
1

Convolution Operators for Deep Learning Inference:
Libraries or Automatic Generation?

Guillermo Alaejos, Adrián Castelló, Pedro Alonso-Jordá, Enrique S. Quintana-Ortı́
Universitat Politècnica de València, Spain

{galalop,palonso}@upv.es, {adcastel,quintana}@disca.upv.es
Francisco D. Igual

Universidad Complutense de Madrid, Spain
figual@ucm.es

Abstract—Convolutional deep neural networks often leverage
the so-called lowering (or IM2COL) approach to transform their
convolution operators into large, cache-friendly general matrix-
matrix multiplications (GEMM). This path offers high flexibility,
does not perturb the numerical accuracy of the result, and
benefits from the existence of high-performance realizations of
GEMM in numerical linear algebra libraries. However, the GEMM
kernels in these libraries present a series of performance-related
issues, in the particular case of deep learning inference, which
turns automatic generation into an appealing alternative.

While automatic generation combined with a brute force
search of the optimization space is possible, in our work we
advocate for a hybrid solution, with the code generation guided
by standard techniques embedded in linear algebra libraries, and
complemented with analytical models for parameter selection.
The code generation effort is reduced to the automatic generation
of a small component of the operation, known as the micro-
kernel. As a result, this solution can be rapidly and efficiently
tailored to different data types, processor architectures, and
convolution operator shapes.

Index Terms—Convolution, Deep learning, Matrix multiplica-
tion, Apache TVM, SIMD vectorization.

I. INTRODUCTION

A. Libraries

Matrix multiplication (GEMM) is a key operation for deep
learning (DL), leveraged by transformers for natural language
processing and convolutional deep neural networks (DNNs)
for signal processing and computer vision [1], [2]. GEMM
is also a crucial computational kernel upon which linear
algebra (LA) libraries are built. Therefore, it is natural that,
over the past decades, there has been a continuous effort
toward developing high performance realizations of GEMM
for a variety of architectures, resulting in a fair collection
of commercial as well as open source products, such as
Intel oneMKL, AMD AOCL, IBM ESSL, ARMPL, NVIDIA
cuBLAS, GotoBLAS2 [3], OpenBLAS [4], and BLIS [5].

Unfortunately, when the objective is deploying software for
DL inference on low-power processors that operate close to
the edge [6], these LA libraries present several problems:

1. The memory footprint of conventional libraries is in the
order of Mbytes, which may be excessive for embedded
devices for inference such as micro-controller units.
Here the problem comes from the fact that LA libraries
integrate functionality far beyond what is needed in DL

inference (e.g., real/complex arithmetic, single/double
precision, a large variety of routines for LA operations).
Even worse, they miss some relevant cases as, for
example, support for reduced (i.e., 16-bit) floating point
precision or mixed precision.

2. The implementation of GEMM in these libraries is sub-
optimal under certain circumstances. The reason is that
they are usually tuned for the general, large-scale case
while, at the same time, they are designed to work for
any problem dimension. Thus, these libraries employ
blocking parameters that are statically fixed during the
installation, and require recompilation in case they turn
out to be sub-optimal for a particular problem dimen-
sion. The caveat is that the problems that usually arise in
DL inference tasks are far from being “big and square”.

3. These libraries are hardware-specific. This is obviously
the case for Intel, AMD, IBM, ARM and NVIDIA’s
packages. To a certain extent, it also applies to Open-
BLAS and BLIS, which require a hardware-specific
micro-kernel [5]. In contrast, edge computing is highly
heterogeneous, encompassing hundreds of distinct de-
ployed micro-architectures.

B. Automatic generation
Many common DL frameworks and compiler frameworks,

including TFLite, XLA, MLIR and TVM, rely on JIT (just-
in-time) compilation. Armed with hardware-agnostic IRs (In-
termediate Representations), these software infrastructures ef-
fectively decouple schedules and computation, and enable
the automatic exploration of the scheduling and configuration
spaces by means of auto-tuning techniques.

