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Abstract—Recently, there has been an increasing emphasis on
mitigating cyber attacks in federated learning (FL) under the
Internet of Health Things (IoHTs). One prominent attack in
FL is membership inference, in which an adversary attempts to
determine whether a specific sample was included in the training
dataset used during the FL process. To address membership
inference attacks (MIA), various privacy-preserving approaches
have been proposed, with the widespread adoption of differential
privacy stochastic gradient (DP-SGD). However, these approaches
primarily focus on preserving privacy for individual data points
and do not account for the interactions commonly found in
cascaded function calls within malware.

To overcome this limitation, this work initially models the
malware dataset as a function call graph (FCG). Subsequently,
the DP-SGD-learned DotGAT model is utilized to classify both
malware and benign applications, ensuring the preservation of
privacy while maintaining model utility. Experimental results
demonstrate that maintaining a privacy budget (ε) within the
range of 12 to 18 achieves a favorable balance between privacy
and accuracy, thereby affirming the practicality and effectiveness
of our approach.

Index Terms—Differential Privacy, Membership Inference At-
tack, Federated Learning

I. INTRODUCTION

Federated learning has emerged as a state-of-the-art ap-
proach, utilizing multiple computing resources to train deep
neural networks on large datasets [1]. This technique has
gained significant attention due to its focus on privacy preser-
vation while also expediting the training process and effec-
tively handling complex tasks. The collaborative nature of
distributed deep learning facilitates faster convergence and en-
hanced performance [2]. Despite having numerous advantages,
data privacy in FL is still vulnerable to various security threats
that can compromise the integrity and confidentiality of the
training data. Adversaries can launch diverse attacks under
FL, giving rise to significant privacy and security concerns.
Data poisoning attacks involve the injection of malicious data
samples, which can result in biased or erroneous model outputs
[3]. Model inversion attacks aim to infer sensitive training data
from the outputs of a model, thus compromising the privacy
of individuals [4]. The membership inference attack seeks to
determine if a particular data point was included in the training
dataset [4]. Byzantine attacks encompass machines deviating
from correct computations, potentially disrupting the training

process and compromising the integrity of the model [5].
These attacks require robust defenses and privacy-preserving
mechanisms under distributed learning scenarios.

This work focuses MIA under a FL scenario with a focus
on privacy and security. The successful execution of MIA can
lead to the exposure of sensitive or confidential information
contained within the training dataset, as well as the infringe-
ment upon individuals’ privacy rights. Such attack can have
adverse effects on healthcare, finance, and personal data, as it
undermines the trust and integrity of machine learning models
and the associated datasets.

To mitigate these consequences, various privacy-preserving
techniques have been proposed. These include approaches
such as differential privacy [6], privacy-preserving aggregation
[7], data augmentation [8], adversarial training [9], and model
distillation [10]. These methods employ strategies such as
introducing noise, secure aggregation, or data transformations
to safeguard individual data privacy and thwart adversaries
attempting to infer membership information from trained mod-
els.

Differential privacy provides mathematical guarantees to
protect individuals’ data during data analysis and machine
learning processes [6]. It achieves this by introducing carefully
calibrated noise to the analysis results, thereby preventing
the identification of specific individuals or the disclosure
of sensitive information [6]. Various mechanisms and algo-
rithms, such as randomized response, Gaussian noise addition,
stochastic gradient descent (DP-SGD), private aggregation of
teacher ensembles, and secure multi-party computation, have
been developed to achieve differential privacy [11]. These
techniques incorporate randomness into the data or analysis
process to ensure that the final results are not excessively
influenced by any particular individual’s data.

Limited efforts have been made towards applying differen-
tial privacy under FL to address different types of attacks.
Abadi et al. [12] proposed the DP-SGD algorithm, which
trains machine learning models with privacy guarantees. DP-
SGD modifies the standard gradient descent algorithm by
introducing noise to the gradients, ensuring privacy while
preserving model utility. Subsequent works, such as those
by McMahan et al. [13] and Kairouz et al. [14], proposed
advanced techniques like adaptive noise injection and moment



accountant for tighter privacy bounds.
In other works [15], [16], DP-SGD implements an FL

scenario to perform classification tasks related to pneumonia,
and liver disease, respectively. These studies demonstrate the
effectiveness of incorporating DP techniques into the training
process to protect sensitive medical data. In another study, Le
Fang et al. presented DP-SGD with variational autoencoders
to develop a privacy-enhanced movie recommendation system
that preserves user preferences while providing personalized
suggestions [17]. The aforementioned studies primarily focus
on quantifying the differential privacy loss for each data
point in the dataset. However, when utilizing a graph-based
dataset in a federated learning setup, existing approaches fail to
account for the interactions present in the graph. Consequently,
this leads to an inaccurate estimation of differential privacy for
the graph dataset.

