
ProGNNosis: A Data-driven Model to Predict GNN
Computation Time Using Graph Metrics

Axel Wassington
Barcelona Neural Networking Center (BNN)
Universitat Politècnica de Catalunya (UPC)

Barcelona, Spain
axel.tomas.wassington@upc.edu

Sergi Abadal
Barcelona Neural Networking Center (BNN)
Universitat Politècnica de Catalunya (UPC)

Barcelona, Spain
abadal@ac.upc.edu

Abstract—Graph Neural Networks (GNN) show great promise
in problems dealing with graph-structured data. One of the
unique points of GNNs is their flexibility to adapt to multiple
problems, which not only leads to wide applicability, but also
poses important challenges when finding the best model or
acceleration technique for a particular problem. An example of
such challenges resides in the fact that the accuracy or effective-
ness of a GNN model or acceleration technique, respectively,
generally depends on the structure of the underlying graph.
In this paper, in an attempt to address the problem of graph-
dependent acceleration, we propose PROGNNOSIS, a data-driven
model that can predict the GNN training time of a given GNN
model running over a graph of arbitrary characteristics by
inspecting the input graph metrics. Such prediction is made
based on a regression that was previously trained offline using a
diverse synthetic graph dataset. In practice, our method allows
making informed decisions on which design to use for a specific
problem. In the paper, the methodology to build PROGNNOSIS
is defined and applied for a specific use case, where it helps to
decide which graph representation is better. Our results show
that PROGNNOSIS helps achieve an average speedup of 1.22×
over randomly selecting a graph representation in multiple widely
used GNN models such as GCN, GIN, GAT, or GraphSAGE.

Index Terms—Graph neural networks, computation analysis,
graph theory, machine learning, characterization, GPU

I. INTRODUCTION

Graph Neural Networks (GNNs) have recently attracted
enormous interest in the machine learning community due to
their ability to infer from graph-structured data, which other
types of neural networks cannot handle efficiently [1]. This
has a transformative impact on areas such as recommendation
systems [2], natural language processing [3], computer vision
[4], particle physics [5], or computer networks [6], [7] as the
explosion of recent works can attest.

One of the strengths of GNNs, which make them applicable
to a wide variety of problems in multiple domains, is their
unique structure and flexibility [8]. Indeed, GNNs can be
understood as a family of algorithms allowing to infer features
relative to single vertices, edges, or the entire aggregated
graphs. However, also due to their wide applicability, not
only creating a single GNN model that fits all the scenarios
is rendered very difficult, but even the selection of the most
accurate GNN model in a specific scenario already becomes
a complex and multidimensional problem.

In exchange for such flexibility, GNNs also present unique
challenges in their efficient processing due to the variety of
GNN variants to support, the inherently alternate execution of
dense and very sparse operations, or their dependence on the
input graph [9]. As a result, recent works have studied GNNs
from a computational workload perspective and attempted to
extract the architectural implications of their uniquenesses,
aiming to improve their support in CPUs, GPUs, and hardware
accelerators [9]–[13]. Yet still, solutions that generalize well
over all GNN variants and application domains are missing.

Multiple attempts to either maximize the accuracy of a GNN
or minimize its processing time have been made. For example,
the impact of some design decisions (e.g. the GNN model, the
hidden vector size, or the loss function) on the accuracy given
a GNN solution has been studied using techniques such as
a guided search [14]–[17]. A more comprehensive approach
is to perform a joint search on both the GNN model and
the acceleration technique to navigate the accuracy-processing
time tradeoffs of the solution space [18]. However, these works
use search methods and try different combinations to then
keep the most performant ones. This approach has the problem
of spending the time to try different strategies in an ad hoc
manner. Another rather new approach is to use a synthetic
dataset to see the relationship between the parameters of the
graph generator and the accuracy of the different GNN models
[19], this allows to explore the relationship between a limited
set of characteristics of the graph with the accuracy of the
different models and can be used as a benchmarking dataset.

For the analysis of the computation time of GNNs, works
are generally infrequent and cover a small design space.
One example is the study made in [10], where the impact
of the input and output feature vector size is studied for a
small selection of GNNs models and datasets. In [20], the
authors model the performance and resource efficiency of
two hardware accelerators for GNN as functions of several
hardware parameters and GNN models but neglecting the
irregular connectivity of real graphs. A more comprehensive
analysis of the most popular frameworks and GNN models is
done in [21], which uses the Open Graph Benchmark (OGB)
[22] dataset to make a comparison among GNN acceleration
techniques.

Although the OGB suite used in multiple GNN comparison

works contains a representative selection of datasets for real-
world problems, the span of the suite is limited with most
graphs having similar structural characteristics and connec-
tivity, hence failing to cover all possible future application
domains. This is an issue due to the dependence of GNNs
on the input graph: the accuracy and computation time of a
GNN, both in training and inference, generally depends on the
aggregation of the features from each node to its neighbors,
which is generally extremely sparse and irregular process.
In essence, works largely ignore the characteristics of the
input graph as they often consider sparsity as the only aspect
affecting performance [23], [24], and only evaluate their work
on OGB or a smaller selection of graphs.