A brute force optimization scheme, such as that performed
in AutoTVM [7], guarantees finding the optimal solution
(configuration setup), but the number of tested configurations
grows exponentially with the dimension of the design space.
Hence, the use of these naive schemes is limited to prob-
lems with reduced search spaces, or where online testing
is time-inexpensive. Unfortunately, this is not the case of
the architecture-aware adaptation of DL models to a specific
hardware setup. In order to alleviate the expensive search-
and-test procedure, automatic learning schemes have been
enhanced with Random Search, Bayesian optimization, Ge-
netic algorithms, and Deep Reinforcement Learning. While

2

all these efforts reduce the cost of the hyperparameter search,
they are still computationally expensive and, in many cases,
yield solutions that are difficult to explain and reproduce for
developers or to port to embedded architectures or systems
with reduced compute capabilities.

C. Hybridization

In this paper we address the limitations of current LA
libraries and pure automatic generation techniques by demon-
strating that it is possible to automatically generate a BLIS-
like algorithm and a collection of micro-kernels for GEMM,
using Apache TVM [8], offering an alternative solution with
the following advantages:

1. By adjusting the algorithm and micro-kernel to the
problem dimensions, it is possible to outperform high
performance realizations of GEMM in commercial as
well as academic libraries.

2. The optimization process for each problem dimension
is largely seamless, boiling down to the evaluation of a
reduced number of micro-kernels.

3. The generation/optimization tools can be easily special-
ized for any data type, enhancing the portability and
maintainability of the solution.

4. The entire framework library is very small.
5. The ideas extend to the implementation of convolution

operators for DL via the IM2COL approach or the direct
convolution [9].

II. THE BLIS ALGORITHM FOR GEMM

A. Blocking (and packing) for the cache

Consider the matrix multiplication C = C + AB, abbre-
viated as C += AB, where the matrix operands present
the following dimensions: A → m × k, B → k × n, and
C → m× n. The BLIS realization of this LA kernel (as well
as that in other libraries such as OpenBLAS, Intel oneMKL,
and AMD AOCL –actuaally based on BLIS–) follows the
basic ideas of GotoBLAS2 to decompose the computation
into five nested loops, traversing the m,n, k dimensions of
the problem in a certain order. Inside these loops, two packing
routines copy parts of the input operands A, B into two special
buffers, Ac → mc × kc, Bc → kc × nc, in order to ensure an
efficient utilization of the cache memories. (For simplicity,
in the following we assume that m, n, and k are integer
multiples of mc, nc, and kc, respectively.) Furthermore, inside
the fifth loop there is a micro-kernel that is often vectorized
to exploit the SIMD FPUs (single-instruction, multiple-data
floating point units) in current multicore processors [5].

The orchestration of the data movements across the memory
hierarchy in the BLIS algorithm for GEMM is favored by
the specific nesting of the algorithm loops, in combination
with a careful choice of the loop strides and the sizes of the
buffers [10]. The operand partitionings induced by the loops,
and the target level of the memory hierarchy for each operand
block are illustrated in Figure 1.

B. SIMD micro-kernels

The BLIS algorithm casts its innermost computation in
terms of a micro-kernel that computes the smaller GEMM
Cr += ArBr, where Ar → mr × kc, Br → kc × nr

respectively denote micro-panels of the buffers Ac, Bc, while
Cr → mr ×nr is a small micro-tile. (For simplicity, hereafter
we assume that mc and nc are respectively integer multiples
of mr and nr.) This corresponds to the operation performed
in the innermost loop of the BLIS algorithm (labeled as L5
there), with

Ar = Ac(ir:ir+mr-1,0:kc-1),
Br = Bc(0:kc-1,jr:jr+nr-1), and
Cr = C(ic+ir:ic+ir+mr-1,jc+jr:jc+jr+nr-1).

Inside loop L6, the micro-kernel iterates across the kc dimen-
sion of the problem, at each step performing an outer product
involving a single column of Ar and a single row of Br to
update the entire micro-tile Cr; see Figure 2.

