
Parallel and Vectorised Winograd Convolutions for
Multi-core Processors

Manuel F. Dolz
Universitat Jaume I de Castellón, Spain

dolzm@icc.uji.es

Héctor Martı́nez
Universidad de Córdoba, Spain

el2mapeh@uco.es

Pedro Alonso-Jordá, Adrián Castelló,
Enrique S. Quintana-Ortı́

Universitat Politècnica de València, Spain
palonso@dsic.upv.es,

{adcastel,quintana}@disca.upv.es

Abstract—We take a step forward toward developing high-
performance codes for the convolution operator, based on the
Winograd algorithm, on general-purpose processor architectures.
In our approach, augmenting the portability of the solution is
achieved via the introduction of vector instructions from Intel
AVX2/AVX512 and ARM SVE to exploit the SIMD (single-
instruction multiple-data) capabilities of current processors as
well as OpenMP pragmas to exploit multi-threaded parallelism.
While this comes at the cost of sacrificing a fraction of the
computational performance, our experimental results on two
distinct processors, with Intel Xeon Skylake and Fujitsu A64FX
processors, show that the impact is affordable, and still renders a
Winograd-based convolution that is competitive when compared
with the lowering GEMM-based approach.

Index Terms—Convolution, Winograd minimal filtering algo-
rithm, high performance, vector intrinsics, SIMD units, multicore
processors

I. INTRODUCTION

Over the past years, convolutional neural networks (CNNs)
have demonstrated excellent accuracy beyond their traditional
application niches in computer vision and signal process-
ing [1], [2]. The convolution operation in CNNs, though, is
responsible for a major fraction of the computational cost
required for training and inference [2]. It is therefore natural
that a significant effort has been dedicated to developing and
optimising efficient convolution algorithms.

Among the different methods for the convolution operator,
we can list i) the direct algorithm; ii) the lowering (or
IM2COL/IM2ROW-based) approach; iii) the FFT-based trans-
form, and iv) the Winograd-based convolution. The corre-
sponding high-performance implementations of some of these
methods in libraries such as, for example, NVIDIA cuDNN
and Intel oneAPI, is that the best performing and accurate
method largely depends on the parameters that define the
convolution.

In this work we address the efficient implementation of
the Winograd-based convolution, using vector intrinsics, on
current general-purpose processors equipped with SIMD FPUs
(single-instruction multiple-data floating-point units). The use
of vector intrinsics for this purpose, instead of “hand-coded”
low-level assembly kernels (with vector instructions), in prin-
ciple sacrifices some performance, but improves portability
thanks to the support offered by current C compilers within
platforms of a same vendor. In addition, the use of “high-

level” codes with vector intrinsics eases the development of
customised deep learning (DL) solutions via layer fusion.
Specifically, we make the following contributions:

• We describe the implementation of the Winograd-based
convolution enhanced with vector intrinsics for two pro-
cessor architectures, Intel and ARMv8.2-SVE, using 256-
bit, 512-bit and Vector-Length Agnostic (VLA) intrinsics,
respectively defined in the Intel AVX2/AVX512 and
ARM SVE.

• We present a “macro-tiling” technique that unrolls loops
and fuses individual tiles of the Winograd algorithm to
improve the utilisation of long vector registers as those
present in Intel AVX2/AVX512 or ARM SVE intrinsics.

• We perform an evaluation of the implementations based
on Intel AVX2/AVX512 and ARM SVE on two plat-
forms equipped with Intel Xeon Gold and Fujitsu A64FX
multicore processors. This experimental analysis includes
our baseline Winograd-based convolution, an alternative
lowering-based convolution algorithm, and two storage
layouts, using two representative CNNs.

The rest of the paper is structured as follows. In Sec-
tion II we briefly review the Winograd-based method for the
convolution. Next, in Section III, we describe our “multi-
platform” realisation of these algorithms with vector intrinsics
and OpenMP using an Intel processor or a Fujitsu A64FX
processor. In Section IV we evaluate the performance of the
implementations on both target architectures, and finally, in
Section V, we close the paper with a few concluding remarks.

