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Abstract—We present how we solved the challenges we faced
in achieving linear scaling for MLPerf™ Inference vision bench-
marks on Datacenter and Edge servers equipped with Qualcomm
Cloud AI 100 accelerators.

The MLPerf Inference benchmarks for Computer Vision
include: one Image Classification benchmark – ResNet50, and
two Object Detection benchmarks – SSD-ResNet34 and SSD-
MobileNet-v1, each presenting its own performance scaling chal-
lenges.

The server configurations include: one GIGABYTE server
with 128 AMD EPYC™ physical cores and with 16 Qualcomm
Cloud AI 100 cards; two GIGABYTE servers with 32 AMD
EPYC™ physical cores and with 5 or 8 Qualcomm Cloud AI
100 cards.

Our results from the v1.1 submission round include the highest
ResNet50 Server score and the highest SSD-MobileNet Offline
score in the history of MLPerf.

Index Terms—performance, scaling, benchmarks, vision, ma-
chine learning, deep learning, inference, MLPerf, ResNet50, SSD-
ResNet34, SSD-MobileNet, Qualcomm, Cloud AI 100, AMD,
EPYC

I. INTRODUCTION

MLCommons™ is a non-profit organization aiming to
accelerate innovation in Machine Learning (ML). MLPerf
Inference, the working group of MLCommons focused on
benchmarking ML inference, received its first submissions in
late 2019, with 4 rounds to late 2021: v0.5, v0.7, v1.0, v1.1.
In this paper, we adhere to the rules [1] that were used in the
v1.1 round.

A. Divisions

MLPerf Inference defines two divisions: Closed and Open.
In this paper, we only consider submissions to the Closed divi-
sion, where the strict rules allow apples-to-apples comparison
between different hardware without such techniques as e.g.
weights pruning (decreasing the number of operations) and
quantization-aware training (increasing the accuracy).

B. Workloads

The MLPerf Inference benchmark suite [2] includes one
Image Classification workload using the ResNet50-v1.5 model
operating on the ImageNet 2012 validation dataset, and two
Object Detection workloads using the SSD-ResNet34 and

Qualcomm Cloud AI 100 is a product of Qual-
comm Technologies, Inc., and/or its subsidiaries.

SSD-MobileNet-v1 models operating on the COCO 2017
validation dataset.

C. Categories

The Datacenter category covers large servers on-premises
and in the cloud. The Edge category covers small servers on-
premises and edge appliances.

ResNet50 and SSD-ResNet34 can be submitted under both
the Datacenter and Edge categories. SSD-MobileNet can only
be submitted under the Edge category.

D. LoadGen

MLPerf Inference uses an API called LoadGen to generate
inference queries for the system-under-test (SUT) according
to several scenarios. Benchmark implementors must integrate
the LoadGen API and system-specific APIs for inference to
create compliant and performant implementations.

E. Scenarios

All Closed Datacenter submissions must include the Offline
and Server scenarios, while all Closed Edge submissions must
include the Offline and Single Stream scenarios. In this paper,
we only consider the Offline and Server scenarios.

In the Offline scenario, the SUT receives a single query
containing all samples for inference; in other words, all
samples are available at once. In the Server scenario, the SUT
receives queries with one sample per query; the queries are
fired according to a Poisson distribution based on the expected
number of queries per second (QPS) that the SUT can handle.

F. Input size

The vision models take as input square images with 3
channels (RGB), as shown in Table I. If the weights of a model
are represented as 32-bit floating-point numbers (float, in
C parlance), the input size in bytes is obtained by multiplying
the number of pixels by 3 (the number of channels), and then
by 4 (the number of bytes per 32-bit number). If the weights
of a model are represented as 8-bit integer numbers (char
or int8, in C parlance), the input size in bytes is obtained
by multiplying the number of pixels by 3 (the number of
channels).
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TABLE I: Workload Characteristics

Benchmark Validation Dataset Input Size Minimum Buffer Size Server Latency Constraint
(pixels) (the number of images) (milliseconds)