For high performance, the data in Ac/Bc are carefully
packed to ensure access with unit stride to the columns/rows
of Ar/Br from within the micro-kernel; see Figure 3. This
reduces cache evictions during these accesses as well as
accommodates the use of efficient SIMD instructions to load
their elements into vector registers.

There are a few rules of thumb that guide the design of a
high performance realization of the micro-kernel [10]:

• Considering the kc successive updates of the micro-
tile Cr occurring in loop L6, mr, nr should be chosen
sufficiently large so as to avoid stalls due the latency
between the issuance of two instructions that update the
same entry of Cr.

• Ideally, mr should be equal to nr as this maximizes the
ratio of computation to data movement during the update
of Cr in loop L6.

These principles suggest maximizing the values for mr, nr as
part of a “large” micro-kernel. In practice, the limited number
of vector registers in current FPUs constrain the practical
values of mr, nr for conventional, manually-developed real-
izations of the micro-kernels within a couple of dozens.

The actual implementation of these micro-kernels is in
practice done in assembly code; vectorized using architecture-
specific SIMD instructions (e.g., Intel SSE/AVX, ARM
NEON, etc.); and enhanced with high performance computing
techniques such as loop unrolling, software pipelining, data
prefetching, etc.

III. AUTOMATIC GENERATION OF A BLIS-LIKE ROUTINE
FOR GEMM

Apache TVM is an open source compiler framework that
allows to generate, optimize, and execute machine learning
kernels on multicore processors, GPUs (graphics processing
units), and other accelerator backends [11]. In our effort
toward the automatic generation of a BLIS-like algorithm, we
build upon the instructions in the basic tutorial for TVM.1

1https://tvm.apache.org/docs/tutorials/

https://tvm.apache.org/docs/tutorials/

3

Loop | BLIS algorithm for GEMM |

L1 | for (jc=0; jc<n; jc+=nc) |
L2 | for (pc=0; pc<k; pc+=kc) { |

| Bc := B(pc:pc+kc-1,jc:jc+nc-1); |
L3 | for (ic=0; ic<m; ic+=mc) { |

| Ac := A(ic:ic+mc-1,pc:pc+kc-1); |
L4 | for (jr=0; jr<nc; jr+=nr) |
L5 | for (ir=0; ir<mc; ir+=mr) |

| C(ic+ir:ic+ir+mr-1, jc+jr:jc+jr+nr-1) |
| += Ac(ir:ir+mr-1,0:kc-1) |
| * Bc(0:kc-1,jr:jr+nr-1); |
| }} |

Zoom

in

L2

L3

L4

L5

+=

+=

+=

+=

+=

L1

In registersIn L3 cache In L2 cache In L1 cache

Fig. 1: BLIS algorithm for GEMM, with C, A and B respectively streamed from the main memory, L2 cache and L3/L1 cache
into the processor registers.

--
| for (pr=0; pr<kc; pr++) |
| C(ic+ir:ic+ir+mr-1,jc+jr:jc+jr+nr-1) |
| += Ac(ir:ir+mr-1,pr) |
| * Bc(pr,jr:jr+nr-1); |
| |

L6

p
r

p
r

+=

Fig. 2: Micro-kernel with C resident in the processor registers.

A Bc c

rm

nr

Ar

Br

Fig. 3: Packing in the BLIS algorithm.

A. Blocking and packing

Figure 4 provides a TVM generation script that produces a
code with the same organization as that proposed in the BLIS
algorithm. We highlight the following aspects in the script:

• Lines 3–4 define two “virtual” operands, of the appropri-
ate dimensions, for A and B.

• Lines 8–12 declare a 4D TVM tensor, Ac, which acts as
a “view” into the A operand. The lambda function in Line
10 induces a data copy from operand A to Ac. The four
variables (i, j, q, r) of the function are translated by TVM

into four loops, traversing the corresponding dimensions
of the Ac tensor (e.g., 0 < q < kc). These variables are
then used in the subsequent expression to indicate the
correspondence between the entries of A and Ac.

• Lines 13–17, involving the “view” Bc and the B operand,
play an analogous role to that described in the previous
item for Ac and A.

