This paper has been accepted for presentation in the 5th Workshop on Accelerated Machine Learning (AccML), co-located with HIPEAC’23.

HEP-BNN: A Framework for Finding Low-Latency
Execution Configurations of BNNs on
Heterogeneous Multiprocessor Platforms

Leonard David Bereholschi, Ching-Chi Lin, Mikail Yayla, Jian-Jia Chen
Technical University of Dortmund, Germany
{leonard.bereholschi, chingchi.lin, mikail.yayla, jian-jia.chen} @tu-dortmund.de

Abstract—Binarized Neural Networks (BNNs) significantly
reduce the computation and memory demands with binarized
weights and activations compared to full-precision NNs. Execut-
ing a layer in a BNN on different devices of a heterogeneous
multiprocessor platform consisting of CPU and GPU can affect
the inference performance, i.e., accuracy and latency. Usually, a
heterogeneous HW platform consisting of a CPU and a GPU
is available to execute the BNN workloads. However, to use
the heterogeneous HW effectively, it is necessary to find an
efficient strategy for BNN workload mapping. In this work,
we propose a framework that generates efficient BNN layer-
to-device mappings (i.e. suitable parallel configuration for each
layer of the model) for execution platforms comprised of CPU
and CUDA-capable GPU. We evaluate our proposed framework
with two BNN architectures using two well-known datasets,
Fashion-MNIST and CIFAR-10, on three hardware platforms
with different characteristics. The results show that compared to
running a fully-parallelized GPU implementation, our framework
generates an efficient configuration up to 2x, 2.6x and 11.8x
faster on our tested hardware respectively.

Index Terms—Binarized Neural Network, inference, GPU,
CUDA

I. INTRODUCTION

Neural Networks (NN) have been applied to various prac-
tical domains in the last decade, e.g., image recognition in
computer vision, prediction of chemical patterns in chemistry,
and cancer detection in medical science. [1] Given a well-
trained NN model, inference is the process of using the model
to make predictions against previously unseen data. Depending
on the structure of the NN model, the inference can be time-
and resource-consuming.

Binarized Neural Network (BNN) [2] is a resource-efficient
variant of NNs. In BNNs, the weights and the activations are
binarized into 1-bit representation. Multiplications and accu-
mulations in a BNN can be computed using the xnor operand
and popcount(), respectively. Therefore, BNNs are signifi-
cantly more resource-efficient compared to full-precision NN,
which makes BNNs excellent candidates for running Al ap-
plication on resource-constrained edge devices.

For executing BNN workloads, customized hardware accel-
erators (i.e. on FPGAs or ASICs) are still in the early stages
of development [3], while CPUs and GPUs are mature and
readily available. Several recent studies have evaluated the
use of GPUs for BNNs. Hubara et al. [2] evaluate BNNs
using XNOR kernels for GPUs. Xu et al. [4] implement a

computation kernel for BNNs as well. Li et al. [5] run BNNs
on Turing GPUs, focusing on the bit-level parallelism and
strides in memory. Chen et al. [6] develop a BNN acceleration
engine for mobile phones.

Although GPU provides high computing capability, exe-
cuting every layer in a BNN on GPU does not guarantee
good performance. We reveal in this work that executing all
the BNN layers exclusively on the GPU leads to significant
increase in latency compared to running the model on the
CPU sequentially (e.g. model is too small and CPU-overhead
too significant, see Fig. 1). Therefore, a proper layer-to-device
mapping is imperative for achieving efficient BNN inference
on heterogeneous multiprocessor platforms consisting of CPU
and GPU.

Contributions: In this paper, we propose a framework,
HEP-BNN, which automatically generates an efficient layer-
to-device mapping (i.e. the suitable parallel configuration for
each layer) for a given BNN model running on a heterogeneous
multiprocessor platform consisting of CPU and GPU. Given a
trained BNN model, HEP-BNN systematically evaluates the
execution time of the model on CPU and on GPU under
different parallel configurations. The configuration with the
least execution time is highlighted as the efficient CPU/GPU
configuration for the BNN on target platform. Such a frame-
work would lead to a more efficient use of available hard-
ware resources. Furthermore, automatically generating directly
applicable code containing the optimized mapping, would
enable highly efficient BNN inference. It would allow both
researchers and practitioners to fully exploit the capabilities
of their available hardware platforms in applying BNNs effi-
ciently on resource-limited edge devices.

