
SAMO: Optimised Mapping of Convolutional
Neural Networks to Streaming Architectures

Alexander Montgomerie-Corcoran∗, Zhewen Yu∗ and Christos-Savvas Bouganis
Dept. of Electrical & Electronic Engineering

Imperial College London, UK
{alexander.montgomerie-corcoran15, zhewen.yu18, christos-savvas.bouganis}@imperial.ac.uk

Abstract—Toolflows that map Convolutional Neural Network
(CNN) models to Field Programmable Gate Arrays (FPGAs)
have been an important tool in accelerating a range of ap-
plications across different deployment settings. However, the
significance of the problem of finding an optimal mapping is
often overlooked, with the expectation that the end user will
tune their generated hardware to their desired platform. This is
particularly prominent within Streaming Architectures toolflows,
where there is a large design space to explore. There have been
many Streaming Architectures proposed [1]–[3], however apart
from fpgaConvNet [1], there is limited support for optimisation
methods that explore both performance objectives and platform
constraints. In this work, we establish a framework, SAMO: a
Streaming Architecture Mapping Optimiser, which generalises
the optimisation problem of mapping Streaming Architectures
to FPGA platforms. We also implement both Brute Force and
Simulated Annealing optimisation methods in order to generate
valid, high performance designs for a range of target platforms
and CNN models. We are able to observe a 4x increase in
performance compared to example designs for the popular
Streaming Architecture framework FINN [3].

I. INTRODUCTION

The success of deep learning models represented by CNNs
has greatly motivated the research into hardware accelerators
designed for these models. A popular class of platforms for
these accelerators are FPGAs, as their versatility and range of
sizes suit a variety of applications. When deployed on these
re-configurable platforms, accelerators can be tailored for dif-
ferent CNN workloads in order to achieve high performance.
Therefore, many toolflows have been proposed in order to
map CNNs to FPGAs, and they mainly focus on two types
of architectures: Systolic Array and Streaming (also known as
dataflow) [4].

A Systolic Array architecture design typically contains an
array of processing elements which are designed to accelerate
a matrix multiplication operation. The CNN model is executed
by mapping convolution layers to matrix multiplication oper-
ations, leading to the processing elements of the architecture
being time-shared across the layers. Systolic Array architec-
tures are therefore very flexible, as they have the ability to map
nearly any CNN model to a single hardware design. Because of
this flexibility, these architectures are often served as compute
kernels in general-purpose neural network accelerators that are
not tailored to specific CNN models [5], [6].

Streaming Architectures, on the contrary, tailor the gener-
ated hardware design towards the computation and memory

∗equal contribution

workload of a specific CNN model. Instead of time-sharing
processing elements between layers, each layer has custom
hardware specific to it, which is all fitted onto a given FPGA
platform simultaneously. The computation kernels for each
layer are then pipelined. This tailoring of the hardware to
a platform means that Streaming Architectures have high
throughput and energy efficiency [7] compared to equivalent
Systolic Array architectures. However, the design process for
a Streaming Architecture-based accelerator is often more time
consuming and tedious, as the customisability brings a large
design space to explore. Unlike Systolic Array architectures
where the design space exploration can be carried out by
brute force enumeration with the help of an analytical resource
model [8], or a roofline model [9], the Streaming Architecture
requires a more informed method for efficiently exploring the
design space.

Early work on Streaming Architecture accelerators explored
the design space manually, resulting in sub-optimal designs
that did not make efficient use of their platform’s resources [2],
[10]. Several works have proposed algorithms that allow auto-
matic exploration of the design space [11], [12], by following
certain guidelines and rules that contribute to a efficient design.
However, these guidelines and rules are closely coupled to the
proposed accelerator’s building blocks, which restricts their
ability to generalise the CNN to architecture mapping problem
for other architectures. This in turn restricts the ability to
explore improved optimisation methods, as the optimisation
problem is closely tied to the specific accelerator framework.