• Lines 19–27 define the operation to be computed in terms
of the Ac and Bc views. Here Ac is transposed, which
is necessary at this point to ensure that TVM generates
a code that accesses the entries of Ac with unit stride.

• Lines 30–35 create a schedule, extract the loop indices,
and then instruct TVM on how to nest them.

• Lines 38–39 place the packings for Bc and Ac at the
desired points of the loop nesting.

• Finally, lines 45–46 induce TVM to generate the code,
in this case, for an LLVM backend.

B. Automatic Generation SIMD micro-kernels

The next stage in our journey to obtain a high performance
realization of GEMM has the objective of generating high per-
formance micro-kernels which can then be integrated within
the GEMM BLIS-like TVM-based algorithm. For this purpose,
starting from the TVM code in Figure 4, we introduce two
major changes, with the result shown in Figure 5:

• The mc, nc dimensions are further partitioned in order
to expose the loops that will operate with the individual
elements of the micro-panel Cr; see lines 6–7.

• Instructions for vectorization together with loop unrolling
are passed to TVM in lines 14–19.

• TVM also allows to exploit multi-threading. (Omitted for
brevity.)

C. Lowering

Consider a convolution operator receiving a 4D tensor I ,
composed of t inputs of dimension ci×hi×wi each, where ci

4

1 def packed_GEMM(m, n, k, mc, nc, kc, mr, nr):
2 # P1) Define operation
3 A = te.placeholder((m, k), name="A")
4 B = te.placeholder((k, n), name="B")
5
6 # 4D view into A and B to induce creation
7 # of buffer by TVM
8 Ac = te.compute((math.ceil(k/kc),
9 math.ceil(m/mr), kc, mr),

10 lambda i, j, q, r:
11 A[j * mr + r, i * kc + q],
12 name="Ac")
13 Bc = te.compute((math.ceil(k/kc),
14 math.ceil(n/nr), kc, nr),
15 lambda i, j, q, r:
16 B[i * kc + q, j * nr + r],
17 name="Bc")
18
19 p = te.reduce_axis((0, k), "p")
20 C = te.compute((m, n), lambda i, j:
21 te.sum(Ac[p//kc, i//mr,
22 tvm.tir.indexmod(p, kc),
23 tvm.tir.indexmod(i, mr)] *
24 Bc[p//kc, j//nr,
25 tvm.tir.indexmod(p, kc),
26 tvm.tir.indexmod(j, nr)],
27 axis=p), name="C")
28
29 # P2) Prepare schedule
30 sched = te.create_schedule(C.op)
31 ic, jc, \
32 ir, jr = sched[C].tile(C.op.axis[0],
33 C.op.axis[1],
34 mc, nc)
35 pc, pr = sched[C].split(p, factor=kc)
36
37 # P3) Place Ac, Bc in the desired loops
38 sched[Bc].compute_at(sched[C], pc)
39 sched[Ac].compute_at(sched[C], ic)
40
41 # P4) Loop schedule as in B3A2C0
42 sched[C].reorder(jc, pc, ic, jr, ir, pr)
43
44 # P5) Generate code with LLVM backend
45 re turn tvm.build(sched, [A, B, C],
46 target="llvm")

Fig. 4: TVM generator for GEMM mimicking the blocking and
packing schemes of the BLIS algorithm.

stands for the number of input channels and hi×wi denote the
size of the input image (height × width). Furthermore, assume
the convolution kernel applies a 4D tensor F consisting of co
filters of dimension ci×hf ×wf each, where hf ×wf specify
the size of each 2D filter. The convolution

O = CONV(F, I), (1)

then computes a 4D output tensor O, with t outputs of size
co × ho × wo each. Here, each of the co individual filters
in this layer combines a (sub)tensor of the inputs, with the
same dimension as the filter, to produce a single scalar value
(entry) in one of the co outputs. By repeatedly applying the
filter to the whole input, in a sliding window manner (and
with certain height/width strides hs and ws), the convolution
operator produces the complete entries of this single output;
see [1]. Assuming height/width paddings given by hp and wp,
the output dimensions become ho = ⌊(hi−hf +2hp)/hs+1⌋
and wo = ⌊(wi − wf + 2wp)/ws + 1⌋.