Our contributions are summarized as follows:

o We present our HEP-BNN framework that automatically
generates the efficient layer-to-device mapping for given
BNN models and heterogeneous execution platforms con-
sisting of a CPU and a CUDA-capable GPU. The gener-
ated code, containing the efficient configuration for each
layer of the model, can then be used for applications using
BNN inference in practice. The proposed framework is
published on Github'.

Thttps://github.com/LeonardDavid/hep-bnn

= GPU-only (parallel)

’ I I I I I

e —

0 25 50 75 100 125
Latency (s)

CPU-only (sequential) ‘

150

Fig. 1. Fashion-MNIST on Jetson TX2: example from out results for the
difference of total latency between the sequential CPU model and the parallel
GPU model (with a higher CPU-overhead).

o To demonstrate the capabilities of our framework, we
apply our framework on two BNN models with two
commonly used datasets, Fashion-MNIST and CIFARIO,
on three hardware platforms with different characteristics:
Server, Laptop, and Jetson TX2. Across the different
BNN models, our results show that by applying properly
chosen parallel configurations for layers running on GPU,
inference times can be reduced by up to 2x, 2.6x and
11.8x for the three execution platforms, respectively.

II. SYSTEM MODEL

In Section II-A, the basics of BNNs the layers used in our
models are presented. An introduction into GPU computing
is given in Section II-B, where the CUDA framework is
also described, including its features, limitations, and some
implementation details. The different parallel configurations
implemented and used in our framework, as well as their nota-
tions used throughout this paper, are presented in Section II-C.
Finally, the problem definition is elaborated in Section II-D.

A. Basics of Binarized Neural Networks

Binarized Neural Networks (BNNs) [2] are a resource-
efficient variant of NNs. In a BNN model, the weights and
the activations are binarized into 1-bit representation. Unlike
the full-precision NNs, where one matrix multiplication must
be performed for computing the output of each neuron, we
can simply apply znor operands for computing the outputs of
neurons in BNNs. Specifically, the output of a layer can be
computed with

2 popcount (xnor(W}, I'"1)) — #bits > T,

where W/ are the weights of layer [, I'~1 are the inputs to
layer I, popcount() is a function which counts the number of
1s in the results of the xnor operand, #bits is the number of
bits in the xnor operand, and 7" is a learnable threshold pa-
rameter which can be computed with the batch normalization
parameters. The binary outputs depend on the truth value of the
statement, which represents a shifted binarization function [7].

In this work, we consider convolutional BNNs. There are
four basic types of layers in a convolutional BNN, i.e., convo-
lutional layer, maxpool layer, step layer, and fully-connected
layer, as shown in Figure 2. We also employ the flattening
layer in the BNNs in this work.

The convolutional layer computes a 2D convolution of the
input with filters. We use “Cx” to denote a convolutional layer,

where x is a number indicating the amount of neurons in the
layer. For example, “C64” is a convolutional layer with 64
neurons. In this work, the filter size is fixed at 3 x 3 for all
the convolutional layers.

The maxpool layer downsamples the input by selecting the
maximum value of the input in a given window size, which is
set to 2 X 2 in our models. We use “MPx” to denote a maxpool
layer, where x indicates it’s output size, e.g., “MP16” for a
output of size “16 x 16”.

A step layer performs batch normalization followed by a
binary activation function. Batch normalization [7] is used in
NN models for faster and more stable training, which helps
increase the accuracy. Note that the threshold values in the
batch normalization are still signed integers, even in BNNs. In
our models, we apply Hard-Tanh as our binary activation func-
tion. For inference in a BNN, batch normalization followed by
activation can be computed with binary thresholding [7]. We
denote the step layer as “S” in the rest of this paper.

A fully-connected layer connects every neuron in the current
layer with every neuron in the next layer. We denote a fully-
connected layer as “FCyx”, where x is the amount of neurons
in the layer. Note that fully-connected layers also have binary
weights as learnable parameters.

We use “FLAT” to denote a flattening layer. The layer
rearranges a high dimension matrix into a lower dimension
matrix, e.g., from a 3-dimension matrix into a 1-dimension
array in our models. The rearrangement can be done with a
simple one-line operation on CPU in C++ code.

B. GPU

Due to their architecture, GPUs are suitable for highly
parallel use cases, such as repetitive matrix multiplication
for graphics-intensive tasks. Most state-of-the-art GPUs have
numerous computation cores, operating in an efficient manner
with large and fast memories. On GPUs, the computations
are performed by threads in parallel. To program the thread
behaviours, specialized GPU code, e.g., frameworks such as
CUDA or OpenCL, needs to be employed. In our work, we use
the CUDA programming language to deploy the computation
workload of a BNN model on Nvidia graphics cards.