To overcome the limitations of the DP-SGD, which solely
considers privacy loss on individual data points, this research
proposes an alternative approach that captures the cumulative
privacy loss of interactions within a graph model. Specifically,
the study introduces a novel FCG representation for the mal-
ware dataset. The FCG interprets the flow of control between
different functions in an application while also illustrating their
relationships [22]. In addition to that, in this representation,
crucial information contained within the functions can be
assigned as node features of the FCG [22]. Therefore, this
approach facilitates processing the graph data through graph-
based algorithms easily. To perform the analysis, the graph
data is processed using the dot product graph attention network
(DotGAT), which applies dot product operation to address
the computation complexity present in large-scale graphs.
Furthermore, to ensure privacy preservation, the proposed
method incorporates differential privacy using DP-SGD.

The rest of this paper is organized as follows. Section
II examines the MIA. Section III provides a comprehensive
explanation of the DP-SGD approach. Section IV focuses on
the dataset and the creation of FCG. Section V introduces
the DP-DotGAT architecture and algorithm. Section VI covers
the experiment setup. Section VII presents the performance
evaluation, while Section VIII concludes the paper.

II. THREAT MODEL

The primary objective of MIA is to determine whether a
specific data sample is included in the training process of a
machine learning model. These attacks exploit vulnerabilities
within the model to gain insights into the membership status
of individual data points. Figure 1 shows different steps of
MIA attack:

1) Gain network access: The attacker joins a distributed
network as a legitimate user.

2) Obtaining target model: The attacker acquires the pa-
rameter of the target machine learning model, denoted
as ftarget(), which has been trained on a labeled dataset,
Dtrain−target.

3) Generating shadow dataset: The attacker creates a
separate dataset, Dtrain−shadow, to train the shadow

model, fshadow(). It is important to note that the
shadow dataset is disjoint from the private tar-
get dataset used for training the target model (i.e.,
Dtrain−shadow

⋂
Dtrain−target = ∅).

4) Training shadow model: The attacker trains the shadow
model, fshadow(), using the generated shadow dataset,
Dtrain−shadow. The shadow model is designed to repli-
cate the behavior of the target model, producing similar
output probabilities for given inputs.

5) Preparing attack model: The attacker collects inputs
for the attack model, fattack(), which consists of a
predicted probability vector from the shadow model and
the corresponding true label.

6) Training attack model: The attacker trains the attack
model, fattack(), using the collected inputs. The attack
model functions as a binary classifier, aiming to distin-
guish between samples that are members of the target
model’s training dataset and those that are not.

7) Performing membership inference: Once the attack
model is trained, leveraging the similarities and dif-
ferences between the shadow and target models, it
accurately infers membership.

Fig. 1. Threat model for membership inference attack: The adversary exploits
shadow model to infer membership in a trained machine learning model.

III. PRELIMINARIES

This section presents preliminaries and definitions for the
DP-SGD under graph-based FL. The differential privacy algo-
rithm depends on two parameters that are defined below:

• ε is the privacy parameter controlled by the data analyst
to balance the trade-off between privacy and accuracy.

• δ is the parameter that represents the probability of
privacy leakage in (ε, δ) differential privacy.

• D1 and D2 be neighboring datasets that differ by only
one element.

Definition 3.1 (ε - Differential Privacy):



Let ε be a positive value. A randomized function M is said
to be ε-differentially private if, for any pair of neighboring
input datasets D1 and D2 that differ by at most one element
and ∀S ⊆ Range(M), we have Equation 1 based on [6].

P [M(D1)]∈S]
P [M(D2)]∈S] ≤ eε

(1)
where the probability is determined based on the coin tosses

of M [6]. The given Equation 2 can be written as:

P [M(D1)] ∈ S] ≥ eε.P [M(D2)] ∈ S]
(2)

The probability of output in S on a D1 dataset is at least e
times the probability of output in S on a D2 dataset.