ResNet50 ImageNet 2012 224× 224 1024 15
SSD-ResNet34 COCO 2017 1200× 1200 64 100
SSD-MobileNet COCO 2017 300× 300 256 N/A (Edge only)

G. Buffer size

To eliminate any effects of caching, the rules specify the
minimum buffer size in terms of the number of samples
that must be loaded into main memory when measuring
performance. This buffer size (”performance sample count”)
is also given in Table I. For 8-bit quantized models, the
corresponding minimum buffer sizes in bytes is:

• for ResNet50: 1024× 224× 224× 3 ≈ 154 MB;
• for SSD-ResNet34: 64× 1200× 1200× 3 ≈ 276 MB;
• for SSD-MobileNet: 256× 300× 300× 3 ≈ 69 MB.

H. Server Latency Constraints

In the Server scenario, 99% of the queries must be processed
within the given, benchmark-specific time; in other words,
the 99%-percentile latency must be lower than the given
time. These latency constraints are given in Table I for
ResNet50 and SSD-ResNet34. If this constraint is not satisfied
(exceeded), the result gets marked as INVALID.

The Offline scenario does not have an associated latency
constraint.

II. PERFORMANCE SCALING

Since the v1.0 round, we have been engaged in implement-
ing, validating and optimizing MLPerf Inference benchmarks
for the Qualcomm Cloud AI 100 architecture for inference
acceleration. This product line includes Half-Height Half-
Length (HHHL) PCIe cards having 75 Watt TDP and Dual
M.2 (DM.2) modules having 15–25 Watt TDP. In this paper,
we mostly consider PCIe cards for servers.

Table II gives the Offline performance of a single PCIe
card for each benchmark, along with the number of samples
hardware processes in parallel (”batch size”). For Qualcomm
Cloud AI 100, the optimal batch size is typically a single-
digit number, unlike for GPUs where the optimal batch size
is typically a 3–4 digit number.

TABLE II: Performance of a single Qualcomm Cloud AI 100
card under the Offline scenario (with SDK v1.5.6.).

Benchmark Samples per second Batch Size
ResNet50 22667 8
SSD-ResNet34 435 1
SSD-MobileNet 19363 4

For our experiments, we used 3 GIGABYTE servers with
AMD EPYC processors and Qualcomm Cloud AI 100 cards,
as specified in Table III. One R282-Z93 server was equipped
with 5 cards and used for Edge submissions. The other R282-
Z93 server and the G292-Z43 server were equipped with
8 and 16 cards, respectively, and were used for Datacenter

submissions. All the servers were running under the CentOS
7.9 OS, with the Linux kernel 5.4.1.

In this section, we describe challenges for achieving linear
scaling, and techniques we used to overcome them.

A. Offline Preprocessing

The ImageNet and COCO datasets contain JPEG images of
various sizes, which need to be scaled to the input dimensions
of the workloads (Table I). As permitted by the MLPerf
Inference rules, input preprocessing such as decoding and
slacing can be performed offline, i.e. before performance
measurements. Since the models we used for submission
were quantized to int8 for performance reasons, we also
preprocessed the input images from float to int8 per pixel.

Offline preprocessing not only reduces the size of data
stored on disk (from 30.1 GB to 7.5 GB for ResNet50, from
86.4 GB to 21.6 GB for SSD-ResNet34, and from 5.4 GB to
1.35 GB for SSD-MobileNet), but also the size of data that
we need to copy from main memory to accelerator memory
at run-time.

B. Using Fast Memory Copy

Even with the reduction in data size, copying data can
become a bottleneck. Unfortunately, the memcpy routine in
GLIBC 2.17 (which comes with CentOS 7), is not vectorized.

We improved the speed of data copy by using a 256-bit
vector (AVX2) implementation.

