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Abstract—Sparse Matrix-Matrix Multiplication (SpMM) is
an important kernel in many applications including Machine
Learning workloads, especially for Graph Neural Networks. In
this work, we are exploring optimization strategies to improve
the performance of this kernel on the Ascend AI processor. We
present a custom implementation of the SpMM kernel targeting
the dense matrix-matrix multiplication unit inside the Ascend AI
Core. Our implementation includes the following optimizations:
multi-level tiling allowing to process arbitrarily very large sparse
matrices; efficient scheduling allowing an efficient utilization of
the AI Cores, regardless of the sparse matrix shape. Thanks to
these optimizations, our implementation achieves a speed-up of
52 over the original implementation. In addition, the memory
footprint of the custom implementation is 10% lower.

Index Terms—Sparse Matrix-Matrix Multiplication, AI, As-
cend, DaVinci, Graph Neural Networks

I. INTRODUCTION

In recent years, there is a growing interest in Graph Neural
Networks (GNNs) [1], [2] for various applications including
social networks analysis, recommendation systems or drug
design. However, training a GNN model is computationally
very demanding especially due to the sparse structure of the
data: the Features and Adjacency matrices have very few (an
order of 1%) non-zero entries. Typically, the most compu-
tationally intensive operator for GNN training is the Sparse
Matrix-Matrix Multiplication (SpMM) kernel. For instance,
the profiling of the VGAE model training on the Ascend 910
processor showed that the SpMM kernel represents 73% of the
total training time. Furthermore, the default implementation
of this kernel on Ascend runs on the AI CPU and does
not leverage the computational power brought by the AI
Core. Indeed, Ascend is primarily optimized for Convolutional
Neural Networks (CNNs). Nevertheless, in this work, we are
exploring custom optimization strategies to enable Ascend for
GNNs by focusing on the SpMM kernel. In the following,
the default implementation of the SpMM operator is referred
as built-in operator and the optimized version is referred as
custom operator. We make the following contributions:

• Design of a multi-level tiling algorithm enabling the
execution of the SpMM kernel on dense matrix-matrix
multiplication units, regardless of the sparse matrix size
thanks to the on-the-fly ”densification” algorithm;

• Efficient workload scheduling strategy enabling full uti-
lization of the AI Cores.

The remaining of this paper is organized as following:
Section II discusses the recent advances related to the SpMM

acceleration; Section III presents our custom operator and
Section IV its performance evaluation; Section V concludes
the paper.

II. RELATED WORK

The optimization of SpMM kernel for general-purpose
processors and accelerators are heavily studied within the
community for decades. In this section, we provide the recent
advances in this field with a focus on hardware accelerators.

In [3], the authors proposed new optimization techniques for
the SpMM kernel targeting CUDA cores. The optimizations
include: coalesced memory accesses, bank conflict avoidance
and arithmetic intensity improvement. Their implementation
achieves a speed-up of up to 8 over cuSPARSE on selected
matrices. In [4], the authors proposed the first algorithm that
efficiently leverage GPU Tensor Core Units for spGEMM
(A × A, where A is a sparse square matrix) by using a
custom bitmap format for storing the sparse matrix. Their
implementation achieves a speed-up of 3.12 over cuSPARSE.
In [5], the authors developed a new SpMM algorithm specif-
ically designed for sparse matrices featuring a moderate level
of sparsity, typical of deep learning applications. With their
approach, the performance of sparse computations is better
than when using cuBLAS, at as low as 71% of sparsity. In [6],
the authors proposed a custom framework leveraging Tensor
Core Units for GNN. Thanks to a new sparse graph translation
technique, their implementation achieves a speed-up of 1.7
over Deep Graph Library framework.