In a CUDA program, threads can be arranged into thread
blocks, in which up to 1024 threads are executed in parallel.
Thread blocks can be further organized into a 3D grid struc-
ture, allowing for a greater degree of parallelization on the
GPU. The size of the grid is limited on the different dimension
axes as follows: {z,y, z} — {231 —1,65536,65536}. Further-
more, the usage of internal CUDA variables, such as threadlDx
and blockIDx, allow each thread to address individual values
from arrays related to its specific computation.

Functions in which computation tasks are executed on
GPU are called kernels in the CUDA programming language.
Before launching a CUDA kernel, memory is allocated on
the GPU memory, after which all the required data for the
computations is transferred from the host (CPU) to the device
(GPU). The sizes of the thread blocks and the grid are also
specified before the kernel launch, while respecting previously

Convoluted

Input Image Convolution Layer

Image

Maxpool Layer Step Layer

S

neuron;

neuron,,

‘ XNOR
4{5!
g"” e ’f{ MAC
g”" E{,{ DOPC?UNT
""‘ 2{, XNOR

Nl

q

¥

MAC
POPCOUNT

XN‘OR

neuron; neuron;

neurony

@

neuron;

neuron,

Fig. 2. Structure of a Convolutional BNN model demonstrating the three major layer types: Convolution, Maxpool, and Step layer.

e e J/ /, pz
/ 12 . w,/” v / /!
i § $... %% $... %% /
. /
/ /
dss .. 58| | |88, 5¢ §5 ... %% ,, Y
yd § 5 ... 8%
/
. o . o e . L // 2 ? . /./g g
NI R IR £4 ... 9% Ve %
yd / / J/ e X // .
Z e e 4 4 images, / : ’)
’ 1 2 BATCH_SIZE (imoges) . . Lz
/ S .58 P
a) / ~ Yy (neurons)
/ / /
/ / n
y // § % P % % ///
// //
image / / / §5 .05 % y
w J/ 1 2. . . ws ya 12 . w //
1 8% .. %% /
el P Prz - P blocks e
pixels 2 H %] ? 7 21§ ¢ L% ¢ .. //
Py Py o L Py R $ ¢ /
h | - = /
: : : : threads //
. . . / 2
Py Py . . Py, o < : .
[P P - B W e il
S S / /
e s Ve S 1
Y (windows)
b) c)

Fig. 3. Concepts of the parallelism aspects: a) Data-based, b) Window-based, and c) Neuron-based

mentioned limitations. After the GPU finishes executing every
task in the kernel, the results are copied from the device back
to the host, and the previously allocated memory on the GPU
is freed.

Although GPUs provide massive computational power com-
pared to CPU, and are often used as accelerators in many use
cases, running an application on the GPU does not always lead
to performance improvement. In some cases, running parallel
code on GPU can take longer than the sequential CPU code
because of, for example, time overheads in communication.
Therefore, an analysis on the characteristics of an application,
e.g., degree of parallelism, can determine if it is beneficial
to run the application on GPU. For applications that can be
accelerated by GPU, how to organize the workload to achieve
the optimal performance is a crucial issue that needs to be
solved.

C. Data Parallelism Aspects

The workload of a BNN model consists of multiple data
images which are used as input. We define batch size as
the amount of data images in a batch, that are processed
concurrently. To process the workload of BNN inference on a
data set in parallel, we organize the workloads based on three
aspects of data parallelism:

1) Data-based: every data image in a batch is inferred
concurrently.

2) Window-based: a data image is divided into convolution
windows of consecutive pixels, with the windows being
processed concurrently.

3) Neuron-based: the outputs of the neurons in the same
layer in a NN model are calculated concurrently.

In the Data (X) configuration, multiple data images in a
batch are inferred on the GPU concurrently, as shown in
Figure 3 (a). Each data image in a batch is assigned to one

GPU thread block. If a thread block is assigned with multiple
data images, these images are processed one after another.
Each pixel (and its subsequent operations) in a data image is
processed by one thread in the thread block.

Figure 3 (b) demonstrates the idea for the Window (Y)
configuration, in which a data image is divided into windows
of consecutive pixels in a row-wise manner, with each window
being assigned to one GPU thread block. The workloads re-
lated to the pixels (threads) in the same window are processed
on the GPU concurrently.