1 def opt_GEMM(m, n, k, mc, nc, kc, mr, nr):
2 # P1), P2), P3) as in packed_GEMM
3 # Omitted for brevity
4
5 # P4) Expose loops inside micro-kernel
6 ir, it = sched[C].split(ir, factor=mr)
7 jr, jt = sched[C].split(jr, factor=nr)
8
9 # P5) Loop schedule as in B3A2C0

10 sched[C].reorder(jc, pc, ic,
11 jr, ir, pr, it, jt)
12
13 # P6) Unroll+vectorize micro-kernel loops
14 sched[C].unroll(it)
15 sched[C].vectorize(jt)
16 i, j = Bc.op.axis
17 sched[Bc].vectorize(j)
18 i, j, q, r = Ac.op.axis
19 sched[Ac].vectorize(r)
20
21 # P7) Generate code with LLVM backend
22 re turn tvm.build(sched, [A, B, C],
23 target="llvm")

Fig. 5: TVM generator for GEMM mimicking the blocking and
packing schemes of the BLIS algorithm, and integrating the
optimized micro-kernel.

Among the different methods to realize the convolution
operator, the IM2COL approach [9] is a popular option due
to its superior flexibility and fair performance. Concretely,
this approach transforms the input tensor I into an augmented
matrix B so that (1) can be obtained from the GEMM:

C = A ·B = A · IM2COL(I),

where C ≡ O → co × (t · ho ·wo) is the output tensor viewed
as an m × n matrix, with m = co and n = ho · wo · t; A ≡
F → co × (ci · hf · wf) = m × k contains the filters; and
B → (ci ·hf ·wf)× (t ·ho ·wo) = k×n results from applying
the IM2COL transform to the input tensor I according to the
filter dimensions and strides (hf , wf , hs, ws).

The IM2COL transform can be easily obtained using a
lambda function in Python, as shown in Figure 6. For the
IM2COL transformation with TVM:

• The dimensions of the I operand are specified in line 3.
• Lines 5, 6 calculate the dimensions of the result.
• The operation is defined in line 8–19, employing several

conditions to ensure that data accesses remain within the
boundaries of the matrix.

• Lines 22 and 25–26 respectively define the schedule and
build the function.

IV. EXPERIMENTAL RESULTS

In this section we evaluate the performance of the GEMM
BLIS-like routine and micro-kernels automatically generated
using TVM. All the experiments employ IEEE 32-bit floating
point arithmetic (FP32).

A. Setup

The experiments were carried out in an NVIDIA Jetson
AGX Xavier board equipped with an ARM Carmel processor.

5

1 def im2col(t, ci, hi, wi, hf, wf, hp, wp, hs,
ws):

2 # P1) Define operation
3 I = te.placeholder((t,ci,h,w), name="I")
4
5 ho = (hi - hf + 2 * hp) // hs + 1
6 wo = (wi - wf + 2 * wp) // ws + 1
7
8 B = te.compute(
9 (ci,hf,wf,t,ho,wo),

10 lambda jci, jhf, jwf, jt, jh, jw:
11 te.if_then_else(te.any(
12 (jh*hs-hp)>=hi,
13 (jh*hs-hp)<0,
14 (jw*ws-wp)>=wi,
15 (jw*ws-wp)<0)),
16 0, I[jt,jci,
17 jh*hs-hp,
18 jw*ws-wp]),
19 name="B")
20
21 # P2) Prepare schedule
22 sched = te.create_schedule(B.op)
23
24 # P3) Generate code with LLVM backend
25 re turn tvm.build(sched, [I,B],
26 target="llvm")

Fig. 6: TVM generator for the IM2COL transform.