III. CUSTOM IMPLEMENTATION OF SPMM FOR THE
DAVINCI CORE

A. Introduction to the Ascend Computing Platform

1) Ascend Hardware Architecture: The Ascend AI pro-
cessor is the Huawei’s domain-specific architecture tailored
for AI workloads. It is available in different SoCs suitable
for various scenarios including training and inference of AI
models. The training chip, Ascend 910, integrates HBM2 and
special computational units (AI Core and AI CPU). The vast
majority of the computing power of the chip is provided by
the AI Core, based on the so-called DaVinci architecture ([7],
[8]) and presented on Fig. 1. It features three computational
units: a Cube Unit, capable to perform multiplications of two
16×16 dense matrices in float16 with a single instruction; the
Vector Unit which is 2048 bits wide and can therefore process
128 float16 elements in SIMD mode; the Scalar Unit, used for



Fig. 1. DaVinci core architecture [7].

scalar-related operations. The AI CPU is an ARM CPU that
is used for executing non-performance critical operators.

To improve the built-in SpMM performance on AI CPU,
one could consider using optimized BLAS libraries such as
OpenBLAS. However, Given that the AI Core provides the
vast majority of the Ascend computing power, we are primarily
interested in optimizing the SpMM kernel for the AI Core.

2) Developing Operators for the Ascend AI processor:
AI Core operators are developed using one of the following
custom frameworks1: Tensor Boost Engine (TBE), Tensor
Iterator Kernel (TIK) and AI CPU operators are developed
in C++. TBE, an extension of TVM [9], provides a DSL
interface for writing the operator computing logic and an Auto
Schedule mechanism to automatically complete the operator
scheduling, data tiling and data streaming. The vast majority
of operators can be developed using TBE DSL. However,
for complex operators that cannot be easily expressed as a
DSL, then TIK framework must be used instead. TIK is
Python framework that enables flexible operator development
and provides primitives to manually control data movement
and parallelization over the AI Cores. Our custom operator is
developed using TIK.

B. General Algorithm for SpMM on DaVinci Core

Let us consider:
• A a sparse matrix of shape (M,K) stored in the COO

format [10] on the device memory,
• B a dense matrix of shape (K,N) stored on the device

memory.
A is identified by its array of indices IA of shape (nnz, 2)
and its array of values VA of shape (nnz, ). In the following,
we assume that the data type of the input matrices is float16
and the data type of the output matrix is float32. Indeed,
the tile-based approach we are adopting (see Section III-D)
requires accumulating the output matrix through the group of
accumulators which operate in float32.

1Custom operator development using TBE DSL and TIK are presented
in https://www.hiascend.com/doc center/source/en/CANNCommunityEdition/
51RC1alphaX/opdevg/tbedevg/tbedevg-cann51RC1alphaX 01.pdf.

Operand Tensor Shape Tensor Scope Data Type Comment
Adense (K1,M,K0) L1 float16

K1 =
⌈

K
K0

⌉
B (K1, N,K0) L1 float16

C (N1,M,N0) L0C float32 N1 =
⌈

N
N0

⌉
TABLE I

REQUIREMENTS FOR THE MATMUL OPERATOR.

The main idea of the algorithm is to firstly convert the
sparse matrix into a dense matrix Adense (”densification” step)
and then secondly use the built-in MatMul operator, which
is already running on the AI Core, to perform the matrix
multiplication on the Cube Unit. The densification step is
performed on the AI Core using both the Vector Unit and
the Scalar Unit through the Unified Buffer (UB). Considering
the limited size of the UB, the densification step is performed
on-the-fly without having to fully load the sparse matrix at
once. This step will be further detailed in Section III-C.

The inputs of the MatMul operator must be in L1 buffer.
Thus, we need to move Adense and B to L1 before calling Mat-
Mul. In addition, the shapes of the input and output arguments
of that operator are specifically defined as in Table I, and M ,
N and K need to be rounded up as in Equation 1.

M =

⌈
M

M0

⌉
×M0, N = N1 ×N0,K = K1 ×K0 (1)

where M0 = 16, N0 = 16 and K0 = 16 are constants linked
to the DaVinci architecture. The output of the MatMul operator
is in L0C and therefore must be moved to the global memory
once the operator is fully executed.