II. CONVOLUTION OPERATORS VIA THE WINOGRAD
MINIMAL FILTERING ALGORITHM

The Winograd (minimal filtering) algorithm provides a
method to obtain an efficient realisation of a convolution
operator [3]. Concretely, given a convolution layer that applies
a filter f to an input image d, consisting of c input channels, in
order to produce an output y, with k channels, the Winograd-
based convolution can be expressed as

yik = AT
(∑c

ic=1

(
Gfik,icG

T
)
⊙

(
BT dicB

))
A,

ik = 1, 2, . . . , k,
(1)

where G,B respectively denote the transformation matrices
for the filter and input matrices; A is the inverse transformation

matrix; fik,ic is the ic-th channel of the ik-th filter; dic is the
ic-th channel of the input image; yik is the ik-th channel of
the output; and ⊙ denotes the Hadamard (or element-wise)
multiplication [4].

From a practical point of view, the 2D Winograd-based
convolution applies an r × r filter to a t × t input tile in
order to produce an m ×m output tile, with t = m + r − 1.
An hi × wi image is processed by partitioning it into t × t
tiles, with an overlapping factor of r − 1 elements between
neighbouring tiles, yielding ⌈hi/m⌉⌈wi/m⌉ tiles per channel.
In this algorithm, choosing a larger value for m thus reduces
the number of arithmetic operations, unfortunately at the cost
of introducing numerical instability in the computation [5].
For that reason, m is usually set to be small, with two
popular cases being F (m × m, r × r) = F (4 × 4, 3 × 3)
and F (2× 2, 3× 3).

According to Winograd’s formula (1), the intermediate
Hadamard products are summed over all c channels to produce
the ik-th output channel. However, by properly scattering each
transformed tile of the filter and input along the t× t dimen-
sions, on respective intermediate workspaces U and V , of sizes
t×t×k×c and t×t×c×(⌈hi/m⌉⌈wi/m⌉), both the Hadamard
products and the element-wise summations can be collapsed
into t×t independent matrix-matrix multiplications (also know
as a “batched” GEMM). Finally, the same coordinates of the
resulting t× t matrices are gathered to form a new t× t tile
which is next used to compute the inverse transform as a m×m
tile on the output tensor.

The general workflow of the “batched” GEMM variant of the
Winograd algorithm exposes the four major phases: 1) filter
transform; 2) input transform; 3) “batched” GEMM; and 4)
output inverse transform. In DL, the 3D input/output tensors
are extended with a batch dimension n using either the NCHW
or the NHWC layouts.

III. HIGH-PERFORMANCE WINOGRAD CONVOLUTION
USING VECTOR INTRINSICS AND OPENMP

In this section, we discuss several high-performance imple-
mentations of the Winograd algorithm, vectorised using Intel
AVX2/AVX-512 and ARM SVE intrinsics, and parallelised
using OpenMP. The vectorisation efforts for the Winograd
algorithm have been applied to phases 1, 2, and 4. For brevity,
we describe only the work on phases 1 and 2, corresponding to
the filter and input transforms. Phase 3 can be seamlessly vec-
torised using a high-performance implementation of GEMM,
for example, as that available in libraries such as Intel MKL,
Intel oneAPI, BLIS or OpenBLAS, depending on the target
architecture. Finally, we target single-precision floating-point
(FP32) arithmetic.

A. Intel AVX2/AVX-512 intrinsics

In this section, we describe the implementation details of
the input transform (phase 2) of the Winograd algorithm using
Intel AVX2/AVX-512 intrinsics. The vectorisation of the filter
and output inverse transforms (phases 1 and 4) of the Winograd
algorithm follows a similar approach to that for the input

transform. It is worth mentioning that each Winograd variant
(using a given (m, r) pair) requires a specific vectorised
implementation for phases 1, 2, and 4. This is due to the
distinct dimensions and sparsity patterns of the transformation
matrices G, A and B on the m+r−2 polynomial interpolation
points [4]. Depending on the intrinsics used, each implemen-
tation implies, among other details, replacing the data types
with Intel AVX2 __m256 or AVX-512 __m512.