This paper aims to address these issues by proposing
PROGNNOSIS (Fig. 1), a framework to build data-driven
models able to predict the computation time of a specific GNN
model executed over a given computation platform, but for a
graph of arbitrary characteristics. When repeated over multiple
models or computing platforms, possibly with the help of
prototyping tools [25], PROGNNOSIS allows assessing which
GNN design will perform better for any type of input graph,
without having to perform a search as in prior approaches.

To these ends, PROGNNOSIS generates a comprehensive
and balanced synthetic graph dataset and makes an offline
analysis of the impact of the different graph metrics (such
as degree distribution and clustering coefficient) on the GNN
execution time. Building on this analysis, we demonstrate that
a model can be generated that predicts the execution time of
the GNN with high accuracy. Then, we establish a simple
but representative use case (i.e. the graph representation in
memory) and show that we can use PROGNNOSIS to make in-
formed design decisions about GNN acceleration for any type
of graph, achieving a mean speedup of 1.24× for the training
set and 1.07× for the testing set with respect to making a
random choice in a GCN. We finally repeat the experiment
with different GNN models (GIN, GAT, GraphSAGE) to show
that the proposed methodology is potentially generalizable,
obtaining a mean speedup of 1.26× for the training set and
1.18× for the testing set.

The remainder of the paper is organized as follows. The
notation and other preliminary considerations are described in
Section II. Our main contribution, a methodology for the data-
driven modeling of the execution time of GNNs, is presented in
Section III. The methodology is then illustrated for different
use cases in Section IV. Finally, the paper is concluded in
Section V.

II. PRELIMINARIES

A graph is an ordered pair G = (V,E), where V is a set
of vertices (or nodes) and E = {{u, v} : u, v ∈ V } a set of
edges that are connections between pairs of nodes. Stemming
from this definition, next we describe the graph metrics, GNN
models, and regression and classification considerations used
in this work.

A. Graph Metrics

Graphs are complex structures that can be measured from
multiple angles. Depending on the objective of the measure-
ment, different characteristics of the graph can take a central
role or have no impact at all. Also, some characterization
metrics are correlated and others are not. Another important
aspect is the time it takes to calculate the metrics: some metrics
can be assessed via a quick inspection of the graph, and others
need a great number of calculations, which in some cases can
be reduced by obtaining approximate estimates.

In this study, we will use undirected, unweighted, and
connected graphs for simplicity. The definitions given in this
section will only consider this kind of graph, but the results
of the study can be generalized to other kinds of graphs.

Degree: The degree of a node is the number of vertices
incident to that node or, in other words, the number of
connections a node has. Hence, the degree kv of a node v
is generally given by the size of its neighborhood,

kv = |N(v)|, (1)

where the neighborhood of a node can be defined as N(v) =
{u : {u, v} ∈ V }. Then, the degree distribution can be
defined as the fraction of nodes with a given degree. Different
characterizations can be extracted from the degree distribution,
but some of the most useful ones are the maximum degree,
the minimum degree, and the mean degree of a graph. The
calculation of the degree distribution can be done in linear
order concerning the number of edges in most of the graph
representations.

Density: The density D of a graph is the ratio between the
edges that are present in the graph and the maximum amount
of edges that the graph may have, given its number of nodes.
Hence, the density of an undirected graph can be defined as:

D(G) =
2 |E|

|V | (|V | − 1)
. (2)

The density can be calculated in linear order in most of
the graph representations, and most of the time the number
of nodes and edges is already calculated and stored with the
graph.

Clustering coefficient The clustering coefficient C(v) of a
node v can be defined as:

C(v) =
|{{u,w} : ({u,w} ∈ E ∧ u,w ∈ N(v)}|

kv(kv − 1)
(3)

This indicates how close is the neighborhood of that node
to generating a complete subgraph (or clique). The mean
clustering coefficient is, as its name indicates, the mean of the
clustering coefficient of all the nodes in a graph. The compu-
tational complexity of calculating the clustering coefficient is
O(n3). Because of this, we use an approximation to calculate
the clustering coefficient that is based on using trials instead
of using all the nodes to calculate the coefficient, based on the
ideas proposed in [26].

'HVLJQ�1

'HVLJQ��

'HVLJQ��

+LJKO\�GLYHUVH�

6\QWKHWLF�'DWDVHW %XLLOG�UHJUHVVLRQ
PRGHO�

PHWULFV���WUDLQLQJ�WLPH

0HDVXUH�*11
WUDLQLQJ�WLPH�IRU�HDFK

JUDSK

&DOFXODWH�JUDSKV

PHWULFV

&ODVVLI\�E\�FRPSDULQJ��

UHJUHVVLRQ�SUHGLFWLRQV�

Fig. 1. High-level description of PROGNNOSIS as the main contribution of this paper.

B. Regression and Classification

In this work, we use regression and/or classification to
extract the relationship between the computation time of a
GNN model and the characteristics of an input graph, defined
by some of the metrics described above.

On the one hand, regression is the statistical process used to
find the relationship between a dependent variable and one or
more independent variables (or features). The linear regression
finds a linear combination of the independent variables that
reduce the sum of squared differences with the dependent
variable. To measure the performance of regression we will
use three metrics:

• The coefficient of determination (R2) is the sum of
squared residuals and is 1 if all predictions are correct
(best case), is 0 for the baseline model (using always the
mean as prediction), and maybe negative if the prediction
is worst than the baseline model.