C. Converting the Sparse Matrix into a Dense Matrix

The densification step is described in Algorithm 1. The input

Algorithm 1: Converting a Sparse Matrix into a Dense
Matrix on AI Core.
Input: IA, VA
Output: AL1

dense
1 AL1

dense = tik.Tensor((K1,M,K0), L1);
2 AUB

dense = tik.Tensor((K1,M,K0), UB);
3 AUB

dense = 0;
4 IUB

A = tik.Tensor((nnz, 2), UB);
5 V UB

A = tik.Tensor((nnz, ), UB);
6 Copy IA to IUB

A and VA to V UB
A ;

7 for vid ∈ {0, · · · , nnz − 1} do
8 (i, j) = IUB

A [vid, :];
9 AUB

dense[i, j] = V UB
A [vid];

10 end
11 Copy AUB

dense to AL1
dense;

of the algorithm is a sparse matrix A represented by IA and VA
stored in device memory. The output is a dense matrix stored in
L1 (AL1

dense). The algorithm starts by creating the output tensor
in L1 (Line 1) and a temporary tensor of the same shape in
UB (Line 2) which is fully initialized with zeros (Line 3).
The temporary tensor is required since the Vector Unit and

https://www.hiascend.com/doc_center/source/en/CANNCommunityEdition/51RC1alphaX/opdevg/tbedevg/tbedevg-cann51RC1alphaX_01.pdf
https://www.hiascend.com/doc_center/source/en/CANNCommunityEdition/51RC1alphaX/opdevg/tbedevg/tbedevg-cann51RC1alphaX_01.pdf


Parameter Explanation
M Number of rows of A
N Number of columns of B
K Number of columns of A
Ti Tile size along the 1st dimension of A
Tj Tile size along the 2nd dimension of B
Tk Tile size along the 2nd dimension of A
NT

i Number of tiles along the 1st dimension of A
NT

j Number of tiles along the 2nd dimension of B
NT

k Number of tiles along the 2nd dimension of A
NT Total number of tiles in A
T Tiling configuration

nnzUB
max Maximum number of non-zero values per tile in UB

Nc Number of AI Cores in use
NT

c Maximum number of tiles per AI Cores
NL

c Number of fully-loaded AI Cores
(each AI Core processes exactly NT

c rows of tiles)
Scid The scheduling configuration for the AI Core of index cid

TABLE II
PARAMETERS OF THE TILING

the Scalar Unit cannot access L1; they can only process data
in UB. Similarly, IA and VA are replicated in UB (Lines 4–
6). Afterwards, the algorithm iterates over all non-zero values
and set each of them at their respective location according to
their indices (Lines 7–10). Finally, the dense matrix in UB is
copied to L1 (Line 11). It is worth noting that filling the dense
matrix by setting its individual values involves the Scalar Unit.
Considering the limited computational power of this unit, the
filling process must be optimized accordingly. We will discuss
this situation and the performance implications in Section IV.

To limit the host memory usage and due to the UB capacity
limitation, large sparse matrices are never fully densified.
Instead, we rely on tiling to perform the densification on-the-
fly, hence enabling block-wise matrix-matrix multiplications.

D. Operator Tiling and Scheduling

The tiling has two main goals: enable multi-core paralleliza-
tion and allow processing of large matrices. In the following,
we define a tile as a 2-d slice of a matrix. Given a tiling, each
AI Core core will work on a set of tiles of A according to
a well defined scheduling. The notations we will use in the
following are given in Table II.

1) Operator Tiling: The input matrices are sliced to en-
hance parallelization and data reuse in caches. For the custom
SpMM operator, we follow a similar approach and we intro-
duce a second level of tiling to handle the cases where the
number of non-zero values in the sparse matrix is very large.
The two levels are illustrated on Fig. 2 and described below.

1) The first level is the same as tiling a dense matrix: the
matrices are sliced into tiles according to the tile sizes
Ti, Tj and Tk. One should note that since A is a sparse
matrix, the first level of tiling is just conceptual because
the matrix is never fully constructed in memory. The
tile sizes are statically defined to maximize data reuse
in L0A and L0B buffers as discussed in Section IV.