For reference, we include in the evaluation the high perfor-
mance realizations of this kernel in up-to-date releases of BLIS
(version v0.8.1), OpenBLAS (version v0.3.19), and ARM
Performance Libraries (ARMPL, version v21.1). Selecting the
optimal loop to parallelize is out-of-scope for this work, so we
perform all our experiments using a single core. In order to
reduce variability, the processor frequency is fixed to 2.3 GHz,
the process is bound to the same core, and the experiments
are repeated a large number of times reporting next average
results. Performance is measured in terms of billions of FP32
floating point operations per second, abbreviated as GFLOPS.

Given our interest in edge deep learning inference, the
specific dimensions of the problems are selected as those that
result from applying the IM2COL-approach to the convolution
layers in the ResNet50 v1.5 DNN model with a batch size of
128 samples. As some layers share the same GEMM shapes,
we report the results for them only once.

B. Cache configuration parameters

The performance of the BLIS realization of GEMM is
strongly dictated by that of the micro-kernel and an appropriate
selection of the cache configuration parameters: mc, nc, kc.
The optimal values for these three parameters depend on
cache hardware features such as number of levels, size, set
associativity, etc., as well as the micro-kernel dimension.
Determining these values via brute force experimentation
involves an expensive search across a large 3D space. For
the ARM Carmel processor, BLIS employs a micro-kernel of
size mr × nr = 8× 12 and sets mc, nc, kc = 120, 640, 3072.

Alternatively, one can use the analytical model in [10] to se-
lect the optimal values for the cache configuration parameters.
The advantage of this analytical approach in our particular case
will be exposed in the next subsection, when we integrate a fair

number of automatically generated micro-kernels, of different
dimensions, within the GEMM TVM-based routine.

C. Performance

Figure 7 details the impact of the TVM-generated micro-
kernels on the performance of the GEMM BLIS-like TVM-
based routine for the matrix multiplications with the dimen-
sions corresponding to two selected layers of the ResNet
model. These results show that a careful selection of the micro-
kernel is critical to attain high performance for the GEMM
TVM-based routine.

The two plots in the figure also show that the optimal micro-
kernel is highly dependent on the problem dimension: the best
rates are observed for the 4×16 and 4×28 micro-kernels for
layer 006 and the 4 × 24 micro-kernel for layer 044. At this
point we emphasize that not only the generation of the micro-
kernels is automatized thanks to TVM, but the best micro-
kernel for each problem case can determined automatically
via a few exploratory executions in a very reduced search
space. Furthermore, as the optimal micro-kernel also depends
on the specific data type, an approach that leverages TVM to
automatically generate the micro-kernels provides additional
significant advantages for the programmer.

Inspecting the realizations of GEMM in other libraries, In
left plot of Figure 7, the TVM-based routine achieves 22.4
GFLOPS versus 13.3 GFLOPS for BLIS, 17.1 GFLOPS for
OpenBLAS, and 11.9 for ARMPL. In the right plot of the
same figure, the TVM-based routine achieves 26.1 GFLOPS
versus 22.0 GFLOPS for BLIS (best library-based option).

The evaluation of the complete ResNet model, in Figure 8,
shows a variety of results, with the TVM-based routine out-
performing the BLIS realization by a large margin for layers
1–12, and 15–17 (40 cases out of the total 53 convolution
layers in the model; it is competitive for layers 14 and 20 (3
cases); and it shows inferior performance for layers 13, 18,
19 (10 cases). Compared with OpenBLAS and ARMPL, the
TVM-based solution is consistently better.

A closer analysis of the results, taking into account the
GEMM operands’ shapes determined by the corresponding
layer reveals that the TVM-based routines deliver higher
performance for highly rectangular cases, with m in the range
100352–1605632, and it is competitive when m = 25088,
while BLIS is better choice for “squarish” problems, with m
in the range of 6000. At this point we note that the actual
processing cost of the Resnet50 v1.5 model is concentrated in
those cases where m is in the range 100352–1605632 (47.8%
of the total time), followed by m = 25088 (35.6% of the total
time). In terms of absolute cost, this implies that the execution
of all layers employing the TVM-generated routines requires
39.1 s compared with 48.0 s when using BLIS (and higher for
OpenBLAS and ARMPL).