• The mean squared error (MSE) is the mean of the
square of the differences between the predicted and the
real values. It is 0 if all predictions are correct and its
value increases with the errors. Since it grows with the
square of the error, it is a good indicator of outliers.

• The mean absolute percentage error (MAPE) is the
sum of the errors divided by the real value. MAPE is
good to find if the error does grow disproportionate to
the real value.

On the other hand, classification is also a statistical process,
but in this case, the dependent variable is discrete and each
value it can take is called a class. One popular option for clas-
sification is the use of Support Vector Machine (SVM), which
defines a hyperplane that separates the data into categories.
This hyperplane is such that it maximizes the margin between
the clases. To measure the performance of classification we
will use the accuracy, which is simply the number of correctly
classified samples divided by the total number of samples.

C. GNN Fundamentals

Although GNNs are a wide family of algorithms, in this
work we focus on the problem of node classification. The

main idea is to use semi-supervised learning, where only some
nodes are labeled with their class and the GNN should be able
to generalize the labels to the rest of the nodes.

To do so, each node has a vector of input features xv . With
this input vector, the GNN does a series of transformations to
obtain zv , the output vector. In multiclass node classification,
the output vector is composed of one slot for each class, the
highest number the one corresponding to the class assigned
to the node. Each node goes through a series of intermediate
states hi

v . The final state is hN
v , being N the number of layers

of the GNN.
In general, the i-th layer of a GNN can formally be

described as:

hi+1
v = U i

(
hi
v, A

i({hi
u : u ∈ N(v)}

)
(4)

where hi
v is the hidden layer of node v on generation i, Ai(·)

is the aggregate function, whereas U i(·) is the update function
that combines the aggregated result with the previous state of
the node.

The training of the model is done through backpropagation
to minimize a loss function. In each epoch, the weights update
function and, in some models, the aggregate function, are
updated after the model is used to predict the labels of the
labeled nodes. See [9] for more details on the computations
of the training process.

D. Sample GNN Models

We will now present some of the most popular GNN
models, which we employ in this work to evaluate the general-
ization potential of PROGNNOSIS. The implementation used
in this study for all the models is based on Pytorch Geometric
(PyG) [27], which is one of the most used frameworks.

Graph Convolutional Network (GCN): GCN is based on
convolutional neural networks, but applied to graphs [28]. It
uses a local approximation of the eigenvalues of the adjacency
matrix to compute a convolution in the non-euclidean space

defined by the graph. The GCN step for a node v can be
defined as

hi+1
v = θ

W i
∑

u∈N(v)∪v

hi
u√

kukv

 , (5)

where W are the trainable weights and θ is a function that
introduces a non-linearity, e.g. ReLu. Note that the aggregated
features are normalized to the degree of the connected vertices,
e.g. kv .

Graph Isomorphism Network (GIN): GIN is a simple model
built to demonstrate that even simple models may be powerful
on GNN [29], and aims to classify graphs based on their
similarity. The GIN step can be defined as

hi+1
v = MLP i

(1 + ϵ)hv +
∑

u∈N(v)

hi
u

 , (6)

where MLP i is a multi-layer perceptron, and ϵ is a parameter
of the model that indicates the importance of the nodes own
value to the ones of its neighborhood.

Graph Attention Networks (GAT): GAT is based on the
concept of attention, where the edges have a learnable weight
that changes over the generations depending on the feature
vectors of the nodes [30]. The GAT step can be defined as

hi+1
v = θ

 ∑
u∈N(v)∪v

au,vW
i × hi

u

 , (7)

where au,v is the attention coeficient for nodes u and v. The
attention coefficient can be calculated as

au,v = softmaxN(v)

(
a(W i × hu,W

i × hv)
)
, (8)

where a is the attention function, softmax is the normalization
between neighbors, and W are the trainable weights.

GraphSAGE (SAGE): GraphSAGE (SAmple and aggreGatE)
owes its name to the fact that it samples the neighbors of a
node for the aggregation stage [31]. SAGE can be used with
different aggregations, we will present here the one we used
that is the sum aggregation, which take the form:

hi+1
v = θ

W i
1h

i
v +

∑
u∈N(v)

W i
2h

i
u

 , (9)

where W1 and W2 are the trainable weights.

III. PROGNNOSIS: APPROACH AND EVALUATION
METHODOLOGY

The proposed framework, called PROGNNOSIS, is able to
predict how long will it take for a given GNN to process a
certain GNN model in a given computing platform, consider-
ing a graph of arbitrary characteristics. With PROGNNOSIS,
we propose to make informed decisions on GNN acceleration
or GNN design towards minimizing the training time per
generation.

0.0 0.2 0.4 0.6 0.8 1.0
N / E

0.0

0.2

0.4

0.6

0.8

1.0

a
- d

0.0

0.2

0.4

0.6

0.8

clu
st
er
in
g

Fig. 2. Impact of the RMAT parameters on the clustering of the generated
graphs. The x-axis corresponds to parameters N and E. The way that the
dataset was generated makes the distribution of this variable close to uniform
(N and E are not the final number of edges and nodes, but the model
parameters). The y axis corresponds to the maximum difference between the
components of the vector r (a− d). The colors indicate the mean clustering
coefficient of each graph.