Definition 3.2 ( (ε, δ) - Differential Privacy):
Define a random function M as (ε, δ)-differentially private

if for all neighboring input datasets D1 and D2 that differ by
at most one element and ∀S ⊆ Range(M), we have Equation
3 based on [18].

P [M(D1) ∈ S] ≥ exp(ε)× P [M(D2) ∈ S] + δ
(3)

Suppose, for instance, that Y is an output that possibly reveals
X’s identity or data, whereas the parallel dataset D2 does not
contain X’s data, so we can say that P [M(D2) ∈ S] = 0. In
this scenario, M can never output X on any dataset but (ε, δ)
- differential privacy may produce X with a probability up to
δ.

In the above definitions, the Gaussian mechanism is utilized
to achieve (ε, δ)-differential privacy [19] as described below.
In this mechanism, a zero-mean Gaussian noise is applied to
the query result. The addition of noise to the output is scaled
based on the l2 sensitivity.

Definition 3.3 (Gaussian Mechanism):
Given a function f(x) that outputs a number, the following

definition of g(x) meets (ε, δ)-differential privacy, we can
express Equation 4 by incorporating σ2 given in Equation 5.

g(x)=f(x)+Gaussian(σ2)
(4)

σ2 =
2∆2

f log(1.25/δ)

ϵ2

(5)
where ∆2

f is the l2 sensitivity (∆2
f =

max
D1,D2 ∥f(D1− f(D2))∥2) of the function f and Gaussian(σ2)
is a random sample from the Gaussian distribution with a
center of 0 and variance of σ2.

IV. DATASET

To demonstrate the effectiveness of applying DP-SGD to
graph-based malware detection tasks, the DPMal dataset is
constructed by utilizing two well-known datasets, AndroZoo
[20] and Maldroid [21]. AndroZoo contains 17,341 appli-
cations, while Maldroid offers an extensive collection of

22,529,765 Android applications. Importantly, both datasets
include both malicious and benign applications. To build a
diverse and representative dataset, we carefully selected 2,500
distinct applications, including 500 of each: adware, banking
malware, riskware, SMS, and benign apps from both datasets.
These applications varied in size, ranging from 50 KB to 3.50
MB. After performing a random shuffle, 80% of the DPMal
was allocated for training, and the remaining portion for testing
purposes.

A. Function Call Graphs

To construct the graph data, the Androguard tool is used,
inspired by the work of Vinayaka et al. [22]. The process
of building the graph data consists of two main stages. In
the first stage, the FCG is extracted from the application
by analyzing the dex code and following the function calls.
The FCG captures the relationships and connections between
different functions within the application [22]. In the second
stage, features were assigned to each node in the graph to
facilitate message passing and enhance the analysis. Specifi-
cally, the node features are obtained by combining API calls
and Opcodes. API calls represent the interactions and usage
of different application programming interfaces within the
function [23]. By considering API calls as node features,
insights into the specific functionalities and behaviors of each
function were obtained. On the other hand, Opcodes represent
the low-level instructions executed by the processor within
the function [24]. By including Opcodes as node features,
the detailed operations and instructions performed by each
function were captured.

V. DIFFERENTIALLY PRIVATE DOTGAT (DP-DOTGAT)

This section presents the classification using DotGAT that
is trained using DP-SGD as discussed below.

A. DotGAT

When considering a large-scale application with thousands
of nodes and links, it is crucial to choose a model that
can efficiently handle such complexity. Recently, the DotGAT
model has emerged as a powerful approach for graph analysis
and processing, demonstrating superior performance compared
to other graph neural network (GNN) architectures [25]. By in-
corporating an attention mechanism, DotGAT effectively cap-
tures the importance of neighboring nodes during information
propagation, allowing it to adaptively aggregate information
from the graph and enhance its ability to capture complex
dependencies and patterns in the graph structure [25]. More-
over, DotGAT addresses scalability challenges by employing
a computationally efficient dot product attention mechanism,
making it suitable for large-scale graphs [25]. Furthermore,
the multi-head attention mechanism in DotGAT significantly
enhances its capacity to capture complex relationships within
the graph. These promising capabilities presented in DotGAT
allow them to be used in various tasks to acquire fine-grained
information from a graph [22].