In this work, we present SAMO1: a Streaming Architecture
Mapping Optimiser. We generalise the CNN to Streaming
Architecture mapping problem by proposing an abstract repre-
sentation of the accelerator’s building blocks, which is referred
to as the Hardware Description graph. With this abstraction in
place, we are able to define variables, constraints and objec-
tives for the optimisation problem, which leads to a framework
for exploring different optimisation methods. Both a Brute
Force and Simulated Annealing optimiser are implemented in
this work in order to demonstrate the potential for exploring
this design space. The framework is integrated into popular
Streaming Architectures (fpgaConvNet, FINN and HLS4ML),
and used to increase the performance of base designs for a
range of CNN models and FPGA platforms.

1https://github.com/AlexMontgomerie/samo

https://github.com/AlexMontgomerie/samo


II. BACKGROUND

In this work, we consider three toolflows: fpgaConvNet [1],
FINN [3] and HLS4ML [2], which are able to map a given
CNN model to a target FPGA device, by generating a Stream-
ing Architecture-based accelerator which optimises latency.
These three toolflows were chosen due to their popularity as
Streaming Architectures, as we as their variations in design
space, which demonstrates the generalisation abilities of the
SAMO tool. A brief overview of these toolflows are given in
Table I.

fpgaConvNet FINN HLS4ML
Design Space Large Medium Small
Existing Optimiser Simulated Annealing Rule-based N/A

TABLE I: Comparison on Streaming Architecture toolflows.

The FINN toolflow is able to generate Streaming Architec-
ture accelerators for low-precision Quantised Neural Networks
(QNNs) [7]. FINN was originally customised for Binarised
Neural Networks (BNNs) but has now been extended to
support other fixed-point data types [13]. Most fixed-point
operations, including quantised convolutional layers and quan-
tised fully-connected layers are implemented by the Matrix-
Vector Threshold Unit (MVTU). Each MVTU contains multi-
ple Processing Elements (PE) and SIMD lanes for parallel
Matrix-Vector operations, followed by quantisation thresh-
olding. The values for PE and SIMD inside each MVTU
can be determined by hand-tuning or adopting a rule-based
optimisation algorithm which allocates more resources to the
slowest MVTU in the whole accelerator [3]. However, the
authors of FINN also state this algorithm to be sub-optimal
and can often be outperformed by hand-tuning2.

HLS4ML [2] was originally developed for accelerating sim-
ple machine learning models in particle physics experiment,
however it has been further developed for more general CNN
model acceleration. HLS4ML sacrifices the configurability of
the accelerator to obtain simple and low-latency accelerator
designs [14]. Therefore, HLS4ML has a relatively small
design space compared with other Streaming Architecture
toolflows. Specifically, HLS4ML supports two hardware gen-
eration methods: resource and latency. For the latency method,
the hardware is completely unrolled, and the HLS compiler is
given the task of optimising the latency for a given initiation
interval goal. And for the resource method, the hardware is
only partially unrolled, and the reuse-factor parameter defines
how often resources are re-used. This dictates the achievable
parallelism for the resource designs.

The fpgaConvNet [1] toolflow is a streaming-based accel-
erator which focuses on configurability in order to achieve
high performance for a range of networks and platforms.
This toolflow exposes many degrees of parallelism in the
network including coarse-grained folding and fine-grained
folding. The toolflow further supports FPGA configuration
through the partitioning and partial reloading of data in order

2https://github.com/Xilinx/finn/blob/main/src/finn/transformation/
fpgadataflow/set folding.py

to overcome resource constraints. Therefore, fpgaConvNet
has the largest design space amongst the three considered
toolflows. fpgaConvNet also has explored optimisation as part
of the design flow, proposing a Simulated Annealing optimiser
[15] to explore it’s design space, however this has been highly
tailored to this specific toolflow.

III. OPTIMISATION PROBLEM

In this section, the CNN to Streaming Architecture mapping
space will be defined, and the optimisation problem that sur-
rounds this will be outlined. This abstraction of the mapping
procedure and optimisation problem is the core backbone of
the SAMO framework, and this section serves to express this
representation.