To achieve this objective, we consider a series of steps that
are represented in Figure 1:

1) The first step consists in creating a synthetic dataset
containing a broad set of graphs of different characteris-
tics. This dataset will help us understand the relationship
between different graphs and the training time of a GNN.

2) Using the dataset, we measure the training time for each
of the designs that we want to compare for each of the
graphs of the dataset.

3) In parallel, we calculate a set of characterization metrics
over the graphs of the dataset.

4) Once we have the data, an analysis can be made to
understand the correlations between the metrics and the
training time of the different models. In particular, a
regression model can be built for each of the designs.

5) Finally, the results of the different designs can be
compared to classify the graphs into groups that indicate
which design performed better. The classification results
then are used to corroborate that processing time can be
saved by applying this methodology.

Each step of the process can be verified against a testing set,
which contains real-world graphs, to see if (i) the synthetic
dataset covers the full extent of the testing dataset, (ii) the
regression extrapolates to them, and (iii) the classification
works correctly with them. The testing set was created using
the SparseMatrix collection [32] and a subset of the OGB
benchmarks. Graphs were selected to represent the widest
selection of domain and graph characteristics.

The resulting set of models can then be used to optimize the
processing of other graphs by predicting the processing time
of each design using the pre-trained models and using the one
that was predicted to perform better.

A. Synthetic Graph Dataset Generation

One of the most important aspects of the proposed approach
is the creation of a synthetic dataset with diverse characteris-
tics. To create this synthetic dataset, we started by creating a

dataset using a naive approach. Then, an optimization problem
was stated using this dataset to find a less biased dataset.

To generate the synthetic graphs, the popular RMAT graph
generator was used [33]. We selected this tool because it can
generate graphs with a wide variety of metrics that can be
controlled through its parameters, and also because it is quite
performant allowing us to generate large datasets in a short
time.

The RMAT generator uses six parameters. The first two
parameters are the number of nodes N and the number of
edges E. Then, we have a vector r = [a, b, c, d] of symmetric
parameters that define the fitness distribution for the edge
attachment. The r vector is a probability vector, and as such
the sum of its elements must be 1. The RMAT generator works
by dividing the adjacency matrix into four groups recursively
and assigning the probability of an edge falling in each of the
groups following the r vector.

As already stated in the introduction, one aspect that we
found to be especially important in the synthetic dataset used
as the training set is that graphs with different characteristics
are represented. This means that the dataset should have a wide
range and balanced representation of values on the different
characterization metrics, hence avoiding selection bias (i.e.
bias towards a certain combination of metrics). However, we
found that datasets generated in a naive way using RMAT had
a selection bias towards graphs with low clustering coefficient,
among other characteristics, as can be seen in Figure 2.

To overcome this bias, we propose a method where an
optimization problem is defined to find an RMAT parameter
distribution that generates a less biased dataset [34]. Also, a
tool to train and generate the dataset was developed, called
Graphlaxy, which was used in this work to generate the
synthetic training set. Graphlaxy is open source and available
at https://github.com/BNN-UPC/graphlaxy.

B. Use Case Description

The scenario that we use to demonstrate the use and results
of this method consists of comparing two designs that do
not affect the GNN accuracy but that do affect the training
time. The designs consist of two different ways of processing
the GNN, based on two graph representations: SPARSE and
EDGE LIST. The SPARSE representation uses sparse matrix
multiplication to compute the aggregation function, whereas
the EDGE LIST representation uses gather and scatter CUDA
instructions to compute the aggregation function.

The experiment was repeated for the four different GNN
models, described in Section II-C, to show how the results vary
depending on the model. To do a fair comparison, all graphs
(training and testing set) were populated with a randomly
generated set of features and a random class. The feature
vectors are assumed of size 32, the hidden layer of size 32,
the number of layers is 3 and the number of classes is 2.

All the experiments are run using the same software, the
framework (PyG) with CUDA version 10.1 and torch version
1.10.2; as well as the same hardware, a machine with CPU
Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz, GPU GeForce

GTX 980 Ti and 15 GB of RAM. To reason about the results
obtained, executions were profiled using NVIDIA Nsight.

IV. PERFORMANCE EVALUATION

In this section, we go through the different steps of the
methodology showing the results obtained for the training and
testing sets and a short discussion about the intuition behind
those results.

A. Dataset Generation

Using the method described in Section III-A, we were able
to generate a dataset that represents most of the real graphs
used as validation. It can be seen in Figure 3 that, in the naive
dataset created with RMAT only, most of the graphs have low
clustering coefficients and that some of the real graphs from
the validation set have high clustering coefficients, rendering
these graphs underrepresented. We can also see that the final
dataset generated with Graphlaxy [34] solves this problem and
that most graphs from the validation set fall inside the limits of
the point cloud corresponding to the graphs in this dataset. The
dataset is composed of graphs with edges ranging from one
thousand to one million. The number of nodes and the rest
of the parameters of RMAT are controlled by a distribution
resulting from the optimization problem. Such a broad and
balanced dataset will allow us to train a regression that takes
into account the relationship between the different variables
considered.