Therefore, to improve performance, address computation
complexity concerns, and ensure privacy, we employed the
DotGAT model in combination with differential privacy tech-
niques. The overall architecture of our approach is illustrated
in Figure 2. The model constructed in Section IV-A serves
as the input to the DotGAT model, which is trained using
DP-SGD. During the training process, gradients are clipped,
averaged, and Gaussian noise is added to preserve privacy
while learning meaningful patterns from the FCG. The steps
involved are presented in Figure 2 and outlined in Algorithm
1.

Fig. 2. DP-DotGAT architecture.

Algorithm 1 DP-DotGAT
Input:G(V, E), X, εmax, α, σ, δ, N, C // DPMal, features,

max budget, learning rate, noise scale, leak probability,sample size,
and gradient norm bound

Output: W̄ and total privacy cost (ε, δ) using a privacy accounting
method

1: H(0) ← X
2: Initialize W randomly
3: for each epoch n in N do
4: ε← DP-SGD (N,σ,δ)
5: if ε > εmax then
6: Go to step 20
7: end if
8: for each head k in K do
9: e(v,u)← (W ∗Hv)(T ).W ∗Hu // v,u are connected vertices

10: avu ← softmax(e(v,u)) // Normalize attention coefficients
11: H

(v)
k ←

∑
u avu ∗H(u)

k−1 // node embeddings

12: H(v) ← mean(H(v)
k )

13: end for
14: Z← mean(H(v)) //graph-level embedding
15: Y ← softmax(Z * Wout),where Wout is the weight matrix for the

output layer
16: Loss ← − 1

N

∑N
i=1 Yi ∗ log Ȳi + (1− Yi) ∗ log (1− Ȳi) //Calcu-

late loss
17: g← ∇W ∗ Loss //Calculate gradient
18: g’← g/max(1, ∥g∥2

C
) //Clip gradient

19: ḡ ← 1
N

(g’+Noise(0,σ2C2I)) //Adding noise
20: Wnew ←W − α(ḡ) // Update weights
21: end for
22: W̄ ←Wnew

B. Learning using DP-DotGAT

The DP-DotGAT algorithm takes DPMal, features, maxi-
mum budget, learning rate, noise scale, leak probability sample
size, and gradient norm bound as inputs and produces local
weights and privacy cost (ε, δ) as output. Initially, H(0) is
initialized as X. Next, the weights are randomly assigned. The
privacy cost is calculated using the DP-SGD algorithm [26]
in step 4. In step 9, the attention coefficients for each edge
(v,u) in the graph are computed, followed by the application
of row-wise Softmax to normalize them in step 10. In step 11,
the normalized attention coefficients are utilized to compute
a set of weighted feature vectors for each node at attention
head k. These vectors are then concatenated in step 12 through
a simple average operation. The resulting output is averaged
across all nodes in the graph to obtain a graph-level embedding
in step 14. The loss factor is computed in step 16 based on
the difference between the predicted and actual output, and
gradients are subsequently computed in step 17. In step 18,
the gradients are clipped based on the gradient norm bound
factor. Following that, the clipped gradients are perturbed by
adding Gaussian noise in step 19. Subsequently, in step 20, the
weights of the model are updated based on the noisy gradients
represented by the variable ḡ. This weight update process is
iterated until the privacy cost exceeds εmax.

VI. EXPERIMENT SETUP

These experiments are conducted using the Python pro-
gramming language. Experiments use the Androguard tool to
extract the FCG from an Android application. Additionally,
PyTorch is utilized for constructing the models. After thor-
ough analysis and evaluation, it is determined that a noise
multiplier of 0.5 and an L2 clipping norm of 6 are the optimal
parameters for the DP-DotGAT model. During this decision-
making process, it is observed that setting the noise multiplier
above 0.5 results in poor model performance. Conversely,
reducing the noise multiplier below 0.5 led to exponential
growth in the privacy budget. With the selected parameters,
the model is evaluated using four different privacy budget
values (ε = 5, 10, 15, 20). Furthermore, to compare the overall
performance of the DP-DotGAT model, the DotGAT (without
DP) model is used as a baseline. Table I presents the various
parameters used in the experiment.

TABLE I
MODEL PARAMETERS.