For the Neuron (Z) configuration, the outputs of neurons
from the same layer are calculated concurrently, as shown in
Figure 3 (c). The output of a neuron is the weighted sum from
its predecessors after going through an activation function.
Each neuron in a layer is assigned to a GPU thread block,
with threads in a thread block taking the corresponding outputs
from the previous layer as input, and calculating the output for
the neuron.

Using these aspects, we consider the following seven par-
allel configurations and their notations, which will be used
throughout this paper: 1) Data (X), 2) Window (Y), 3) Neuron
(Z), 4) Data + Window (XY), 5) Data + Neuron (XZ), 6)
Window + Neuron (YZ), and 7) Data + Window + Neuron
(XYZ). The configurations composed of multiple aspects are
implemented according to all of the implementations of the
individual aspects at the same time. Note that for all the
parallel configurations, the threads in thread blocks perform
the same operation depending on the layer, e.g., convolution of
pixels in a convolution layer. The blockIDx and threadlDx vari-
ables determine which pixel(s) and/or neuron(s) each thread
is responsible for.

D. Problem Definition

Given a well-trained BNN model, we aim to reduce the in-
ference time of a BNN model with the help of GPU. However,
there are multiple aspects for parallelizing the computation
workloads on GPU. Each layer in the BNN model can have
different suitable parallel configurations. Nevertheless, there
might also be layers with workloads that are not beneficial if
running on GPU due to overheads, e.g., which are caused by
data migration between host and the GPU device. Therefore,
our objective is to generate an efficient layer-to-device map-
ping for a given BNN model, so that the inference time is
minimized. For layers that are mapped to GPU for execution,
we also determine their suitable parallel configurations.

III. FRAMEWORK PRESENTATION

We introduce the proposed framework in details in this
section. The operational steps of our HEP-BNN framework
are outlined in Section III-A. The mapping algorithm is de-
scribed in Section III-B. Information about the folder structure,
important script files, and generated files of the framework, are
detailed in Sections III-C, III-D and III-E, respectively.

A. High-level Overview of Our HEP-BNN Framework

The operational steps performed by our framework are
represented in Figure 4. First, the program receives a BNN

InpuLtl: BNN model

L2
L3

~

Generate and Infer Configurations

batch_sizey

batch_sizey

Optimal(l)—‘ (Optimal(b)

\ /

Greedy Mapping Algorithm ‘

L

Output: Optimal Configurations

Fig. 4. Operational steps our HEP-BNN framework.

model in ONNX format as input, previously trained on a
specific dataset (e.g. Fashion-MNIST, CIFAR10). Then, for
every batch size in a defined range, the appropriate C++ and
CUDA code for the CPU and GPU is generated. After every
layer (Lq,...,L,) is implemented using different configura-
tions, the model is inferred for every configuration applied,
which results in different runtimes (with £11,...,t1,, €
Liandt,1,...,thm € Ly). These timing information are used
for choosing an efficient configuration in a greedy manner,
according to Alg. 1 described in Section III-B.

B. Mapping Algorithm

In order to determine the suitable parallel configura-
tion which achieves the lowest inference time, the fol-
lowing layer-to-device mapping algorithm is applied (see
Alg. 1). The algorithm profiles each layer of the BNN
model using different batch sizes, both on the CPU and
the GPU. On the GPU, every parallel configuration from
Section II-C are implemented. In total, each layer is pro-
filed on 8 different implementations: 1) CPU, 2) Data (X),
3) Window (Y), 4) Neuron (Z), 5) Data + Window (XY),
6) Data + Neuron (XZ), 7) Window + Neuron (YZ), and 8)
Data + Window + Neuron (XYZ).

The implementation that achieves the lowest inference time
for the profiled layer is mapped to the specific batch size.
Summing up the lowest inference times for every layer, results
in the total runtime for executing the BNN model, using the
efficient implementations for the specific batch size.

After profiling every layer, the minimal total runtime, as
well as the proper batch size for which it is achieved, is
searched. Finally, the proper batch size is used to get the
mapped implementation of each layer of the BNN model. This
creates the efficient parallel configuration, which achieves the
lowest expected inference time. Algorithm 1 represents the
pseudocode of the described mapping algorithm.