The optimisation problem we wish to solve is of tailoring
a Streaming Architecture to a specific CNN model and FPGA
platform pair, with the desire to efficiently utilise the available
resources on the platform in order to optimise the through-
put for the given network. This requires knowledge of how
parameters of the given accelerator affect both performance
and resources. Furthermore, the optimisation variables must
generalise for all Streaming Architectures, and so the design
parameters for the architectures must be understood. Before
defining the optimisation problem, we must first outline the
assumptions for the design space. These assumptions are,
• The Streaming Architecture is pipelined
• Layers in the CNN models are sequential
• There exist models of latency and resource utilisation
• The Streaming Architecture targets a single platform

A. Hardware Description Graph

The mapping of layers of a CNN model to hardware
building blocks of a Streaming Architecture can be described
in terms of directed graphs. The CNN model can be described
as a graph with L layers as M = {l1, . . . lL}, where li is
a layer within the CNN model. This graph has edges EM

between the layers. As the focus of this work is on sequen-
tial networks, the edges are only between adjacent nodes,
so EM = {(l1, l2), . . . (lL−1, lL)}. Streaming architectures
frameworks perform a mapping from a CNN model graph
to a Hardware Description graph, where each layer in the
CNN model gets mapped to a computation node or set of
computation nodes in the Hardware Description graph. We
can describe this Hardware Description graph as H , which
contains N computation nodes, H = {n1, . . . nN} and where
ni is a computation node within it. As the CNN models are
sequential, so is the Hardware Description graph, and the
edges of H are such that EH = {(n1, n2), . . . (nN−1, nN )}.

B. Variables

This Hardware Description graph, H , is what we will
performing our optimisations on and in order to do so,
optimisation variables must be defined. For each node ni,
there are three associated variables: input channel folding (sIi ),
output channel folding (sOi ) and kernel folding (ki). These
three variables are chosen to summarise the current landscape

https://github.com/Xilinx/finn/blob/main/src/finn/transformation/fpgadataflow/set_folding.py
https://github.com/Xilinx/finn/blob/main/src/finn/transformation/fpgadataflow/set_folding.py


of Streaming Architecture frameworks and their respective
performance parameters.

The input and output channel folding variables describe the
degree of parallelism of the channel dimension of the feature-
map entering and exiting a node respectively. It is worth noting
that although this could be extended to all the other dimensions
of the feature-map, the channel dimensions have the fewest
dependencies, and their parallelism is a lot more feasible to
exploit. The kernel folding variable describes the parallelism
of computations within a node. This typically relates to the
kernel dot product operation found within convolution layers,
and the degree of parallelism across the kernel size2 multi-
ply operations. However, this can be expanded to generalise
parallelism within any computation node, given the relevant
constraints are in place.

C. Constraints

There exist both constraints on the Hardware Description
graph, as well as the individual nodes within. In this sub-
section we define the constraints that are observed across all
Streaming Architectures, although specific frameworks are not
necessarily constrained by all.

One important constraint that exists across all current
Streaming Architecture frameworks is that the channel folding
variables are factors of the channel dimension of the feature-
map that the node is operating on. This is described in Eq. (1),
where cIi and cOi are the input and output channel dimensions
of the feature-map of the ith respectively.

cIi mod sIi = 0 ∀ i ∈ {1 . . . N}
cOi mod sOi = 0 ∀ i ∈ {1 . . . N}

(1)

There will also exist a subset of nodes, such as the hardware
for Max Pooling or ReLU layers, where the channel folding
must match, as the output channel dimension depends on the
input. This subset of nodes, N ′ ⊂ N , have this equality
constraint described in Eq. (2), which will be referred to later
as intra folding matching.

sIi = sOi ∀ i ∈ {1 . . . N ′} (2)

For the Hardware Description graph itself, another common
constraint that exists is the need to have matching folding
factors between nodes in order to ensure that all the data lines
are connected. This constraint is described in Eq. (3), and is
referred to as inter folding matching.

sOi = sIi+1 ∀ i ∈ {1 . . . N − 1} (3)

D. Models

Before introducing the optimisation problem, let’s describe
the models which are required from the Streaming Architec-
ture frameworks. These required models for each node ni

are the resource model, r(ni, s
I
i , s

O
i , ki), and latency model,

t(ni, s
I
i , s

O
i , ki), which are a function of the optimisation

variables. The resource model gives the utilisation of the
various resource types on the FPGA platform. The latency

model gives an estimation of the number of clock cycles
needed to execute the hardware node.

These models can be used to construct the constraints and
objective for the optimisation problem. In particular, we can
use these node-level models to evaluate the resource utilisation
(R(H,EH)) and latency (T (H,EH)) of the whole Hardware
Description graph, as described in Eq. (4).

