcint: Dynamic quantization algorithm for training
graph convolution neural networks using only integers,” 2022.

[17] S. Wang, B. Eravci, R. Guliyev, and H. Ferhatosmanoglu, “Low-bit
quantization for deep graph neural networks with smoothness-aware
message propagation,” in Proceedings of the 32nd ACM International
Conference on Information and Knowledge Management, 2023, pp.
2626–2636.

[18] Y. Wang, B. Feng, and Y. Ding, “Qgtc: accelerating quantized graph
neural networks via gpu tensor core,” in Proceedings of the 27th ACM
SIGPLAN symposium on principles and practice of parallel program-
ming, 2022, pp. 107–119.

[19] J. Li, A. Louri, A. Karanth, and R. Bunescu, “Gcnax: A flexible and
energy-efficient accelerator for graph convolutional neural networks,” in
2021 IEEE International Symposium on High-Performance Computer
Architecture (HPCA). IEEE, 2021, pp. 775–788.

[20] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[21] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph
neural networks?” arXiv preprint arXiv:1810.00826, 2018.

	Introduction
	Background and releated work
	Graph Neural Networks
	Graph Convolutional Networks
	Quantization

	Methodology
	Dorefa-Net Quantization
	Dorefa-Graph

	PERFORMANCE EVALUATION
	Datasets
	Graph Convolutional Network Layers
	Quantization Performance

	Conclusion
	References