2) The second level is added for tiling IUB
A and V UB

A .
Since the sparsity profile of A is unknown at operator

compilation time, IUB
A and V UB

A are statically allocated
with a maximum size of nnzUB

max. Then, we associate to
each tile of A the set of indices corresponding to the
tile’s non-zero values. We call this association a tiling
configuration T . It is a 2-d tensor of shape (NT , 2)
evaluated as in Equation 2.

T [l, 0] = α(l)

T [l, 1] = β(l)
, l ∈ {0, · · · , NT − 1} (2)

α(l) is the offset to the first non-zero value within IA,
evaluated as in Equation 3; β(l) is the effective length of
the tile defined as the number of non-zero values within
that tile.

T [0, 0] = 0

T [l + 1, 0] = T [l, 0] + T [l, 1]
, l ∈ {0, · · · , NT − 1}

(3)

Since the data is moved in bursts of 32 Bytes from global
memory to UB, the offset and length for the last tile are
padded accordingly when (β(NT − 1)× 2)%32 6= 0.
When filling the non-zero values for a tile of index l,
we have to distinguish two situations.

a) T [l, 1] > nnzUB
max This situation typically happens

either if the sparsity of A is relatively low or if the
non-zero distribution is not uniform leading to a
concentration of the non-zero values over a small
set of tiles. In this case, we load the non-zeros⌈
T [l, 1]/nnzUB

max

⌉
times.

b) T [l, 1] ≤ nnzUB
max In this case, a single load is

sufficient to get all the current tile’s non-zeros.
The tiling configuration is evaluated on the host system
for the following reasons. Firstly, this mapping involves
complex sequential calculations so that if executed on
AI Core will heavily involve the low-power Scalar Unit.
Secondly, the sparse matrix as input of GNNs is usually
constant and its tiling needs to be evaluated only once.

Using the tiling configuration, tiles not containing at least 1
non-zero value (empty tiles) are skipped: this is a performance
improvement which can be substantial in case the non-zero
values in the sparse matrix are grouped into dense blocks.

2) Operator Scheduling: To parallelize the computations
over the AI Cores, a scheduling must be defined to determine
what tiles will be given to each AI Core for processing. An
efficient scheduling will ensure that: firstly, the cores are busy
enough to minimize idle stages; secondly the cores get in
average the same amount of workload. An imbalance can lead
to a poor parallel scalability.

There are several parallelization strategies in the context of
tile-based matrix multiplication. The matrix A can be split
in rows (1st dimension), in columns (2nd dimension) or both.
The same applies for the matrix B. However, since our custom
operator is mainly targeted for Deep Learning workloads, there
is an important point that needs to be considered. Indeed,
according to the research presented in [5], sparse matrices
from Deep Learning computations have on average 2.3×
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Fig. 2. Tiling procedure of the custom SpMM operator.

longer rows than sparse matrices found in scientific computing.
This implies that parallelizing the computations over the 1st
dimension of A, will keep the AI Cores sufficiently busy.
Therefore, our first constraint on the scheduling is fulfilled.
Our approach regarding the second constraint about workload
distribution is presented in Algorithm 2. The algorithm takes
as input the tile count along the 1st dimension of A (tile-
rows), the core count, the current AI Core index2 and evaluates
the start index (Scid [0]) and stop index (Scid [1]) of the set of
rows belonging to corresponding AI Core. If NT

i %Nc = 0,
then each AI Core will get exactly the same amount of tile-
rows given by NT

c (Line 1). Otherwise, we first evaluate NL
c ,

the maximum number of cores that can be fully loaded with
the same amount of tile-rows (Line 2), then we derive the
remaining tile-rows R (Line 3) to be processed by the core of
index NL

c . The cores of index larger than NL
c will be idle.

The proposed scheduling strategy is more efficient than the
greedy scheduling. Indeed, in this case, the cores for which

2Here, it would be more accurate to use the expres-
sion ”block index” instead of ”core index”. Indeed, the
for range(< start>, <stop>, <block count>) construct of TIK framework
operates on blocks. If the block count exceeds the number of available AI
Cores, the execution will be scheduled in batches over the cores.