Given that the Winograd algorithm should leverage small
values of m and r, such as F (2× 2, 3× 3), F (4× 4, 3× 3),
vectorising these phases for 256- or 512-bit vector registers
requires unrolling the loops iterating over the input tiles to
fully exploit such long vector registers. By doing so, we design
a “macro-tiling” technique that can then process a horizontal
(and optionally vertical) block of consecutive tiles of the
input/output images (or a subset of filters) in a single iteration
so that the macro-tile columns, stored in vector registers,
exploit their full length.

·

·

=

=

BT

BT

t t t

𝑡

𝑡

𝑚

m

t

t

t

t

t

t t t

t t

t

m

𝑚

t

t

t

t 𝑡

t

t

t

m𝑚

m

Vi = HT Di H

1)

2)

Di Di’

(Di’)T ViT

Di’ = BT Di’

ViT = BT (Di’)T

Fig. 1: Example of the Winograd macro-tiling technique for
the input transform Vi = BTDiB via the variant F (2×2, 3×3)
and using Intel AVX2 256-bit registers.

Figure 1 illustrates the macro-tiling technique for the input
transform and the variant F (2 × 2, 3 × 3) using Intel AVX2
256-bit SIMD units. In this code, the application of the input
transform to a macro-tile is split into two sub-operations. The
first performs the multiplication D′

i = BT Di, where Di is a
macro-tile of size ht×wt = 6×8, aggregating a 2×3 di,j input
tiles of size t×t = 4×4 overlapping each other r−1 rows and
columns. By overlapping r−1 columns between neighbouring
tiles, the number of arithmetic operations can be reduced,
given that the results of a tile can then be re-utilised for those
that are immediately on the right. The second multiplication
V T
i = BT D′

i
T uses the previously transposed macro-tile DT

i

and is computed similarly, with the exception that there are no

1 __m512 UX[10], WX[16];
2 t = 4; // Tile size
3 s = m = 2; // Tile stride (m)
4 timt_h= 4; timt_w= 7; // Number of tiles per macro-tile
5 imt_h = t + (timt_h-1) * s; // Input macro-tile height
6 imt_w = t + (timt_w-1) * s; // Input macro-tile width
7 imt_vs= timt_h * s; // Input macro-tile vertical stride
8 imt_hs= timt_w * s; // Input macro-tile horiz. stride
9 // Number of vert./horiz. macro-tiles of the input image

10 imtile_h = ceil(((double)hi+2*vpadding-imt_h)/imt_vs)+1;
11 imtile_w = ceil(((double)wi+2*hpadding-imt_w)/imt_hs)+1;
12
13 #pragma omp parallel for \
14 collapse(2) private(...) if ((n*c)>1)
15 for (in = 0; in < n; in++)
16 for (ic = 0; ic < c; ic++)
17 for (ih = 0; ih < imtile_h; ih++)
18 // Calculate tile height bounds
19 // (omitted for brevity)
20 for (iw = 0; iw < imtile_w; iw++) {
21 // Calculate tile width bounds ...
22 // (omitted for brevity)
23 // Set macro-tile to 0
24 for (i = 0; i < imt_h; i++)
25 UX[i] = _mm512_setzero();
26
27 // Copy input to macro-tile
28 for (i = fh; i < oh; i++)
29 for (j = fw; j < ow; j++)
30 UX[i][j] = Drow(in, ic, hh+i-fh, ww+j-fw);
31
32 // WX = Bt_row(i) * UX (rows of d)
33 for (i = 0; i < timt_h; i++) {
34 WX[i*4 + 0] = UX[i*2 + 0] - UX[i*2 + 2];
35 WX[i*4 + 1] = UX[i*2 + 1] + UX[i*2 + 2];
36 WX[i*4 + 2] = -UX[i*2 + 1] + UX[i*2 + 2];
37 WX[i*4 + 3] = UX[i*2 + 1] - UX[i*2 + 3];
38 }
39 // Transpose WX
40 _MM_TRANSPOSE16_PS(WX[0], WX[1], WX[2], WX[3],
41 WX[4], WX[5], WX[6], WX[7],
42 WX[8], WX[9], WX[10],WX[11],
43 WX[12],WX[13],WX[14],WX[15]);
44
45 // UX = Bt_row(i) * WX
46 int max_mth= min(tile_h-(ih*timt_h),timt_h),mth;
47 int max_mtw= min(tile_w-(iw*timt_w),timt_w),mtw;
48
49 for (mtw = 0; mtw < max_mtw; mtw++) {
50 UX[0] = WX[mtw*2 + 0] - WX[mtw*2 + 2];
51 UX[1] = WX[mtw*2 + 1] + WX[mtw*2 + 2];
52 UX[2] = -WX[mtw*2 + 1] + WX[mtw*2 + 2];
53 UX[3] = WX[mtw*2 + 1] - WX[mtw*2 + 3];
54 for (mth = 0; mth < max_mth; mth++)
55 for (i = 0; i < t; i++)
56 for (j = 0; j < t; j++)
57 Vrow(i, j, ic, (in*tile_h*tile_w) +
58 (iw*timt_w + mtw) + (ih*timt_h + mth) *
59 tile_w) = UX[j][mth*t + i];
60 }
61 }