Data: BNN model

Result: Efficient Configuration
1 properyatch_size < 0
2 result_time < MAX_INT
3 foreach batch_size do

4 SUMmin_time < 0

5 foreach layer do

6 min_time < MAX_INT

7 foreach implem do

8 implement layer using implem

9 (CPUtimev GPUtime) —

profile(implemented; oy, (batch_size))

10 inference_time < CPUgime + GPUgime
11 if in ference_time < min_time then
12 min_time < in ference_time

13 MAP implem(layer) to batch_size
14 end

15 end

16 SUMumin_time < SUMumin_time T+ MAN_time
17 end

18 if summin_time < Tesult_time then

19 result_time <— suMumin_time

20 DProperpatch_size < batch_size

21 end
22 end
23 foreach layer do

24 get implem(layer) from MAP[properyatch_sizel
25 add layerimpiem to Efficient Configuration
26 end

27 return Efficient Configuration

Algorithm 1: Mapping algorithm that determines the
efficient configuration of a BNN model that achieves the
lowest inference time (Note: implem is short for implemen-
tation)

C. Folder Structure

Our HEP-BNN framework uses Python to run the imple-
mentations and optimizations of the input model. To exemplify
our implementation, we use the open source machine learning
compiler and code generator Fastinference [8]. Specifically,
for the generation of the C++ and CUDA code for the CPU and
GPU respectively, the templating language Jinja2 is used. An
overview of the most important part of the folder-tree structure
(’fastinference/’) will be outlined in this section.

Each model, optimizer and implementation is defined in
a separate folder in ’fastinference/’. These are further sepa-
rated into the supported algorithm types such as ’ensemble/’,
‘tree/’, ’neuralnet/’. Specifically, in ’fastinference/implemen-
tations/neuralnet’ there are folders for the different target
hardware: 'cpp/’, 'fpga/’, ’iree/’.

This is where the main part of our work is located, namely in
the ’cuda/’ folder, which contains a separate directory for each
parallel configuration. The folder names follow the notations
introduced in Section II-C.

In every folder there are Jinja2 files containing mainly
CUDA code templates for every layer, for parallel execution
of the model on the GPU. There is also a 'cpu/’ folder, that
contains C++ templates for the sequential operation of the
model on the CPU, used for the sequential implementations.
Each ’implement.py’ file found in every folder, contains the
function 'to_implementation()’ and is responsible for selecting
the appropriate template files for each layer of the model,
and to generate the necessary C++ and CUDA files for the
implementation.

Additionally, the ’‘automatic/’ folder contains the code
which runs our mapping algorithm, that automatically reads
the model and data from the appropriate path, generates and
infers all of the selected configurations, and maps the suitable
configuration in a greedy manner. In the following section, we
give a more detailed description of the usage of certain files,
by using the CIFAR10 dataset as an example.

D. Important script files

In test_cuda.py, the implementations of the parallel con-
figurations which can be used, are specified. Their notations
are consistent with the ones described in Section II-C. After-
wards, the HEP-BNN framework is launched by calling the
"to_implementation()’ function found in fest_utils.py.

Here, an upper and lower bound is set for the batch sizes,
which are expressed as powers of 2 (e.g. with 'b_1 = 0’ and
b_u = 4’, the batch sizes used are 20 = 1, 21 = 2, 22 = 4,
and 23 = 8).

The mapping algorithm is then run inside of the nested
for-loops, one for each configuration, and the other one
for each batch size. It consists of two important functions,
‘prepare_fastinference()’ and ’run_experiment()’. The former
generates all the necessary files for the model to compile and
run (more details will be given in section III-E), while the
latter function compiles and runs the generated model, after
which it outputs and stores the results of the inference.

After running all of the generated models, the best con-
figuration for each layer is mapped according to the lowest
inference time (see Alg. 1 — lines 23:26). Finally, the efficient
configuration is generated and inferred, achieving the lowest
inference time out of all other combinations.

The BNN model is stored in ONNX format under the
following path:

fastinference/implementations/
neuralnet/cuda/automatic/model/
cifarl0/model_cifarl0.onnx

Test data is stored under:

fastinference/implementations/
neuralnet/cuda/automatic/data/
cifarlO/testing.csv

HEP-BNN is launched by running the following command
in the root folder (’fastinference/’):

fastinference/implementations/neuralnet/
cuda/automatic/test_cuda.py

——outpath tmp/fastinference/cuda_auto
—-—dataset cifar

TABLE I
STRUCTURE OF THE CIFAR-10 BNN MODELS.