Algorithm 2: Scheduling of the Custom SpMM Op-
erator over AI Cores.
Input: NT

i , Nc, cid
Output: Scid

1 NT
c = dNT

i /Nce;
2 NL

c = NT
i /N

T
c ;

3 R = NT
i −NL

c ×NT
c ;

4 if cid < NL
c then

5 Scid [0] = cid ×NT
c ;

6 Scid [1] = Scid [0] +NT
c ;

7 else if cid == NL
c then

8 Scid [0] = NL
c ×NT

c ;
9 Scid [1] = Scid [0] +R;

10 else
11 Scid [0] = 0;
12 Scid [1] = 0;

cid < Nc−1 will get the same amount of tile-rows (NT
i /Nc),

and the last core of index Nc − 1 will get L = NT
i %Nc

tile-rows which could be very large. For instance, with M =
10000 and Ti = 128 we have NT

i = 79; using Nc = 32,



the cores of index from 0 to 30 will process 2 tile-rows and
the core of index 31 will process 14 tile-rows, leading to a
dramatic workload imbalance since the last core will be the
bottleneck as it will run in average 7 times longer than the
other cores to complete its workload. Conversely, with our
proposed scheduling strategy, the cores of index from 0 to 25
will process 3 tile-rows, the core of index 26 will process 1
tile-row and cores from 27 to 32 will be idle. The workload
is therefore much more balanced between the cores.

E. Full Algorithm for SpMM on DaVinci Core

The full version of the custom operator is presented in
Algorithm 3. After completing the multiplication of the tile-

Algorithm 3: Full Algorithm for the SpMM Operator
targeting AI Core.

Input: A, B
Output: C = A×B

1 NT
c = dNT

i /Nce;
2 NL

c = NT
i /N

T
c ;

3 R = NT
i −NL

c ×NT
c ;

4 foreach cid ∈ {0, · · · , Nc − 1} do
5 Lines 4–12 of Algorithm 2 (Scid );

6 for ii ∈ [Scid [0],Scid [1]− 1] do
7 for jj ∈

[
0, NT

j − 1
]

do
8 CL0C

dense = tik.Tensor((N1,M,N0), L0C);
9 for kk ∈

[
0, NT

k − 1
]

do
10 Lines 1–11 of Algorithm 1 (AL1

dense);

11 Copy B[kk, jj] to BL1
dense;

12 CL0C
dense += AL1

dense ×BL1
dense;

13 end
14 Copy CL0C

dense to C[ii, jj];
15 end
16 end
17 end

row of index ii of A with the tile-column of index jj of B
(Lines 9–13) on the Cube Unit, the output is copied from
L0C into a Global Memory (GM) workspace tensorW before
moving it to the final output C (Line 14). For each AI Core,
we allocate a workspace tensor of shape (Ti, Tj) in GM so
that the cores can work in parallel and asynchronously.

It is worth mentioning that the proposed custom SpMM
algorithm could be implemented on other accelerators like
GPUs featuring Tensor Cores. However, in this paper we only
focused on the Ascend processor.

F. Memory Requirements

In this section, we theoretically evaluate the custom operator
memory requirements in terms of UB and GM occupancy.

1) Usage of the Unified Buffer: The UB usage of the
custom operator is given in Table III. We can notice that
the sizes of all the UB tensors are fixed except for the
tiling configuration tensor which is dependent on NT

c . To
avoid exceeding the UB capacity when processing very large

Tensor Rows Cols Data Size Tensor Size
(Bytes) (Bytes)

AUB Ti Tk 2 2× Ti × Tk

BUB Tk Tj 2 2× Tk × Tj

T NT
c 2 8 16×NT

c

IA nnzUB
max 2 8 16× nnzUB

max

VA nnzUB
max 1 2 2× nnzUB

max
Scid 2 1 4 8

TABLE III
UB USAGE BY THE CUSTOM SPMM OPERATOR.