Listing 1: C code for the input transform vectorised using Intel
AVX512 intrinsics the macro-tiling technique.

overlapped columns in the transposed resulting matrix V T
i .

Listing 1 shows a excerpt of code for the Winograd variant
F (2 × 2, 3 × 3) for the input transform, implementing the
macro-tiling technique using Intel AVX-512 intrinsics. In that
code, the macro-tile of size 10 × 16 aggregates 4 × 7 input
tiles of size 4× 4. Furthermore:

• The “base vector datatype” corresponds to Intel AVX-512
__m512. The arrays of this type target the 512-bit ZMM
vector registers with a capacity for 16 FP32 numbers.

• The input matrix is accessed via the C macro DROW,
whose implementation is dependent on the type of storage
layout being NCHW or NHWC.

• Loading the entries of the macro-tile is carried out via
“scalar” operations. For the NCHW layout, this can be
modified to take advantage of vector loads.

• The loop for the multiplication D′
i = HT Di. iterates

over the vertical axis to uncollapse the r − 1 overlapped
rows in the resulting vectors WX which containing the
macro-tile D′

i of size 16× 16.
• The transposition of the matrix stored in the array WX is

done via the C macro _MM_TRANSPOSE16_PS.
• The last nested loops perform the multiplication V T

i =
BT D′

i
T . After processing a row of tiles within the

macro-tile, the result stored in the four entries of the
array UX is accordingly scattered across the entries of
the workspace U .

As part of this work, we also vectorised the output transform
using the macro-tiling technique. However, due to the more
complex access pattern for the result tensor, this technique
did not render any performance improvement. In consequence,
our Intel AVX2- and AVX-512-based implementations only
leverage the macro-tiling technique for the filter and input
transform phases.

B. ARM SVE intrinsics
Compared to the AVX2/AVX-512 codes, implementing the

filter transform using ARM SVE VLA intrinsics is not straight-
forward and requires rewriting the codes with some aspects in
mind:

• It is not possible to declare SVE arrays with the vector
datatype svfloat32_t since their size is not known at
compile time. This forces us to rewrite and unroll some
loops of the algorithm to mimic the behaviour of the SSE
codes, resulting in more verbose implementations.

• The basic arithmetic operators are not overloaded by
default, since the intrinsics require the use of masks
(predicates), which have to be declared and initialised
in advance. This further increases the code verbosity and
reduces interpretability.

Listing 2 shows an excerpt of code for the filter transform
phase using ARM SVE intrinsics. Compared to previous
implementations, the code presents the following differences:

• The filter load is performed in a temporary variable
(F_tmp) as the subscript operator ([]) is also not
overloaded by default. Afterwards, the filter is loaded
into the SVE registers via the intrinsic svld1 with the
predicate pred3, which was previously initialised via
svwhilelt_v32_u32 to operate only with the first 3
elements.

• The multiplication Wik = G fik,ic is performed by
steps, as the basic operators are not available for
svefloat32_t. The same occurs for the multiplication
Uik = G Wik .