C. Avoiding the DDR Bottleneck

LoadGen (§I-D) dispatches queries from a fixed-size mem-
ory buffer (§I-G). Sharing this memory buffer between multi-
ple cards can result to a bottleneck due to insufficient memory
bandwidth. For example, a single card performing ResNet50
inference at the rate of ≈ 22000 samples per second, needs to
read ≈ 22000×224×224×3 ≈ 3.2 GB per second. A DDR4
module operating at 3.2 GHz has the peak bandwidth of 25.6
GB/s. Therefore, at 25.6/3.2 = 8 cards, we hit the DDR limit
if LoadGen requests are to be served through a single DDR
memory channel.

To solve this problem, we can replicate the LoadGen buffer.
For simplicity, we replicate the buffer once per card since the
buffer is only a few hundred MB in size (§I-G).

D. Affining cards to CPU sockets

On the R282, the per-card performance remains practically
the same whether we use a single card or all 5 or 8 cards
together. But on the G292, there is up to a 50% reduction in
per-card performance when all 16 cards are used.



Server CPU # Cards # Physical Cores RAM NUMA Submission Category
GIGABYTE R282-Z93 AMD EPYC 7282 (Rome) 5 32 512 GB NPS1 Edge Server
GIGABYTE R282-Z93 AMD EPYC 7282 (Rome) 8 32 512 GB NPS1 Datacenter
GIGABYTE G292-Z43 AMD EPYC 7713 (Milan) 16 128 1024 GB NPS1 Datacenter

TABLE III: Server Configurations.

We found that this performance drop is due to a bottleneck
in the memory path from the PCIe to the DRAM. By ensuring
that the DRAM used by a card is indeed local to the physical
socket, we could scale linearly to all 16 cards.

E. Managing the Threads

Since the latency is critical in the Server scenario (I), we
had to ensure that the worker threads were not congested. We
had two types of threads:

• card threads that mainly copy the data in/out from the
cards; and

• host threads that copy the data in/out from the host
memory to DMA memory of the cards.

To minimize the latency, we partitioned the physical CPU
cores between the Qualcomm Cloud AI 100 cards, ensuring
the local socket condition (§II-D), as well as the best L3 cache
utilization.

For the AMD Milan CPUs, the L3 cache is shared by every
consecutive 8 physical CPU cores starting from core 0. To
ensure the best cache availability to the CPU threads, we
allocated the physical CPU cores to the cards as shown in
Table IV. Here, for the G292 there is no sharing of L3 cache
among any 2 cards; for the R282 having 8 cards, every 2
cards share the same L3 cache; for the R282 having 5 cards,
we only affine the first 4 cards and let the fifth card use the
entire system. Since the 5 card system is submitted in Edge
category, we have no Server scenario for this and hence no
latency constraint too.

F. Running NMS on the Host CPU

The Non-Maximum Suppression (NMS) operation is used
to filter out predictions of SSD-based models. Since this
operation involves control flow, it is better suited to run on
the CPU. Therefore, we cut off the NMS operation from
the two Object Detection models and optimized its CPU
implementation. By pipelining the output from the cards to
the CPU, we could achieve practically the same workload
throughput with and without the NMS operation.

For the SSD-ResNet34 workload, running NMS on the host
side means that instead of getting a few kilobytes of output per
image we are now getting 15130× 81× 2+ 15130× 4 ≈ 2.5
MB of output per image, which needs to be transferred from
the card to the host. Here, 15130 is the number of bounding
boxes for an image and 81 is the number of object classes
being considered for SSD-ResNet34 and we are quantizing the
confidence score to fp16 (2 bytes), whereas the 4 bounding
box coordinates are quantized to uint8 (1 byte). At 435
samples per second, this means an output side data transfer
of 435× 2.5 MB ≈ 1 GB/s which though significant is not a
bottleneck. Also, at the rate of 435 samples per second, NMS

should not become a bottleneck if it can finish processing in
1/435 ≈ 2.3 ms.

For the SSD-MobileNet workload, running NMS on the host
side was even more trickier. Here, we have 1917 bounding
boxes and 90 object classes. Both the confidence score and
bounding box coordinates are quantized to uint8. So, for
each image the output side data transfer becomes 1917×90+
1917 × 4 ≈ 180.2 KB and at 19363 samples per second this
means a data transfer rate of ≈ 3.5 GB/s which is 3.5 times
that of SSD-ResNet34. Also, the latency of NMS operation
per image needed to be below 1/19363 ≈ 51.6µs to avoid
NMS becoming a bottleneck.