B. Analysis

Once we have an unbiased dataset, an analysis of the impact
of the graph metrics on the computation time can be made.
Since the SPARSE representation of the graph is based on
sparse matrix multiplication, we pulled some ideas on which
are the most impactful metrics in studies on matrix multiplica-
tion [35], [36]. In this work, the most impactful metric was the
number of non-zero elements, which is translated to graphs as
the number of edges. Additionally, through the experiments,
we found that the most relevant metrics were the number of
nodes, the number of edges, the maximum degree, and the
clustering of the graph.

In Figure 4, we can see how the number of edges impacts
the computation time of the training set and the validation set.
We can see also that there is no linearity when the graphs are
small. Also, we see that the variation increases the more edges
the graph has, indicating that other metrics could explain that
variation. A similar figure can be plotted for all the analyzed
configurations, resulting in a similar shape. The impact of
these metrics on each of the models and graph representations
varies, effectively generating a breakpoint between when each
of the designs is preferred, as we see later.

The impact of the number of nodes and number of edges can
be explained because they indicate the number of operations
on the aggregation, though their influence is different for
SPARSE and EDGE LIST representations. The impact of the
maximum degree lies in the fact that highly connected nodes
become a bottleneck where all computations of the aggregation

https://github.com/BNN-UPC/graphlaxy

−6 −5 −4 −3 −2 −1 0
Dlog

0.0

0.2

0.4

0.6

0.8

1.0
cl3

12
e0
in
g

16-superuser

bcsstm27

cavity05

ca-HepPh
dblp-2010

cage11

fe_rotor

patents_main

crystm01
fpga_dcop_10

ca-CondMat

email-Enron

wiki-Vote

qc2534

psmigr_3

com-Amazon

nemeth17LeGresley_4908

soc-Epinions1
Linux_call_graphemail-EuAll
internet

coAuthorsCiteseer

usroads-48 lhr07c

cit-HepPh

Na5

p2p-Gnutella31

language
msc01440

loc-Gowalla

TSOPF_RS_b162_c1

598a

rajat17

EAT_SR

foldoc
oh2010

dictionary28

soc-Slashdot0811

TSC_OPF_300

Wordnet3

ca-AstroPh

web-NotreDame

−6 −5 −4 −3 −2 −1 0
Dlog

0.0

0.2

0.4

0.6

0.8

1.0

cl3
12
e0
in
g

16-superuser

bcsstm27

cavity05

ca-HepPh
dblp-2010

cage11

fe_rotor

patents_main

crystm01
fpga_dcop_10

ca-CondMat

email-Enron

wiki-Vote

qc2534

psmigr_3

com-Amazon

nemeth17LeGresley_4908

soc-Epinions1
Linux_call_graphemail-EuAll
internet

coAuthorsCiteseer

usroads-48 lhr07c

cit-HepPh

Na5

p2p-Gnutella31

language
msc01440

loc-Gowalla

TSOPF_RS_b162_c1

598a

rajat17

EAT_SR

foldoc
oh2010

dictionary28

soc-Slashdot0811

TSC_OPF_300

Wordnet3

ca-AstroPh

web-NotreDame

Fig. 3. Assesed metrics of the synthetic graph datasets (gray), and validation set of real graphs (blue). To the left the naive approach, and to the right the
dataset optimized to reduce selection bias. Both are a random sample of the entire ddataset composed of 1000 graphs each to better show the bias.

TABLE I
SCORES FOR THE REGRESSION FOR THE DIFFERENT CONFIGURATIONS

CONSIDERED ON THIS WORK.

Configuration Training Testing
Model Repr. Rˆ2 MSE MAPE Rˆ2 MSE MAPE

GCN Sparse 0.99 3 0.03 0.98 11 0.04
Edge List 0.98 37 0.06 0.97 21 0.09

GIN Sparse 0.99 2 0.04 0.99 1 0.05
Edge List 0.97 68 0.06 0.98 19 0.09

GAT Sparse 0.99 3 0.02 0.99 18 0.03
Edge List 0.99 57 0.04 0.97 50 0.07

SAGE Sparse 0.99 2 0.06 0.99 1 0.07
Edge List 0.97 72 0.08 0.97 20 0.11

on the neighbors must be completed before the calculation of
the update. Also, the clustering may be an indicator of the
complex dependency between the calculations of the nodes.
The non-linearity shown at the left of the graph may be
explained by the fact that small graphs use a small portion
of the GPU memory and pipeline, and thus slightly bigger
graphs use more GPU resources over the same amount of
time instead of the same amount of resources during more
time. This non-linearity will vary with the hardware used.

C. Regression

Based on the analysis we made, we built a model using the
metrics (number of nodes, number of edges and maximum
degree, and the mean degree) able to predict the training time

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Number of edges 1e6

0

50

100

150

200

250

Ti
m
e
(m

s)

sx-superuser

bcsstm27cavity05ca-HepPh

dblp-2010

cage11

fe_rotor
patents_main

crystm01ca-CondMatemail-Enronwiki-Vote qc2534

psmigr_3
nemeth17

LeGresley_4908

soc-Epinions1

Linux_call_graph

email-EuAll

internet

coAuthorsCiteseer

usroads-48
lhr07c

cit-HepPh
Na5p2p-Gnutella31

language

msc01440

loc-Gowalla

TSOPF_RS_b162_c1

598a

rajat17
EAT_SR

foldoc

oh2010

dictionary28

soc-Slashdot0811TSC_OPF_300
Wordnet3ca-AstroPh

web-NotreDame

Fig. 4. Correlation between number of edges and computation time for the
GCN model using edge list graph representation for the synthetic training
dataset (gray) and the validation dataset (blue).