• The transposition of the matrix stored in W0–W3 is
performed using a specialised in-house C macro imple-
mented by the authors.

• The contents of registers U0–U3 are stored via
svst1_f32, with the pred4 predicate, into the tem-
porary matrix U_tmp. Finally, this matrix is copied to
the corresponding entries of U.

In general, programming with SVE intrinsics has the ad-
vantage of generating a VLA code which does not need to

1 svfloat32_t F0, F1, F2,
2 W0, W1, W2, W3,
3 U0, U1, U2, U3;
4 svbool_t pred3 = svwhilelt_b32_u32(0, 3);
5 svbool_t pred4 = svwhilelt_b32_u32(0, 4);
6 int r = 3, t = 4;
7 float F_tmp[3][3], U_tmp[4][4];
8 // other declarations
9

10 #pragma omp parallel for \
11 collapse(2) private (...) if ((k*c)>1)
12 for (ik = 0; ik < k; ik++)
13 for (ic = 0; ic < c; ic++) {
14 // U[..., ik, ic] = (G @ F[ik, ic, ...]) @ G.T
15
16 // Load rows of 3x3 filter f
17 for (i = 0; i < r; i++)
18 for (j = 0; j < r; j++)
19 F_tmp[i][j] = FROW(ik, ic, i, j);
20
21 F0 = svld1(pred3, F_tmp[0]);
22 F1 = svld1(pred3, F_tmp[1]);
23 F2 = svld1(pred3, F_tmp[2]);
24
25 // Wi = G_row(i) * [F0;F1;F2]
26 W0 = F0;
27 W1 = svadd_f32_z (pred4, F0, F1);
28 W1 = svadd_f32_z (pred4, W1, F2);
29 W1 = svmul_n_f32_z(pred4, W1, 0.5);
30 W2 = svsub_f32_z (pred4, F0, F1);
31 W2 = svadd_f32_z (pred4, W2, F2);
32 W2 = svmul_n_f32_z(pred4, W2, 0.5);
33 W3 = F2;
34
35 // Transpose Wi
36 SVE_TRANSPOSE4_F32(W0, W1, W2, W3);
37
38 // Ui = G_row(i) * [W0;W1;W2;W3]
39 U0 = W0;
40 U1 = svadd_f32_z (pred4, W0, W1);
41 U1 = svadd_f32_z (pred4, U1, W2);
42 U1 = svmul_n_f32_z(pred4, U1, 0.5);
43 U2 = svsub_f32_z (pred4, W0, W1);
44 U2 = svadd_f32_z (pred4, U2, W2);
45 U2 = svmul_n_f32_z(pred4, U2, 0.5);
46 U3 = W2;
47
48 // Scatter result in appropriate entries of U
49 svst1_f32(pred4, U_tmp[0], U0);
50 svst1_f32(pred4, U_tmp[1], U1);
51 svst1_f32(pred4, U_tmp[2], U2);
52 svst1_f32(pred4, U_tmp[3], U3);
53
54 for (i = 0; i < t; i++)
55 for (j = 0; j < t; j++)
56 UROW(i, j, ik, ic) = U_tmp[j][i];
57 }

Listing 2: C code for the filter transform vectorised using ARM
SVE intrinsics.

be rewritten for other SVE architectures of different vector
lengths. For the case of the Winograd algorithm, however,
this does not bring major advantages as the vector length code
strictly depends on the Winograd variant.

C. Exploiting thread-level parallelism using OpenMP

In addition to the introduction of vector intrinsics, the four
phases of the algorithm can be also parallelised using OpenMP,
as the individual kernels involved by the transform matrices for
the filter/input/output tiles, as well as the t× t GEMM, present
no data dependencies between them. To augment the degree of
thread-level parallelism, we use the OpenMP collapse(2)
clause to fuse the first two loops in each phase: across the
k and c-dimensions in phase 1; the n and c-dimensions in
phase 2; the two loops iterating over t in phase 3; and the n
and k- dimensions in phase 4. This is shown, for example, in
Listing 1 (Lines 13–14) for phase 2. Also, the t × t GEMM
kernels in phase 3 are executed serially. Finally, we added the

OpenMP clause if to extract thread-level parallelism only
when the number of “collapsed” iterations is larger than 1.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of our im-
plementations of the Winograd-based convolution on three
different platforms, using two well-known DL models, for
both the NCHW and NHWC data layouts. For comparison
purposes, we also include the Lowering method (also referred
to as IM2COL/IM2ROW + GEMM) [6], [7] in the evaluation.
All experiments are performed using FP32 arithmetic.