The layout of the tensor representing the confidence score
to the NMS operation is different for SSD-ResNet34 and SSD-
MobileNet. For SSD-ResNet34, the outer dimension is the
image classes and the inner dimension is the bounding boxes;
this is reverse for SSD-MobileNet. So provided a different
implementation for each model avoiding the need to transpose
the tensor. Our implementation is available at NMS-ABP 1.

III. RESULTS

A. Performance Scaling

The performance results of our benchmark implementations
are given in Figure 1. The performance of a single card
(Table II) scales almost linearly to 5, 8 and 16 cards for
ResNet50 and SSD-ResNet34. For SSD-MobileNet, we get
linear scaling for 5 cards. (Since SSD-MobileNet is an Edge
only benchmark, we do not run it on 8 and 16 cards.)

We now compare the performance of Qualcomm Cloud AI
100 powered submissions to other submissions to MLPerf
Inference v1.1.

B. Datacenter Category

Table V give details of each submission ID mentioned in
the result figures for the Datacenter category, while Table VI
does the same for the Edge category.

For comparison purposes, we have taken the top 8 submis-
sions to the Closed division and the top 6 submissions to the
Closed/Power division. Since Qualcomm’s Submission 056 is
the only entry among the top 8 submissions with a power
figure, we thus have a total of 13 unique entries in this table.
Interestingly, only Qualcomm accelerators and NVIDIA GPUs
are used in these submissions. For full submission details
please refer to MLPerf Inference v1.1 - Datacenter. 2

1https://github.com/krai/ck-mlperf/tree/master/package/lib-nms-abp
2https://mlcommons.org/en/inference-datacenter-11/

https://github.com/krai/ck-mlperf/tree/master/package/lib-nms-abp
https://mlcommons.org/en/inference-datacenter-11/
https://github.com/krai/ck-mlperf/tree/master/package/lib-nms-abp


System # Cards Card ID 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R282-Z93 5 Core 0-7 8-15 16-23 24-31 0-31
R282-Z93 8 Mapping 0-3 4-7 8-11 12-15 16-19 20-23 24-27 28-31
G292-Z43 16 64-71 72-79 80-87 88 -95 96-103 104-111 112-119 120-127 0-7 8-15 16-23 24-31 32-39 40-47 48-55 56-63

TABLE IV: CPU affinity.
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Fig. 1: Performance Scaling

Sub. ID Submitter System Processor # Accelerator # Power
056 Qualcomm GIGABYTE G292-Z43 AMD EPYC 7713 2 Qualcomm Cloud AI 100 16 Y
001 Dell Dell EMC DSS 8440 Intel(R) Xeon(R) Gold 6248R 2 NVIDIA A100-PCIE-80GB 10 N
021 Inspur Inspur NF5488A5 AMD EPYC 7742 2 NVIDIA A100-SXM-80GB 8 N
022 Inspur Inspur NF5688M6 Intel(R) Xeon(R) Platinum 8358 2 NVIDIA A100-SXM-80GB 8 N
064 Supermicro Supermicro SYS-420GP-TNR Intel(R) Xeon(R) Platinum 8360Y 2 NVIDIA A100-PCIe-40GB 10 N
047 NVIDIA NVIDIA DGX A100 AMD EPYC 7742 2 NVIDIA A100-SXM-80GB 8 N
049 NVIDIA NVIDIA DGX A100 AMD EPYC 7742 2 NVIDIA A100-SXM-80GB 8 N
034 NVIDIA GIGABYTE G482-Z54 AMD EPYC 7742 2 NVIDIA A100-PCIe-80GB 8 N
048 NVIDIA NVIDIA DGX A100 (MaxQ) AMD EPYC 7742 2 NVIDIA A100-SXM-80GB 8 Y
037 NVIDIA GIGABYTE G482-Z54 (MaxQ) AMD EPYC 7742 2 NVIDIA A100-PCIe-40GB 8 Y
058 Qualcomm GIGABYTE R282-Z93 AMD EPYC 7282 2 Qualcomm Cloud AI 100 8 Y
016 Dell Dell EMC PowerEdge XE8545 AMD EPYC 7763 2 NVIDIA A100-SXM-80GB 4 Y
006 Dell Dell EMC PowerEdge R750xa (MaxQ) Intel(R) Xeon(R) Platinum 8368 2 NVIDIA A100-PCIE-40GB 4 Y