TABLE III
OVERVIEW OF HARDWARE USED FOR EVALUATION

CIFAR-10 BNN model Structure Name ‘ CPU GPU CUDA Cores
In - C64 - S — C64 — MP16 — S — C256 — S — C256 Server i7-8700K GTX1080 2560
— MP8 —+ S — C512 -+ S — C512 — MP4 — S Laptop i7-10750H GTX1650Ti 1024
— FLAT — FC1024 — S — FC1024 — 10 Jetson TX2 Cortex-A57 Pascal-based 256
TABLE II
STRUCTURE OF THE FASHIONMNIST BNN MODELS. Kernel launches are wrapped around
cudaEventRecord () functions, in order to accurately

FashionMNIST BNN model structure

In - C64 —- MP14 — S — C64 — MP7 — S
— FLAT — FC2048 — S — FC2048 — 10

E. Generated files

In this section, we present the list of generated files for
each configuration, including a brief description.

e ’utils.h’ and ’utils.cuh’: contain utility functions (for C++
and CUDA code respectively)

o ’cuda_kernel.h’ and ’cuda_model.h’: are headers contain-
ing functions that link the C++ code to the CUDA code

e 'modelW.hpp’: contains declarations of the output arrays
for every layer, and stores the weights, biases, and thresh-
olds

e 'model.h’ and 'model.cpp’: depending on the configura-
tion, contains either the sequential C++ model for the
CPU, or the calls to parallel CUDA model for the GPU
(both implementations are present, but the unused part is
commented out for debugging and comparison purposes)

e ‘model.cu’: CUDA code for the GPU (if applicable)

There are also a few files which are the same, regardless of
configuration, which are already written and copied from the
../cuda/automatic/’ folder to every generated implementation:

e ’main.cpp’: splits the dataset into batches, calls the model
predictor and calculates the accuracy and latency

e 'CMakeLists.txt’: generates the ’Makefile’ that compiles
the entire project

Note that file changes to any of the Jinja2 templates and
implement.py’ files require the following command to be run
‘python setup.py install’, before calling the 'make’ command.

IV. EXPERIMENT SETUPS AND RESULTS / EVALUATION

In this section, we present our experimental results. Infor-
mation about the hardware, datasets, and models are presented
in Section IV-A. In Section IV-B, the results of our HEP-
BNN framework, i.e., implementing the suitable configurations
for every layer, are presented and compared to the baseline
sequential implementation, as well as other parallel configu-
rations.

A. Profiling Environment

1) Hardware: We execute our experiments on a Linux
based server equipped with an Intel Core i7-8700K CPU
and a GTX1080 GPU with 8GB of video memory each.
Additionally, we run the same experiments on a Windows-
system with a consumer-grade GPU (GTX 1650Ti), as well
as on an embedded Jetson TX2 board. Table III also lists the
amount of available CUDA cores for each GPU.

measure the GPU-time. The communication cost (i.e. memory
allocation and transfer between host and device) in the CUDA
code is executed before the kernel launch, by the CPU, and
is included in the CPU-overhead time. We implement
independent layers for the models, therefore data transfer
between CPU and GPU takes place before and after every
layers execution (even if two consecutive layers are executed
on the GPU). The code generator can be adapted to consider
this case in future works/implementations.

2) Datasets: The algorithm is evaluated on two com-
monly used benchmarking datasets, namely FashionMNIST
and CIFAR-10. The FashionMNIST [9] dataset consists of
70,000 gray-scale images and labels from 10 classes, rep-
resenting different clothing articles. The size of each image is
28 x 28 pixels in 1 channel, with O representing the brightest
and 255 the darkest values. Out of the total amount of images,
60,000 are used for training, while the remaining 10, 000 for
testing. The CIFAR-10 [10] dataset contains 60,000 colour
images (3 channels), each with a size of 32 x 32 for a
total of 1024 pixels. It is split into 50,000 training and
10, 000 test images, which are classified in 10 different classes
representing means of transportation (i.e. airplane, ship, truck,
automobile) and animals (i.e. bird, cat, dog, deer, frog, horse).

3) BNN Architecture: The BNN models used for inferring
the datasets are VGG-type architectures [11] adapted for the
binarized variant of NNs. The FashionMNIST network model
contains a total of 10 layers, each of them belonging to one of
the types presented in Section II-A. Specifically, the 15¢ and
4th layer are convolutional layers, with a size of 28 x 28 x 64
and 14 x 14 x 64 respectively. The convolutional layers are
down-sampled to half of their input size, in the immediately
following maxpool layers, namely in the 2"¢ and 5" layer.
Step layers are employed on the 37¢, 6", and 9*" layer, which
apply batch normalization and the activation function. After
convoluting and down-sampling the input image, it is flattened
into a 1-dimensional array in layer 7. Finally, a total of 2048
neurons are fully-connected in the 8" and 10" layer.