TABLE II
ACCURACY OF CLASSIFICATION OF THE FASTEST AMONG TWO GRAPH

REPRESENTATIONS AND SPEEDUP OBTAINED WITH RESPECT TO
RANDOMLY SELECTING A GRAPH REPRESENTATION.

Model training testing
accuracy speedup accuracy speedup

GCN 0.96 1.24 0.90 1.07
GIN 0.93 1.30 0.95 1.26
GAT 0.97 1.16 0.90 1.05
SAGE 0.95 1.35 0.98 1.35

of the different designs with high accuracy (mean R2 of 0.98
in both training and testing set). The model used is a mix of
linear regression with ridge normalization and SVM regression
with radial basis function kernel (RBF). The SVM is used to
predict the residuals of the linear regression to account for the
non-linearity. This compound approach was taken because the
SVM by itself is unable to generalize to bigger graphs, and
the linear regression is unable to fit the non-linear parts of the
data.

Table I shows that the results for SPARSE graph represen-
tation are in general better than the ones with EDGE LIST.
We see that the MSE is the value that increases more on the
validation set for EDGE LIST indicating that some values
have higher errors. In general, we can conclude that the models
work well for both representations, though slightly better for
SPARSE representation. This can be explained in Figure 5,
where we see that the EDGE LIST representation has a higher
variation for the same set of metrics, maybe indicating that one
more metric could be used, or because of the implications of
the method like the order in which the nodes are processed
may impact the performance.

To corroborate what we have observed in the analysis,
Figure 6 shows the impact factor, defined as the standard
deviation of the variable times the coefficient of the linear
regression for each metric. We can see that the number of
edges is the more impactful metric, followed by the maximum
degree and that the impact of the metric varies from one
representation to the other.

D. Classification

Once the regression models are built for each design, the
results of the models can be used to classify the graphs by

0 20 40 60 80 100 120 140
Time (ms)

0

20

40

60

80

100

120

140
Pr
ed

ict
ed

 ti
m
e
(m

s)

sx-superuser

bcsstm27cavity05
ca-HepPh

dblp-2010

cage11

fe_rotor

patents_main

crystm01
ca-CondMatemail-Enron
wiki-Voteqc2534

psmigr_3

nemeth17

LeGresley_4908

soc-Epinions1

Linux_call_graph

email-EuAll

internet

coAuthorsCiteseer

usroads-48

lhr07c

cit-HepPh

Na5
p2p-Gnutella31

language

msc01440

loc-Gowalla

TSOPF_RS_b162_c1

598arajat17

EAT_SR
foldoc

oh2010

dictionary28

soc-Slashdot0811TSC_OPF_300

Wordnet3
ca-AstroPh

web-NotreDame

0 20 40 60 80 100 120 140
Time (ms)

0

20

40

60

80

100

120

140

Pr
ed

ict
ed

 ti
m
e
(m

s)

sx-superuser

bcsstm27cavity05ca-HepPh

dblp-2010

cage11

fe_rotor

patents_main

crystm01ca-CondMatemail-Enronwiki-Voteqc2534psmigr_3nemeth17LeGresley_4908
soc-Epinions1

Linux_call_graph

email-EuAll

internet

coAuthorsCiteseer

usroads-48

lhr07ccit-HepPhNa5
p2p-Gnutella31

language

msc01440

loc-Gowalla

TSOPF_RS_b162_c1

598a
rajat17

EAT_SRfoldoc

oh2010

dictionary28
soc-Slashdot0811

TSC_OPF_300
Wordnet3

ca-AstroPh

web-NotreDame

Fig. 5. Predicted against real time for both graph representations (to the left edge list and to the right saprse representation) in the GIN model case for
training dataset (gray) and testing dataset (blue).

0 10 20 30 40 50 60

edges

nodes

max_degree

clustering

fe
at
ur
e

SPARSE
EDGE_LIST

Fig. 6. Mean impact factor of the different metrics on the regression.

0 50 100 150 200 250 300
Time (ms) for EDGE_LIST representation

0

50

100

150

200

250

300

Ti
m
e
(m

s)
 fo

r S
PA

RS
E
re
pr
es
en

ta
tio

n predicted EDGE_LIST
predicted SPARSE

Fig. 7. Scatter plot with the training time, per epoch, for each of the graph
representations (sparse and edge list) for the GraphSAGE model. The diagonal
line in blue indicates the frontier where both representations lead to the same
processing time, whereas the color of the dots represent the prediction made
by PROGNNOSIS.

which design will perform better.

From Table II, we can obtain the accuracy of the classifi-
cation between graphs that will work better with the SPARSE
representations and the ones that will work better with the
EDGE LIST representations. These results are good all over
0.9. From Figure 7, we can see that the graphs that are not
being correctly classified are close to the diagonal, meaning
that the time for both graph representations is similar. There-
fore, classifying them wrongly may have a low impact on the
GNN acceleration results.