A. Hardware setup

For the experiments, we employ the following platforms:
• SKY: This server comprises two Intel Xeon Gold (Sky-

lake) 6126 processors (24 cores in total) running at
2.6 GHz and sharing 64 GiB of DDR4 RAM.

• A64FX: This is a Fujitsu PRIMEHPC FX1000 node
equipped with a 48+4-core Fujitsu A64FX proces-
sor (ARMv8.2-SVE) running at 2.2 GHz. The cores of
the node are grouped into four Core Memory Groups
(CMGs), each with 12 compute cores plus an additional
assistant core for the operating system. This machine
contains 32 GiB of HBM2 memory.

In the experiments, we set the number of OpenMP threads to
match the number of cores of a single socket for SKY (12),
and the cores of a single CMG for A64FX (12 as well).

B. DL framework, libraries, compilation flags, and paralleli-
sation

To evaluate our routines for the Winograd-based convo-
lution, we bundled them into a dynamic C library and in-
tegrated the result with PyDTNN, a lightweight framework
implemented in Python for DL training and inference [8],
[9]. The compilation of this library is carried out using
gcc v10.2.0 with the optimisation flags -O3 -fopenmp for
both platforms in addition to -mavx -mfma for SKY. The
t × t GEMM kernels in phase 3 are computed via Intel MKL
v2022.1.0 (for SKY) and BLIS v0.8.1 (for A64FX).

Alternatively, the Conv2D layers in PyDTNN can be also
processed via the IM2COL transform + GEMM of Lowering
for the NCHW layout, or IM2ROW + GEMM for NHWC. The
IM2COL/IM2ROW transforms are implemented in PyDTNN
using Cython v0.29.24, and parallelised using OpenMP. The
implementation of GEMM is provided by Numpy v1.23.0rc1,
linked against Intel MKL for the SKY or BLIS for A64FX.

C. Testbed

For the evaluation, we measure the inference time spent by
PyDTNN on the convolutional layers present in two popular
DL models: VGG16 [10] and ResNet-50 (v1.5) [2] for the
ImageNet dataset in both cases [11]. In our analysis, we only
evaluate the convolutional layers using filters of size 3 × 3
with the Winograd variant F (2 × 2, 3 × 3). For comparison
purposes, we also measure the execution time of the Lowering
approach using the same convolutional layers. The number of

 0

 0.005

 0.01

 0.015

 0.02

1 3 6 8 11 13 15 18 20 22 25 27 29

T
im

e
(s

)

#CNN Layer

Winograd SSE (NHWC)
Winograd SSE (NCHW)
Winograd AVX2 (NHWC)
Winograd AVX2 (NCHW)
Winograd AVX-512 (NHWC)
Winograd AVX-512 (NCHW)
Lowering (NHWC)
Lowering (NCHW)

VGG16 on SKY

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

9 21 31 53 63 73 95 105 115 125 135 157 167

T
im

e
(s

)

#CNN Layer

Winograd SSE (NHWC)
Winograd SSE (NCHW)
Winograd AVX2 (NHWC)
Winograd AVX2 (NCHW)
Winograd AVX-512 (NHWC)
Winograd AVX-512 (NCHW)
Lowering (NHWC)
Lowering (NCHW)

ResNet-50 (v1.5) on SKY

 0

 0.01

 0.02

 0.03

 0.04

 0.05

1 3 6 8 11 13 15 18 20 22 25 27 29

T
im

e
(s

)

#CNN Layer

Winograd (NHWC)
Winograd (NCHW)
Lowering (NHWC)
Lowering (NCHW)