The structures of the networks are listed in Table II and I,
using the notations from Section II-A. The CIFAR-10 model
also contains the standard layer types for BNNs, totalling
to 19 layers. Convolutional layers are placed on the 1°¢,
3rd, 6th, 8" 11*" and 13" position. Down-sampling using
maxpooling occurs only three times, namely in the 4", 9"
and 14" layer. The 16'" layer flattens the image for the fully-
connected layers at position 17 and 19. The rest of the layers
are step layers.

To simulate the inference process, the sets of test images

TABLE IV
EFFICIENT CONFIGURATIONS FOR THE CIFAR10 MODEL

C64 S C64 MPI6 S C256 S C256 MPS§ S C512 S C512 MP4 S FLAT FC1024 S FC1024
Server CPU CPU Z CPU CPU XZ CPU XYZ XY CpU XZ CpPU XZ X CPU CPU X CPU CPU
Laptop CPU CPU Y CPU CPU XYZ CPU XYZ CPU CPU XYZ CPU XYZ CPU CPU CPU X CPU CPU
TX2 CPU CPU XYZ CPU CPU Z CPU Z CPU CPU XZ CPU XZ CPU CPU CPU XY CPU CPU
TABLE V TABLE VI
EFFICIENT CONFIGURATIONS FOR FASHION-MNIST MODEL THE MINIMUM INFERENCE TIMES OF THE EFFICIENT CONFIGURATIONS
C64 MPI14 S C64 MP7 S FLAT FC2048 S FC2048 Dataset Fashion-MNIST CIFAR10
Server CPU CPU CPU XZ X CPU CPU CPU CPU _ CPU
Lapop CPU CPU CPU CPU CPU CPU CPU CPU CPU CPU Hard.ware Server Laptop TX2 | Server Laptop TX2
TX2 CPU CPU CPU XZ CPU CPU CPU CPU CPU CPU Runtime 2.11s 2.84s 9.31s 41.6s 55s 297s
Batch size 16 2 64 16 128 16
from both models respectively are used. This guarantees a

controlled benchmarking environment for the algorithm that
profiles each layer of the BNN models. The weights and biases
were trained over the course of 100 epochs, and achieve an
inference accuracy of 77.24% for the FashionMNIST, and
67.08% for the CIFAR-10 model.

Preliminary observations showed that the batch size has an
impact on runtime for certain configurations. Therefore, the
experiments also apply different batch sizes for the two BNN
models, from {1,2,...,128}, in increments of powers of 2.

B. Results

Table VI presents the inference times measured by running
the BNN models (each with 10000 data images as input),
for every tested target hardware. The latency (displayed in
seconds) is the time required by the BNN to process the
entire test dataset of 10000 images. Recall from Section III-B,
that the suitable configuration is chosen over all the different
batch sizes, and therefore it is important to note the batch size
alongside the runtime. Specifically, a batch size of n means
that n data-images are processed in parallel.

It can be observed that the server, which has the most
CUDA cores out of the three tested hardware, has overall
faster runtimes. On the other hand, the resource-constrained
TX2, having the least amount of CUDA cores, has significantly
higher runtimes.

The suitable configurations mapped for each layer is
presented in Tables IV and V for the CIFAR-10 and
FashionMNIST models respectively. From there, we can notice
the following observations:

o Since the Fashion-MNIST BNN model is smaller out
of the two, almost all of the layers are mapped to the
CPU for sequential execution. A notable exception is the
second convolution layer, which is mapped to the XZ
configuration on the Server and the TX2.

o In the case of the CIFARI0 BNN model, we observe
that the maxpool layer is mapped to the CPU in almost
every case, whereas the convolutional and fully-connected
layers are mapped to the GPU using different parallel
configurations. For example, the second convolutional
layer is mapped to the Z configuration on the server, Y
on the Laptop and XYZ on the TX2.

Finally, Figure 5 compares the purely sequential CPU
implementation and two intuitive ways of parallelizing the
BNN models to the results of the mapping algorithm. The
naive GPU implementation considers the parallelization of

every layer suitable for GPU acceleration using only the
Data (X) configuration. The full-parallel GPU implementation
parallelizes every suitable layer as much as possible, i.e.,
applying the Data + Window + Neuron (XYZ) configuration.
These are the two most intuitive ways of parallelizing the
workload, while not considering the fact that some layers may
not benefit from GPU acceleration.

The results from running the efficient configurations for
every batch size, show a significant speedup overall. Specifi-
cally, compared to the fully-parallel implementation, running
the HEP-BNN framework on the server leads to at most 2x
speedup, while on the Jetson TX2, it achieves at most 2.6x
speedup, and on the Laptop-system the efficient configuration
results in a 11.8x improvement.