V. CONCLUDING REMARKS

We have presented a TVM-based solution to automatically
obtain high performance realizations of GEMM and the convo-
lution operator, especially tailored for inference tasks in edge
devices, with reduced memory footprint, flexibility to adapt

6

0

5

10

15

20

25

30
4
×

4
4
×

8
4
×

1
2

4
×

1
6

4
×

2
0

4
×

2
4

4
×

2
8

4
×

3
2

8
×

4
8
×

8
8
×

1
2

8
×

1
6

8
×

2
0

8
×

2
4

8
×

2
8

8
×

3
2

1
2
×

4
1
2
×

8
1
2
×

1
2

1
2
×

1
6

1
2
×

2
0

1
2
×

2
4

1
2
×

2
8

1
2
×

3
2

1
6
×

4
1
6
×

8
1
6
×

1
2

1
6
×

1
6

1
6
×

2
0

1
6
×

2
4

1
6
×

2
8

1
6
×

3
2

2
0
×

4
2
0
×

8
2
0
×

1
2

2
0
×

1
6

2
0
×

2
0

2
0
×

2
4

2
0
×

2
8

2
0
×

3
2

2
4
×

4
2
4
×

8
2
4
×

1
2

2
4
×

1
6

2
4
×

2
0

2
4
×

2
4

2
4
×

2
8

2
4
×

3
2

2
8
×

4
2
8
×

8
2
8
×

1
2

2
8
×

1
6

2
8
×

2
0

2
8
×

2
4

2
8
×

2
8

2
8
×

3
2

3
2
×

4
3
2
×

8
3
2
×

1
2

3
2
×

1
6

3
2
×

2
0

3
2
×

2
4

3
2
×

2
8

3
2
×

3
2

G
FL

O
PS

Micro-kernel dimensions (mr × nr)

TVM BLIS OpenBLAS ARMPL
Performance of GEMM on ARM Carmel - m = 401408, n = k = 64

0

5

10

15

20

25

30

4
×

4
4
×

8
4
×

1
2

4
×

1
6

4
×

2
0

4
×

2
4

4
×

2
8

4
×

3
2

8
×

4
8
×

8
8
×

1
2

8
×

1
6

8
×

2
0

8
×

2
4

8
×

2
8

8
×

3
2

1
2
×

4
1
2
×

8
1
2
×

1
2

1
2
×

1
6

1
2
×

2
0

1
2
×

2
4

1
2
×

2
8

1
2
×

3
2

1
6
×

4
1
6
×

8
1
6
×

1
2

1
6
×

1
6

1
6
×

2
0

1
6
×

2
4

1
6
×

2
8

1
6
×

3
2

2
0
×

4
2
0
×

8
2
0
×

1
2

2
0
×

1
6

2
0
×

2
0

2
0
×

2
4

2
0
×

2
8

2
0
×

3
2

2
4
×

4
2
4
×

8
2
4
×

1
2

2
4
×

1
6

2
4
×

2
0

2
4
×

2
4

2
4
×

2
8

2
4
×

3
2

2
8
×

4
2
8
×

8
2
8
×

1
2

2
8
×

1
6

2
8
×

2
0

2
8
×

2
4

2
8
×

2
8

2
8
×

3
2

3
2
×

4
3
2
×

8
3
2
×

1
2

3
2
×

1
6

3
2
×

2
0

3
2
×

2
4

3
2
×

2
8

3
2
×

3
2

G
FL

O
PS

Micro-kernel dimensions (mr × nr)

TVM BLIS OpenBLAS ARMPL
Performance of GEMM on ARM Carmel - m = 100352, n = 512, k = 128

Fig. 7: Performance evaluation on ARM Carmel for layers 006 (left) and 044 (right) of ResNet50 v1.5.

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

G
FL

O
PS

Layer id.