VGG16 on A64FX

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

9 21 31 53 63 73 95 105 115 125 135 157 167

T
im

e
(s

)

#CNN Layer

Winograd (NHWC)
Winograd (NCHW)
Lowering (NHWC)
Lowering (NCHW)

ResNet-50 (v1.5) on A64FX

Fig. 2: Winograd vs Lowering execution time of the VGG16 (left) and ResNet-50 (right) convolution layers on the SKY (top)
and A64FX (bottom) platforms using 12 threads.

images/batch size was set to n = 1 in order to reflect the
single-stream scenario of the ML Commons benchmark. It is
worth mentioning that the convolutional layer execution times
in this analysis were averaged from 100 input images passed
as inputs to the CNNs.

D. Results on the Intel Skylake
Figure 2 (top) reports the inference execution time of

the convolutional layers using the Lowering method and the
Winograd algorithm vectorised using AVX2 and AVX-512
intrinsics for both data layouts on the SKY platform. Note
that in the experiments we also include the results using SSE
intrinsics as baseline implementations with respect to the more
sophisticated variants using AVX2/AVX-512 intrinsics.

The experiments show that, for VGG16, almost all convo-
lutional operators appearing in the last layers of VGG16 (3–
29), using either NCHW or NHWC and SSE, AVX2 or AVX-
512 deliver higher performance than the Lowering approach.
This is due to the reduction of the arithmetic cost implicit
in the Winograd algorithm (potentially at the expense of less
accurate results). Concerning the data layout we observe that,
in general, NCHW offers higher performance than NHWC.
This is due to the algorithm design, which first processes in-
dividual tiles for specific channels, accessing data contiguously
according to NCHW. Regarding the use of SSE, AVX2 and
AVX-512, we detect slightly smaller execution times for AVX2
and AVX-512, with no clear winner between them.

Focusing on ResNet-50, we can highlight similar results:
the Winograd algorithm provides, for almost all convolutional
layers (53–167), higher performance figures than the Lowering
method. For the first layers (9–31), however, the Winograd

algorithm using the NHWC format provides slightly less
competitive results. This is due to the less efficient memory ac-
cesses performed by this algorithm for the NHWC data layout
plus the convolutional parameters of these layers. We can also
observe that, for the rest of the layers, the AVX2 and AVX-
512 Winograd implementations deliver superior performance
than SSE, with AVX2 providing slightly lower execution times
than AVX-512.

E. Results on the Fujitsu A64FX

Figure 2 (bottom) reports the inference execution time of
the convolutional layers using the Lowering method and the
Winograd algorithm vectorised using ARM SVE intrinsics for
both data layouts on the A64FX processor.

For VGG16, we observe that the Lowering method offers
a significant advantage for the first three convolution layers
of VGG16; however, for the remaining layers, the Winograd
algorithm is a better option. For ResNet-50, the Winograd-
based convolution is always the best option for both data
layouts. In any case, the improvements of this algorithm
mainly depend on the input and filter sizes.

We also detect differences between the two data layouts,
with NCHW being more competitive than NHWC. These
differences are due to the design of the Winograd algorithm,
which first processes the individual tiles. A more efficient ver-
sion of this algorithm would require a complete reformulation
of the implementation to process first the tiles on the channel
dimension, according to the storage of data in the NHWC
layout.

V. CONCLUDING REMARKS

We have presented a collection of multi-threaded and vec-
torised implementations of the Winograd convolution operator
via the use of 1) the OpenMP standard for the multithreaded
parallelisation; 2) a reduced set of architecture-specific vector
intrinsics (AVX2/AVX-512 for Intel and SVE for ARM);
and 3) compiler support for high-level arithmetic operations
involving vector registers.

The experimental results for two state-of-the-art platforms,
equipped with SIMD-enabled Intel and Fujitsu multicore pro-
cessors, show that our Winograd-based implementations, for
the two most data layouts, deliver competitive performance
compared with the Lowering approach on two of the platforms.

As future work, we plan to extend our study of vector
intrinsics to other DL kernels, including the FFT convolution,
as well as to target layer fusion and automatic generation of
vectorised code to gain a more complete understanding of this
procedure.