V. CONCLUSION

We propose a framework that generates efficient BNN
layer-to-device mappings for heterogeneous multiprocessor
platforms comprised of CPU and CUDA-capable GPU. Given
a trained BNN model, our proposed HEP-BNN framework
systematically evaluates the execution time of the model on
CPU and on GPU under different parallel configurations. We
evaluate our framework with two BNN architectures on well-
known datasets, running on three different types of hardware
platforms. The results show that, across the tested dataset-
s/BNNs and the different hardware platforms, our proposed
framework generates mappings for BNN inference which
achieve significantly higher speedup compared to a fully-
parallelized approach. Specifically, the efficient parallel con-
figuration from our HEP-BNN framework reduces inference
times by up to 2x, 2.6x and 11.8X, across the tested target
hardware respectively. The generated GPU code from HEP-
BNN containing the efficient configuration can also then be
used for applications using BNN inference in practice.

We believe that our HEP-BNN framework will benefit
researchers and practitioners to find efficient execution con-
figurations for BNN inference systems using heterogeneous
platforms comprised of CPU and GPU.

ACKNOWLEDGMENT

This paper has been supported by Deutsche Forschungs-
gemeinschaft (DFG) project OneMemory (405422836), by
the Collaborative Research Center SFB 876 “Providing In-
formation by Resource-Constrained Analysis” (project number
124020371), subproject A1 (http://stb876.tu-dortmund.de) and
by the Federal Ministry of Education and Research of Ger-
many and the state of NRW as part of the Lamarr-Institute for

CIFAR10 on Server

16
CIFARI10 on Laptop

32 64 128

CIFAR10 on Jetson TX2

16 32 64 128

1 2 4 16 32 64 128
95 Fashion-MNIST on Server
z
=
&
<
=
1 2 4 16 32 64 128
— 100 Fashion-MNIST on Laptop
E‘ 75+
£ 50
5 251 ll
37 i == [Em_ Em [™
1 2 4 8 16 32 64 128
150 Fashion-MNIST on Jetson TX2
Z1
> 1
Q
=
2
<
—

1 2 4

16 32 64 128

CPU only It Naive GPU It Full parallel GPU In Efficient (HEP-BNN Framework)

Fig. 5. Execution time over batch size comparison for the entire FashionMNIST test images dataset (upper three figures) and entire CIFARI10 test images
dataset (lower three figures). Each dataset is evalauted with three different hardware configurations, namely: Server, Laptop, and TX2.

ML and AI, LAMARR22B. This work has received funding
by the German Federal Ministry of Education and Research
(BMBF) in the course of the 6GEM research hub under grant
number 16KISKO038.

(1]

[2]

[3]

[4]

REFERENCES

O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, N. A. Mohamed,
and H. Arshad, “State-of-the-art in artificial neural network applications:
A survey,” Heliyon, vol. 4, no. 11, p. e00938, 2018.

I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, “Bi-
narized neural networks,” in Advances in Neural Information Processing
Systems (NIPS), 2016.

E. Nurvitadhi, D. Sheffield, J. Sim, A. Mishra, G. Venkatesh, and
D. Marr, “Accelerating binarized neural networks: Comparison of
fpga, cpu, gpu, and asic,” in 2016 International Conference on Field-
Programmable Technology (FPT), pp. 77-84, 2016.

X. Xu and M. Pedersoli, “A computing kernel for network binarization
on pytorch,” CoRR, vol. abs/1911.04477, 2019.

[5]

[6]

[7]
[8]
[9]
[10]

[11]

A. Liand S. Su, “Accelerating binarized neural networks via bit-tensor-
cores in turing gpus,” IEEE Transactions on Parallel and Distributed
Systems, vol. 32, no. 7, pp. 1878-1891, 2021.

G. Chen, S. He, H. Meng, and K. Huang, “Phonebit: Efficient gpu-
accelerated binary neural network inference engine for mobile phones,”
in 2020 Design, Automation Test in Europe Conference Exhibition
(DATE), pp. 786791, 2020.

E. Sari, M. Belbahri, and V. P. Nia, “How does batch normalization help
binary training?,” arXiv:1909.09139, 2019.

S. Buschjdger, “fastinference github repository.” https://github.com/
sbuschjaeger/fastinference.

H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms,” 2017.

A. Krizhevsky, “Learning multiple layers of features from tiny images,”
tech. rep., 2009.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in International Conference on Learning
Representations, (ICLR), 2015.