Operator Indices Values Total Size
Count Total Size Count Total Size

(Bytes) (Bytes) (Bytes)
SpMM nnz × 2 nnz × 16 nnz nnz × 4 nnz × 20

(AI CPU)
SpMM nnz × 2 nnz × 16 nnz nnz × 2 nnz × 18

(AI Core)
TABLE IV

USAGE OF THE GM BY THE BUILT-IN SPMM AND BY THE CUSTOM SPMM
OPERATORS FOR REPRESENTING THE SPARSE MATRIX.

matrices, we can launch more blocks (Nc) which in turn lower
NT

c . As an example, let us consider M = K = 525825,
N = 128, Ti = 128, Tk = 256, Tj = 128, nnz = 2100225,
and nnzUB

max = 4096. In this case, the UB occupancy when
Nc = 32 is 4.3 MB, whereas when Nc = 8192 it is 220 KB.
Hence, with this strategy, we can process arbitrarily very large
matrices without exceeding the UB capacity.

2) Usage of the Global Memory: To further characterize
the memory requirement for the custom operator, we did a
theoretical comparison of the GM required for representing
and processing the sparse matrix for both the built-in SpMM
and custom SpMM operators. The result is summarized in
Table IV. We notice that the AI CPU version of SpMM
requires nnz×20 Bytes whereas the AI Core version requires
nnz × 18 Bytes which is 10% lower than the former.

IV. PERFORMANCE ANALYSIS

This section discusses the performance of the custom
SpMM operator on Ascend 910.

A. Datasets

We considered two different datasets for the benchmarking.
1) Features and Adjacency matrices from CoraFull dataset3

as described in Table V.
2) SuiteSparse [11]: it is a collection of 2893 sparse ma-

trices collected from various applications in different
domains (scientific computing, machine learning, elec-
tronic circuit simulation, . . . ). The collection is widely

Matrix Name M K nnz Sparsity
Features 18712 8710 1071300 0.9935

Adjacency 18712 18712 143560 0.9995
TABLE V

FEATURE AND ADJACENCY MATRICES FROM CORAFULL DATASET.

3CoraFull is a graph dataset suitable for node classification tasks and
typically used for training GNNs in this context.



Matrix Name M K nnz Sparsity
mc2depi 525825 525825 2100225 0.999992
cage12 130228 130228 2032536 0.999880

dawson5 51537 51537 1010777 0.999619
lock1074 1074 1074 51588 0.955276

patents main 240547 240547 560943 0.999990
struct3 53570 53570 1173694 0.999591

wiki-Vote 8297 8297 103689 0.998494
bcsstk30 28924 28924 2043492 0.997557
nemeth21 9506 9506 1173746 0.987011
pcrystk03 24696 24696 1751178 0.997129
pct20stif 52329 52329 2698463 0.999015
pkustk06 43164 43164 2571768 0.998620

pli 22695 22695 1350309 0.997378
net50 16320 16320 945200 0.996451

web-NotreDame 325729 325729 1497134 0.999986
TABLE VI

SUITESPARSE MATRICES USED FOR BENCHMARKING.

used for studying the performance of sparse kernels.
For our benchmarking, we selected 15 square sparse
matrices used in [4] and described in Table VI.

B. Benchmarking Setup

Hardware Configuration: Our benchmarking is carried-
out on an Atlas 800-9000. The host system is equipped with
4 Kunpeng 920 processors and a total of 1 TB of DDR4
memory. 8 Ascend 910 processors are attached to the system;
each having 32 GB of HBM2.

Best Tile Sizes: To execute the computations on the Cube
Unit, the MatMul operator reads inputs in L0A and L0B which
are 64 KB large each. The tile sizes are selected to maximize
the occupation of L0A and L0B, hence minimizing latencies
incurred by global memory accesses. Therefore, for data of
float16 type, the tile sizes for the matrix A and B are: Ti =
128, Tj = 128 and Tk = 256. All the benchmarking that will
follow have been conducted using these tile sizes.

We will use nnzUB
max = 4096 and Nc = 8192 for all the

experiments.

C. Accuracy Verification of the Custom SpMM Operator

To verify the custom SpMM accuracy, we compared its out-
put against that of the built-in operator, using randomly gen-
erated matrices of different sparsity: 0.9968, 0.9936, 0.9872,
0.9744, 0.9488, 0.8976 and 0.7952. The metric we used for
this comparison is the relative residual as in Equation 4.