ACKNOWLEDGMENTS

This research was funded by Project PID2020-113656RB-
C21/C22 supported by MCIN/AEI/10.13039/501100011033.
Manuel F. Dolz was also supported by the Plan Gen–T grant
CDEIGENT/2018/014 of the Generalitat Valenciana. Héctor
Martı́nez is a POSTDOC 21 00025 fellow supported by Junta
de Andalucı́a. Adrián Castelló is a FJC2019-039222-I fellow
supported by MCIN/AEI/ 10.13039/501100011033.

We thank the Barcelona Supercomputing Center for granting
the access to the MareNostrum 4 CTE-ARM cluster based on
Fujitsu FX1000 machines (with A64FX processors) where the
developments and tests were performed.

REFERENCES

[1] S. Pouyanfar, S. Sadiq, Y. Yan, H. Tian, Y. Tao, M. P. Reyes,
M.-L. Shyu, S.-C. Chen, and S. S. Iyengar, “A survey on deep
learning: Algorithms, techniques, and applications,” ACM Comput.
Surv., vol. 51, no. 5, pp. 92:1–92:36, Sept. 2018. [Online]. Available:
http://doi.acm.org/10.1145/3234150

[2] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of
deep neural networks: A tutorial and survey,” Proceedings of the IEEE,
vol. 105, no. 12, pp. 2295–2329, Dec 2017.

[3] S. Winograd, Arithmetic Complexity of Computations. Society for
Industrial and Applied Mathematics, 1980.

[4] A. Lavin and S. Gray, “Fast algorithms for convolutional neural
networks,” in 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2016, pp. 4013–4021. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/CVPR.2016.435

[5] B. Barabasz, A. Anderson, K. M. Soodhalter, and D. Gregg, “Error
analysis and improving the accuracy of Winograd convolution for deep
neural networks,” ACM Trans. Math. Softw., vol. 46, no. 4, Nov. 2020.
[Online]. Available: https://doi.org/10.1145/3412380

[6] K. Chellapilla, S. Puri, and P. Simard, “High performance convolutional
neural networks for document processing,” in International Workshop
on Frontiers in Handwriting Recognition, 2006.

[7] S. Barrachina, M. F. Dolz, P. San Juan, and E. S. Quintana-Ortı́,
“Efficient and portable GEMM-based convolution operators for deep
neural network training on multicore processors,” J. Parallel Distrib.
Comput., vol. 167, no. C, p. 240–254, sep 2022.

[8] S. Barrachina, A. Castelló, M. Catalan, M. F. Dolz, and J. Mestre,
“PyDTNN: a user-friendly and extensible framework for distributed deep
learning,” The Journal of Supercomputing, vol. 77, 09 2021.

[9] S. Barrachina, A. Castelló, M. Catalán, M. F. Dolz, and J. I. Mestre,
“A flexible research-oriented framework for distributed training of deep
neural networks,” in 2021 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), 2021, pp. 730–739.

[10] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[11] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proceedings of the 25th
International Conference on Neural Information Processing Systems
- Volume 1, ser. NIPS’12. USA: Curran Associates Inc., 2012,
pp. 1097–1105. [Online]. Available: http://dl.acm.org/citation.cfm?id=
2999134.2999257

http://doi.acm.org/10.1145/3234150
https://doi.ieeecomputersociety.org/10.1109/CVPR.2016.435
https://doi.org/10.1145/3412380
http://dl.acm.org/citation.cfm?id=2999134.2999257
http://dl.acm.org/citation.cfm?id=2999134.2999257

	Introduction
	Convolution Operators via the Winograd Minimal Filtering Algorithm
	High-Performance Winograd Convolution using Vector Intrinsics and OpenMP
	Intel AVX2/AVX-512 intrinsics
	ARM SVE intrinsics
	Exploiting thread-level parallelism using OpenMP

	Experimental Results
	Hardware setup
	DL framework, libraries, compilation flags, and parallelisation
	Testbed
	Results on the Intel Skylake
	Results on the Fujitsu A64FX

	Concluding Remarks
	References