TABLE V: Top submissions to MLPerf Inference v1.1 - Datacenter.

1) Performance per Socket: As shown in Table V, all the
top submissions in the Datacenter category are done on dual-
socket systems. Figure 2 thus shows the top 8 submissions as
well as the top 8 submissions on dual-socket systems.

For ResNet50, Qualcomm’s Submission 056 using 16 cards
wins both the Offline and Server scenario scores. Moreover,
our low latency implementation ensured that even at this
highest throughput we still have the best Server/Offline ratio
of 90.6% among the top 8 submissions.

For SSD-ResNet34, Dell’s Submission 001 using 10
NVIDIA A100 GPUs achieves the highest performance. Here,
the peak NVIDIA number is 1.3 times higher than the peak
Qualcomm number. In terms of the Server/Offline ratio, Qual-
comm’s Submission 056 again wins with a score of 98.7%
versus the next best of 97.9% by Dell’s Submission 001.

2) Performance per Watt: Figures 3 and 4 show the top
6 submissions with power measurements and their power
efficiencies. The best Performance per Watt for both ResNet50
and SSD-ResNet34 is achieved by our Submission 058 on
the R282-Z93 using 8 cards with the Performance per Watt
scores of 197.4 and 4.03 for ResNet50 and SSD-ResNet34,
respectively. Our Submission 056 on the G292-Z43 using 16
cards is in the second place with the Performance per Watt
scores of 185.4 and 3.58. The best Performance per Watt for

the two benchmarks for any NVIDIA submission is 112.03
and 2.62, making Qualcomm a runaway winner in terms of
energy efficiency by the factors of 1.76 and 1.54, respectively.

C. Edge Category

Table VI shows the top 8 submissions and the top 6
submissions with power measurements in the Edge category.
2 of the top 8 submissions are with power measurements,
and so we have a total of 12 entries in this table. For full
submission details please refer to MLPerf Inference v1.1 -
Edge 3. Compared with the Datacenter category, the Edge
category has one additional vision workload: Object Detection
(small) using the SSD-MobileNet model.

1) Performance per Socket: Unlike the top submissions in
the Datacenter category where all the top submissions are done
on dual-socket systems, here we have 4 submissions on single-
socket systems. But all the single socket submissions are aimed
at power efficiency, thus not competing in terms of the peak
performance. So, all the top 8 performance numbers in the
Edge category are on dual socket systems still, as shown in
Figure 5.

3https://mlcommons.org/en/inference-edge-11/

https://mlcommons.org/en/inference-edge-11/
https://mlcommons.org/en/inference-edge-11/
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Fig. 2: Top submissions in the Datacenter category.

Sub. ID Submitter System Processor # Accelerator # Power
124 Qualcomm GIGABYTE R282-Z93 AMD EPYC 7282 2 QUALCOMM Cloud AI 100 PCIe HHHL 5 Y
077 Inspur NE5260M5 Intel(R) Xeon(R) Gold 6258R 2 NVIDIA A100-PCIe 2 N
079 Inspur NE5260M5 Intel(R) Xeon(R) Gold 6258R 2 NVIDIA A100-PCIe 2 N
078 Inspur NE5260M5 Intel(R) Xeon(R) Gold 6258R 2 NVIDIA A100-PCIe 2 Y
083 Inspur NF5688M6 Intel(R) Xeon(R) Platinum 8358 2 NVIDIA A100-SXM-80GB 1 N
081 Inspur NF5488A5 AMD EPYC 7742 2 NVIDIA A100-SXM-80GB 1 N
115 NVIDIA NVIDIA DGX A100 AMD EPYC 7742 2 NVIDIA A100-SXM-80GB 1 N
116 NVIDIA NVIDIA DGX A100 AMD EPYC 7742 2 NVIDIA A100-SXM-80GB 1 N
075 Dell PowerEdge XE2420 Intel(R) Xeon(R) Gold 6252N 2 NVIDIA A10 1 Y