∆ =
‖CAI CPU − CAI Core‖F

‖CAI CPU‖F
(4)

For each sparse matrix A, we generate the matching dense
matrix B where N is fixed to 128. All matrices are filled with
random values generated from a uniform distribution [0, 1].
The relative residual on our selected matrices are given on
Fig. 3. We notice that the relative residual for the custom
SpMM operator is below 3 × 10−4, for all sparsity values
and for all matrix sizes. This is an acceptable accuracy and is
typical to what is achievable by mixed-precision MAC arrays.
For instance, in [12], the authors showed that the relative
residual for the dense matrix-multiplication on Tensor Cores
is between 10−4 and 10−3.

Fig. 3. Accuracy verification of the custom SpMM operator for different
sparsity values and matrix sizes; M = N = 128. Input matrices are filled
with random values generated from a uniform distribution [0, 1]. The relative
residual is evaluated using Equation 4.

Furthermore, the custom operator relative residual decreases
for sparse matrices with lower sparsity. Indeed, when the
sparsity is high, the operator involves a large proportion of
multiplications and additions with 0s in the sparse matrix due
to the fact that the sparse matrix is densified with 0s before the
processing on the Cube Unit, as explained in Section III-C. In
addition of the wasted computational power, the ineffectual
computations with 0s introduce more rounding errors than
in the built-in operator: the higher the sparsity, the more
rounding errors are accumulated. Finally, for a fixed sparsity,
the relative residual is lower for larger values of K suggesting
that the error ‖CAI CPU − CAI Core‖F grows more slowly than
‖CAI CPU‖F .

The accuracy could be improved using mixed-precision
techniques. For instance in [12], the authors proposed a novel-
algorithm for effectively recovering single-precision accuracy
of the dense matrix-matrix multiplication while performing
computations on GPU Tensor Cores in half-precision.

D. Benchmarking the Custom SpMM Operator on Ascend 910

In this section, we discuss the custom operator performances
on Ascend 910 using our two datasets. All time measurements
are averaged over 100 runs. When evaluating the custom
operator speed-up relative to the built-in operator, we only
consider the operator execution time without the preprocessing
time (evaluation of the tiling configuration on the host). To
have an idea, the preprocessing time of the Features matrix of
the CoraFull dataset is 0.7s using a single CPU core. However,
in typical training or inference of a GNN, the input sparse
matrix is constant and the corresponding tiling configuration
can be evaluated once. Therefore, for a training that takes
several iterations, the preprocessing cost could be amortized.

CoraFull: on Fig. 4, we present the speed-up obtained by
the custom operator using this dataset. The chart shows that the
custom operator is significantly faster than the built-in operator
and the speed-up reaches 52.51 on the Features matrix. For the
Adjacency matrix, the speed-up is lower and reaches 15.52.
Indeed, since the Adjacency matrix is more sparse than the



Fig. 4. Speed-up of the custom SpMM operator over the built-in version on
Features and Adjacency matrices of CoraFull dataset. N is fixed to 128. The
benchmark is executed on Ascend 910.

Fig. 5. Speed-up of the custom SpMM operator over the built-in version on
selected SuiteSparse matrices presented in Table VI. N is fixed to 128. The
benchmark is executed on Ascend 910.

Features matrix, as shown in Table V, the custom operator
will have to execute more ineffectual computations when
processing the Adjacency matrix than that of the Features
matrix. This situation is expected by design: the sparsity has a
little impact on the custom operator performance because the
sparse matrix is converted into a dense matrix (according to
a tile-based approach) before calling the MatMul operator. To
further increase the custom operator performance on highly
sparse matrices, a reordering technique could be applied so
that the dense tiles contain a lower amount of 0s.

SuiteSparse: The custom operator performance on the
selected SuiteSparse matrices is given on Fig. 5. As observed
for the CoraFull matrices, we can see here that the speed-
up is larger on matrices with lower sparsity, regardless of
the matrix sizes. For instance, the speed-up reached with the
matrix lock1074 (M = K = 1074) is higher than the speed-up
reached with the matrix mc2depi (M = K = 525825).