GI
N

GA
T

GC
N

SA
GE

model

0

10

20

30

40

50

60

M
ea

n
tim

e
(m

s)

time_edge
time_sparse
time_regression
time_best

Fig. 8. Mean training time for multiple strategies. time edge refers to always
using the edge list representation, time sparse refers to always using the
sparse matrix representation, time regression plots the time obtained with the
regressions of PROGNNOSIS and, finally, time best represents the ideal case
that always selects the fastest option.

E. Use Case Summary

Using the designed method, we demonstrate through Fig-
ure 8 that GNN computation can be accelerated through
informed decisions. By using PROGNNOSIS, we can achieve a
speedup close to the one we would obtain by always selecting
the best option between the two designs. A summary of the
obtained speedups is also shown in Table II. Models such as
GAT or SAGE showed potential speedups over 1.30×. We
have also seen that when sweeping other variables out of the
scope of this study, such as the number of input features, the
tradeoffs vary but, still, PROGNNOSIS allows to identify the
best representation strategy. However, the results are not shown
in the paper for the sake of brevity.

V. CONCLUSION

In this study, we have analyzes the impact of different graph
metrics on the training time of different GNN models and
different graph representations. With these results, we were
able to build a model that can predict the training time of
different GNN designs. Furthermore, we demonstrated that
this method can be used to select the best design in terms of
training time for a given GNN model and a graph of arbitrary
characteristics. In the presented scenario, we are only com-
paring the processing time assuming two graph representation
alternatives and, even so, we achieved significant speedups

of over 1.20× on average and exceeding 1.30× in specific
models. However, with a wider design space, the speedups
could be increased. In future work, we intend to include the
feature vector size and other variables as part of the regression
models. Further, the method can be generalized not only to
multiple GNN models, as we have seen in this paper, but also
to other design variables such as the internal dataflow of a
hardware accelerator [12].

It is important to notice that the speedups obtained do not
take into consideration the time taken to calculate the metrics,
the regression, or the time to transform the graph from one
representation to another. Yet still, such pre-processing steps
only need to be performed once for each graph and may be
done offline depending on the scenario. Also, a tradeoff may
be optimized between the approximation used for calculating
the metric and the accuracy of the regression. These are left
as future work.

REFERENCES

[1] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A
comprehensive survey on graph neural networks,” IEEE Transactions
on Neural Networks and Learning Systems, vol. 32, no. 1, pp. 4–24,
2020.

[2] S. Wu, F. Sun, W. Zhang, X. Xie, and B. Cui, “Graph neural networks
in recommender systems: A survey,” ACM Computing Surveys (CSUR),
2022.

[3] T. Young, D. Hazarika, S. Poria, and E. Cambria, “Recent trends in
deep learning based natural language processing,” IEEE Computational
Intelligence Magazine, vol. 13, no. 3, pp. 55–75, 2018.

[4] W. Shi and R. Rajkumar, “Point-GNN: Graph neural network for 3D
object detection in a point cloud,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2020, pp. 1711–
1719.

[5] X. Ju, S. Farrell, P. Calafiura, D. Murnane, Prabhat, L. Gray et al.,
“Graph neural networks for particle reconstruction in high energy
physics detectors,” in Second Workshop on Machine Learning and the
Physical Sciences (NeurIPS 2019), 2019.

[6] K. Rusek, J. Suárez-Varela, P. Almasan, P. Barlet-Ros, and A. Cabellos-
Aparicio, “RouteNet: Leveraging Graph Neural Networks for network
modeling and optimization in SDN,” IEEE Journal on Selected Areas
in Communications, vol. 38, no. 10, pp. 2260–2270, 2020.

[7] M. Ferriol-Galmés, K. Rusek, J. Suárez-Varela, S. Xiao, X. Cheng,
P. Barlet-Ros, and A. Cabellos-Aparicio, “RouteNet-Erlang: A graph
neural network for network performance evaluation,” in IEEE Interna-
tional Conference on Computer Communications, 2022.

[8] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and
M. Sun, “Graph neural networks: A review of methods and applications,”
AI Open, vol. 1, pp. 57–81, 2020.

[9] S. Abadal, A. Jain, R. Guirado, J. López-Alonso, and E. Alarcón, “Com-
puting graph neural networks: A survey from algorithms to accelerators,”
ACM Computing Surveys (CSUR), vol. 54, no. 9, pp. 1–38, 2021.

[10] M. Yan, Z. Chen, L. Deng, X. Ye, Z. Zhang, D. Fan, and Y. Xie,
“Characterizing and understanding GCNs on GPU,” IEEE Computer
Architecture Letters, vol. 19, no. 1, pp. 22–25, 2020.

[11] Z. Zhang, J. Leng, L. Ma, Y. Miao, C. Li, and M. Guo, “Architectural
Implications of Graph Neural Networks,” IEEE Computer Architecture
Letters, vol. 19, no. 1, pp. 59–62, 2020.

[12] R. Garg, E. Qin, F. Muñoz-Martı́nez, R. Guirado, A. Jain, S. Abadal,
J. L. Abellán, M. E. Acacio, E. Alarcón, S. Rajamanickam et al., “Un-
derstanding the design space of sparse/dense multiphase dataflows for
mapping graph neural networks on spatial accelerators,” in 2022 IEEE
International Parallel & Distributed Processing Symposium (IPDPS’22).
IEEE, 2022.