Parameters DotGAT DP-DotGAT
Input 247 247
Hidden dimension 3 3
Learning rate 0.0125 0.0125
Optimizer SGD SGD
Number of heads 2 2
Weight decay 0.0001 0.0001
L2 norm clipping - 6
Noise multiplier - 0.5



VII. PERFORMANCE EVALUATION

The impact of the privacy budget on accuracy is illustrated
in Fig. 3. Our analysis shows that the DotGAT model achieves
a convergence accuracy of 90.04%. In the case of DP-DotGAT,
increasing the privacy budget from 5 to 20 leads to a cor-
responding accuracy improvement from 70.44% to 92.22%.
However, it is important to note that this increase in accuracy
comes at the cost of reduced privacy for the model. Fur-
thermore, we observed that the accuracy of the DP-DotGAT
model reaches 80% when the privacy parameter ε is set to
12. This indicates that the model can achieve a reasonably
high level of accuracy while maintaining satisfactory privacy
protection. Interestingly, at a privacy parameter of ε = 18,
the accuracy of the DP-DotGAT model surpasses that of the
baseline DotGAT model. This behavior can be attributed to
the regularization effect of the noise introduced by differential
privacy. Therefore, our approach demonstrates that a privacy
budget ranging from above 12 to below 18 effectively satisfies
privacy requirements while maintaining a satisfactory level of
model performance.

Fig. 3. Accuracy vs privacy budget ε.

Fig. 4 and Fig. 5 present the ROC curves and PR curves for
the DP-DotGAT model with various privacy budget settings.
The configuration with ε = 20 demonstrates the highest per-
formance, achieving an impressive AUC value of 0.922 and AP
value of 0.891. However, this performance gain comes at the
cost of significant privacy leakage, indicating a compromise
in preserving sensitive information. The DotGAT model shows
the second-highest performance, with an AUC of 0.904 and AP
of 0.861. Conversely, the setting with ε = 5 yields the lowest
performance among the tested configurations, highlighting the
inverse relationship between the privacy budget and model
performance. These findings emphasize the importance of
carefully considering the privacy-performance trade-off when
selecting a privacy budget for the DP-DotGAT model.

Fig. 6 and Fig. 7 illustrate the precision and F1 score of both
the DotGAT and DP-DotGAT models. As the privacy budget
increases, the precision and F1 score of DP-DotGAT exhibit an
upward trend. For DP-DotGAT, precision ranges from 71.05%
to 91.88%, and F1 scores vary from 70.90% to 92.47% across
different privacy budgets (ε). In comparison, the DotGAT

Fig. 4. ROC curve comparison for different ε
.

Fig. 5. PR curve comparison for different ε
.

model achieves a precision of 88% and an F1 score of 91%,
without explicitly considering privacy protection. Remarkably,
DP-DotGAT demonstrates superior precision and F1 score
compared to DotGAT for privacy budgets after ε = 15 and
ε = 18. DP-DotGAT demonstrates enhanced precision and
F1 score compared to DotGAT for certain privacy budgets,
it is essential to consider the presence of potential privacy
vulnerabilities. These vulnerabilities can potentially lead to the
disclosure of sensitive information, posing risks to the privacy
of individuals.

Fig. 6. Precision vs Privacy budget.



Fig. 7. F1 score vs Privacy budget.

In summary, the analysis highlights that while DP-DotGAT
outperforms DotGAT in terms of performance under specific
privacy budgets, the existence of privacy vulnerabilities cannot
be ignored. Therefore, careful budget setting is crucial when
applying DP-DotGAT to application graph data in order to
strike a balance between privacy and performance.

VIII. CONCLUSION

The study provides a privacy-preserving technique to mit-
igate MIA in an FL setting by integrating the DP-SGD
algorithm with the DotGAT model. To introduce randomness,
Gaussian noise is added at each local update of the model.
Further, the findings indicate that increasing the privacy budget
in the DP-DotGAT model enhances accuracy but reduces
privacy. Furthermore, choosing a privacy budget ε between
12 and 18 offers a reasonable balance of accuracy and privacy
in the DP-DotGAT model. Moreover, our approach overcomes
the limitation of solely focusing on individual data points by
considering the cascade structure of function calls within the
applications. The findings contribute to advancing privacy-
preserving techniques in FL and highlight the importance
of considering contextual information for improved privacy
protection.
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