E. Profiling the Custom SpMM Operator on Ascend 910

To identify the bottlenecks of the custom operator, we
profiled its execution using CoraFull matrices. We collected
metrics highlighting to the functional units utilization, and

Fig. 6. AI Core resource utilization of the custom operator using CoraFull
matrices on Ascend 910. MTE1: L1→ L0A/L0B; MTE2: HBM→ AI Core;
MTE3: AI Core → HBM.

bandwidth between memory units (HBM, L1, UB, . . . ). In
this section, we provide the analysis of the profiling data.

AI Core Resource Utilization: The pipe utilization is
given on Fig. 6. It is worth noting that besides the time
required by the Scalar Unit, all other time measurements
are higher when processing the Adjacency matrix despite the
lower nnz of the latter. For instance, the required time for data
loading from the device main memory (HBM) to the AI Core
is larger when processing the Adjacency matrix because the
dense matrix, B, is larger in this case: its shape is (18712, 128)
when processing the Adjacency matrix and (8710, 128) when
processing the Features matrix.

The Vector Unit and Scalar Unit are used for preparing the
input tiles as part of the densification algorithm: the larger the
nnz, the higher their utilizations as shown in the Fig. 6. As
expected, Scalar and Vector processing times are top bottle-
necks for both the Features and Adjacency matrices. This is
because of the densification algorithm as explained previously.
Furthermore, the Scalar Unit time for processing the Features
matrix is significantly larger than for the Adjacency matrix.
Indeed, as Features matrix has larger nnz than Adjacency
matrix, the serial initialization of non-zero values in dense
tiles requires more time. Finally, the Cube Unit utilization
is higher because the sparse matrix densification introduces
more floating point operations, whose a significant amount
are ineffectual multiplications with 0s.

Memory Bandwidth: The memory bandwidth utilization
is given on Fig. 7. Here, we clearly see that because of
the dense-based processing of the custom operator, there is
more data movement involved when processing the Adjacency
matrix than for the Features matrix. In addition, L1 Write BW
and UB Read BW are higher for both matrix types because
the dense input tiles, required by the MatMul operator, are
moved from UB to L1.

For both matrix types, the HBM Write BW is low because
the output matrix C is relatively small compared to dense
matrix B. For instance, in case of the Adjacency matrix,
C has a shape of (18712, 128) whereas B has a shape of



Fig. 7. Memory bandwidth utilization of the custom operator using CoraFull
matrices on Ascend 910.

(18712, 18712) that is 146× larger than C.

From this profiling analysis, we made the following conclu-
sions about the main bottlenecks of the custom operator:

• The Vector Unit and Scalar Unit are significantly used
during the preparation of the input tiles;

• The UB Read BW and L1 Write BW are relatively high.
Therefore to further optimize our implementation, we propose
the following optimizations directions.

• Implement an efficient re-ordering of the sparse matrix
so that: the Cube Unit is less utilized; the UB Read BW
and L1 Write BW are lower because the non-zero values
will be distributed into a fewer amount of tiles.

• Reduce the Scalar and Vector times by optimizing the
densification algorithm.

V. CONCLUSION

In this work, we presented an optimized implementation
of the SpMM kernel for the Ascend AI Core, leveraging
the Cube Unit. Thanks to advanced optimization techniques
such as multi-level tiling and efficient scheduling on AI Core,
our implementation achieves a speed-up of 52.51 over the
original AI CPU implementation using Features matrices of
the CoraFull dataset. In addition, the memory footprint of
our custom implementation is 10% lower. To improve the
custom operator performance for very sparse matrices (sparsity
> 0.9999), we could re-order the sparse matrix so that the
non-zeros are grouped into a relatively few dense tiles. This
way, we could discard all tiles without non-zero values away
from the partial matrix multiplications. Furthermore, we are
investigating optimization strategies to minimize the usage of
Scalar Unit in the densification step.
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