[13] X. Liu, M. Yan, L. Deng, G. Li, X. Ye, D. Fan, S. Pan, and Y. Xie, “Sur-
vey on graph neural network acceleration: An algorithmic perspective,”
arXiv preprint arXiv:2202.04822, 2022.

[14] K. Zhou, Q. Song, X. Huang, and X. Hu, “Auto-GNN: Neural architec-
ture search of graph neural networks,” arXiv preprint arXiv:1909.03184,
2019.

[15] K.-H. Lai, D. Zha, K. Zhou, and X. Hu, “Policy-GNN: Aggregation
optimization for graph neural networks,” in Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, 2020, pp. 461–471.

[16] X. Wang and W. Zhu, “Automated machine learning on graph,” in
Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining, 2021, pp. 4082–4083.

[17] J. You, Z. Ying, and J. Leskovec, “Design space for graph neural
networks,” Advances in Neural Information Processing Systems, vol. 33,
pp. 17 009–17 021, 2020.

[18] Y. Zhang, H. You, Y. Fu, T. Geng, A. Li, and Y. Lin, “G-CoS: GNN-
Accelerator co-search towards both better accuracy and efficiency,” in
2021 IEEE/ACM International Conference On Computer Aided Design
(ICCAD). IEEE, 2021, pp. 1–9.

[19] J. Palowitch, A. Tsitsulin, B. Mayer, and B. Perozzi, “Graphworld: Fake
graphs bring real insights for gnns,” arXiv preprint arXiv:2203.00112,
2022.

[20] R. Guirado, A. Jain, S. Abadal, and E. Alarcón, “Characterizing the
communication requirements of GNN accelerators: A model-based ap-
proach,” in 2021 IEEE International Symposium on Circuits and Systems
(ISCAS). IEEE, 2021.

[21] J. Wu, J. Sun, H. Sun, and G. Sun, “Performance analysis of graph
neural network frameworks,” in 2021 IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS), 2021, pp.
118–127.

[22] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and
J. Leskovec, “Open graph benchmark: Datasets for machine learning on
graphs,” arXiv preprint arXiv:2005.00687, 2020.

[23] C. Tian, L. Ma, Z. Yang, and Y. Dai, “PCGCN: Partition-Centric Pro-
cessing for Accelerating Graph Convolutional Network,” Proceedings of
the IPDPS’20, pp. 936–945, 2020.

[24] Y. Wang, B. Feng, and Y. Ding, “TC-GNN: accelerating sparse graph
neural network computation via dense tensor core on GPUs,” arXiv
preprint arXiv:2112.02052, 2021.

[25] D. Pujol-Perich, J. Suárez-Varela, M. Ferriol, S. Xiao, B. Wu,
A. Cabellos-Aparicio, and P. Barlet-Ros, “IGNNITION: bridging the gap
between graph neural networks and networking systems,” IEEE Network,
vol. 35, no. 6, pp. 171–177, 2021.

[26] T. Schank and D. Wagner, “Approximating clustering coefficient and
transitivity.” Journal of Graph Algorithms and Applications, vol. 9, no. 2,
pp. 265–275, 2005.

[27] M. Fey and J. E. Lenssen, “Fast graph representation learning with
pytorch geometric,” arXiv preprint arXiv:1903.02428, 2019.

[28] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[29] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph
neural networks?” arXiv preprint arXiv:1810.00826, 2018.

[30] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Ben-
gio, “Graph attention networks,” arXiv preprint arXiv:1710.10903, 2017.

[31] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” Advances in neural information processing
systems, vol. 30, 2017.

[32] S. P. Kolodziej, M. Aznaveh, M. Bullock, J. David, T. A. Davis,
M. Henderson, Y. Hu, and R. Sandstrom, “The suitesparse matrix
collection website interface,” Journal of Open Source Software, vol. 4,
no. 35, p. 1244, 2019.

[33] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-MAT: A recursive model
for graph mining,” in Proceedings of the 2004 SIAM International
Conference on Data Mining. SIAM, 2004, pp. 442–446.

[34] A. Wassington and S. Abadal, “Bias reduction via cooperative bargaining
in synthetic graph dataset generation,” arXiv preprint arXiv:2205.13901,
2022.

[35] D. Castaño-Dı́ez, D. Moser, A. Schoenegger, S. Pruggnaller, and A. S.
Frangakis, “Performance evaluation of image processing algorithms on
the GPU,” Journal of structural biology, vol. 164, no. 1, pp. 153–160,
2008.

[36] J.-S. Yeom, J. J. Thiagarajan, A. Bhatele, G. Bronevetsky, and T. Kolev,
“Data-driven performance modeling of linear solvers for sparse matri-
ces,” in 2016 7th International Workshop on Performance Modeling,
Benchmarking and Simulation of High Performance Computer Systems
(PMBS). IEEE, 2016, pp. 32–42.

	Introduction
	Preliminaries
	Graph Metrics
	Regression and Classification
	GNN Fundamentals
	Sample GNN Models

	ProGNNosis: Approach and Evaluation Methodology
	Synthetic Graph Dataset Generation
	Use Case Description

	Performance Evaluation
	Dataset Generation
	Analysis
	Regression
	Classification
	Use Case Summary

	Conclusion
	References