TVM BLIS OpenBLAS ARMPL

Performance of GEMM on ARM Carmel - ResNet-50 v1.5

Fig. 8: Performance evaluation on ARM Carmel for all layers of ResNet50 v1.5.

the solution to distinct data types, enhanced maintainability,
and fair portability to different processor architectures. Our
solution departs from conventional library-based realizations
of GEMM in that the full code is automatically generated
and, therefore, completely portable. Compared with other
JIT compilation frameworks, we mimic the techniques in
the GotoBLAS2/BLIS/OpenBLAS2 algorithms for GEMM to
obtain a blocked algorithm that performs an efficient utilization
of the cache memories.

The experiments reveal that the TVM-based routine for
GEMM outperforms the realizations of this operator in high
performance libraries by a large margin for highly rectangular
cases while being competitive for more squarish ones. At
this point, we believe there is still a margin to optimize the
TVM-based routine, while maintaining the automatic genera-
tion process, by exploring other variants of the BLIS family
of algorithms and/or packing for other layers of the cache
hierarchy. This is part of our future research plan.

REFERENCES

[1] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of
deep neural networks: A tutorial and survey,” Proceedings of the IEEE,
vol. 105, no. 12, pp. 2295–2329, 2017.

[2] T. Ben-Nun and T. Hoefler, “Demystifying parallel and distributed
deep learning: An in-depth concurrency analysis,” ACM Comput. Surv.,
vol. 52, no. 4, pp. 65:1–65:43, 2019.

[3] K. Goto and R. A. van de Geijn, “Anatomy of a high-performance matrix
multiplication,” ACM Trans. Math. Soft., vol. 34, no. 3, pp. 12:1–12:25,
2008.

[4] Z. Xianyi, W. Qian, and Z. Yunquan, “Model-driven level 3 BLAS
performance optimization on Loongson 3A processor,” in 2012 IEEE
18th Int. Conf. Parallel and Distributed Systems (ICPADS), 2012.

[5] F. G. Van Zee and R. A. van de Geijn, “BLIS: A framework for rapidly
instantiating BLAS functionality,” ACM Trans. Math. Softw., vol. 41,
no. 3, pp. 14:1–14:33, 2015.

[6] D. L. Dutta and S. Bharali, “TinyML meets IoT: A comprehensive
survey,” Internet of Things, vol. 16, p. 100461, 2021.

[7] T. Chen, L. Zheng, E. Q. Yan, Z. Jiang, T. Moreau, L. Ceze,
C. Guestrin, and A. Krishnamurthy, “Learning to optimize tensor
programs,” CoRR, vol. abs/1805.08166, 2018. [Online]. Available:
http://arxiv.org/abs/1805.08166

[8] T. Chen, T. Moreau, Z. Jiang, H. Shen, E. Q. Yan, L. Wang, Y. Hu,
L. Ceze, C. Guestrin, and A. Krishnamurthy, “TVM: end-to-end
optimization stack for deep learning,” CoRR, vol. abs/1802.04799,
2018. [Online]. Available: http://arxiv.org/abs/1802.04799

[9] K. Chellapilla, S. Puri, and P. Simard, “High performance convolutional
neural networks for document processing,” in International Workshop
on Frontiers in Handwriting Recognition, 2006.

[10] T. M. Low et al., “Analytical modeling is enough for high-performance
BLIS,” ACM Trans. Math. Softw., vol. 43, no. 2, pp. 12:1–12:18, 2016.

[11] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, M. Cowan, H. Shen,
L. Wang, Y. Hu, L. Ceze, C. Guestrin, and A. Krishnamurthy, “TVM:
An automated end-to-end optimizing compiler for deep learning,” 2018.

http://arxiv.org/abs/1805.08166
http://arxiv.org/abs/1802.04799

	Introduction
	Libraries
	Automatic generation
	Hybridization

	The BLIS Algorithm for gemm
	Blocking (and packing) for the cache
	SIMD micro-kernels

	Automatic Generation of a BLIS-like Routine for gemm
	Blocking and packing
	Automatic Generation SIMD micro-kernels
	Lowering

	Experimental Results
	Setup
	Cache configuration parameters
	Performance

	Concluding Remarks
	References