(MaxQ)
121 Qualcomm Edge AI Development Kit Qualcomm Snapdragon 865 1 QUALCOMM Cloud AI 100 DM.2 1 Y
120 Qualcomm Edge AI Development Kit Qualcomm Snapdragon 865 1 QUALCOMM Cloud AI 100 DM.2e 1 Y
111 NVIDIA Auvidea X220-LC (MaxQ) NVIDIA Carmel (ARMv8.2) 1 NVIDIA AGX Xavier 32GB 1 Y

TABLE VI: Top submissions to MLPerf Inference v1.1 - Edge.
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Fig. 3: Performance and power efficiency on the ResNet50
workload in the Datacenter category.

In the Edge category, Qualcomm’s Submission 124 using 5
cards achieves the peak performance for all the three vision
benchmarks. The relative performance difference between the
Qualcomm submission and the next best submissions using
NVIDIA GPUs, for ResNet50, SSD-ResNet34 and SSD-
MobileNet is 55%, 28% and 6%, respectively.
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Fig. 4: Performance and power efficiency on the SSD-
ResNet34 workload in the Datacenter category.

2) Performance per Watt: Figures 6, 7 and 8 show the top 6
Edge submissions with power measurements and their power
efficiencies. The peak performing Submission 124 for per
socket performance for all the three benchmarks is submitted
with power measurements and hence tops here too.

The best Performance per Watt for all the three benchmarks
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Fig. 5: Top submissions in the Edge category.

is achieved by Submission 121 on the Qualcomm Edge AI
Development Kit under the 20W TDP constraints. A close
second place is achieved by Submission 120, again on the
Qualcomm Edge AI Development Kit but under the 15W
TDP constraints. Both submissions use the same Qualcomm
Cloud AI 100 architecture and toolchain as the server-based
submissions (which are the focus of this paper) but configured
differently than server cards under the 75W TDP constraints.
The benchmark implementation is also the same but differently
configured.

The best Performance per Watt figures in the Edge category
achieved by Qualcomm for ResNet50, SSD-ResNet34 and
SSD-MobileNet are 239.9, 4.82 and 141.7 respectively. These
figures are better than the best NVIDIA submissions by the
factors of 2.74, 2.99 and 1.8, respectively.
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Fig. 6: Performance and power efficiency on the ResNet50
workload in the Edge category.

IV. CONCLUSION

We have presented a summary of our submissions the
MLPerf Inference v1.1 round using Qualcomm Cloud AI 100
accelerators. We have also presented performance comparisons
between top Vision benchmark submissions to the Closed di-
vision for both the Datacenter and Edge categories. All the top
submissions are achieved with either Qualcomm accelerators
or NVIDIA GPUs.

In the Datacenter category, Qualcomm has the peak perfor-
mance score for ResNet50, while NVIDIA has the same for
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Fig. 7: Performance and power efficiency on the SSD-
ResNet34 workload in the Edge category.
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Fig. 8: Performance and power efficiency on the SSD-
MobileNet workload in the Edge category.

SSD-ResNet34. In terms of energy efficiency, the Qualcomm
submissions outperform the best NVIDIA submissions by the
factors of 1.76 and 1.54 for ResNet50 and SSD-ResNet34,
respectively.

In the Edge category, Qualcomm has the peak performance
scores for all the three vision benchmarks. In terms of energy
efficiency, the Qualcomm submissions outperform the best
NVIDIA submissions by the factors of 2.74, 2.99 and 1.8 for
ResNet50, SSD-ResNet34 and SSD-MobileNet, respectively.
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