R(H,EH) =
∑
i∈N

r(ni, s
I
i , s

O
i , ki)

T (H,EH) = max{t(ni, s
I
i , s

O
i , ki) : i = 1 . . . N}

(4)

As there is the assumption that the hardware is pipelined and
the CNN models are sequential, the latency of the network is
dictated by the slowest node in the graph3. The total resource
utilisation is the sum of the resource utilisation of all nodes
in the graph.

E. Objective

Now that the properties of the Hardware Description graph
are established, the objective of the optimisation problem is
outlined next. As there is an assumption that the whole CNN
model must fit on the target FPGA platform, this means that
latency is the most meaningful metric in terms of performance.
We can describe the whole optimisation problem as is in Eq.
(5), where Rplatform describes the resource constraints of the
target platform.

min
sI ,sO,k

T (H,EH)

s.t. R(H,EH) ≤ Rplatform

C(H,EH) = 0

(5)

With the whole optimisation problem outlined, the next step
is applying this abstraction to an actual Streaming Architecture
framework, and subsequently solving the optimisation problem
through existing optimisation methods.

IV. FRAMEWORK

The Hardware Description graph provides a unified repre-
sentation of the CNN model and the accelerator design space.
In this section, we demonstrate how this unified representa-
tion can be integrated into existing Streaming Architecture
toolflows such as fpgaConvNet, FINN and HLS4ML, which
are referred to as backends, in order to generate high perfor-
mance accelerator designs. An overview of the framework is
given in Figure 1.

A. Parser

The parser is responsible for converting the CNN model
into the Hardware Description graph. This conversion starts
with transforming the CNN model into a custom intermediate
representation (customised IR). This customised IR is designed
by the authors of the Streaming Architecture toolflow in order
to map the CNN model to a hardware implementation. During

3Pipeline depth is ignored as it has a negligible affect on latency.



this step, the layers of the CNN model are replaced by tunable
hardware building blocks from the accelerator framework, as
Listings 1 to 2 show.

After the CNN model is mapped to the backend’s cus-
tomised IR, it is further unified into the Hardware Description
graph through SAMO’s provided wrappers. These wrappers
abstract the customised IR both at the node and network levels.
The node wrapper stores the tunable design parameters as
well as the API of the resource and latency models belonging
to each hardware building block (described in Listing 3).
Therefore, the actual operation and implementation of the
building block is hidden from the Hardware Description graph.

Default constraints are provided by SAMO, however the
backends have their own assertions on the design parameters in
order to validate their designs. These assertions can be trans-
lated to constraints for optimisation with simple integration
into the Hardware Description graph.

Listing 1: CNN model
Network {

nodes {
l1 = FCLayer 0
l2 = FCLayer 1

}
}

Listing 2: Customised IR (FINN-ONNX)
Network {

nodes {
m1 = T h r e s h o l d 0
m2 = StreamFCLayer 0
m3 = StreamFCLayer 1
m4 = L a b e l S e l e c t 0

}
}

Listing 3: Hardware Description Graph
Network {

nodes {
n1 = {m1.rsc(), m1.cycle(), m1.PE}
n2 = {m2.rsc(), m2.cycle(), m2.SIMD, m2.PE}
n3 = {m3.rsc(), m3.cycle(), m3.SIMD, m3.PE}
n4 = {m4.rsc(), m4.cycle(), m4.PE}

}
}
B. Optimiser

After the Hardware Description graph is obtained for the
given backend, next the optimisation problem needs to be
solved. There are two optimiser algorithms that have been
considered in this work,
• Brute-force search, which enumerates all possible com-

binations of design parameters. Any design point that
violates the constraints of the Hardware Description
graph will be ignored. This algorithm can find the optimal
design point and minimise the accelerator latency at a cost
of lengthy searching time.

• Simulated annealing [16], which is a stochastic search-
ing algorithm. All the optimisation variables V =
{sI , sO, k} are initialised to their minimum at the starting
point, which corresponds to the resource-minimal acceler-
ator design with the greatest latency. During each iteration
of the search, these optimisation variables are randomly
updated to V new. This update will be accepted only when
the constraints of the Hardware Description graph are
met and (6) is also satisfied. Otherwise, this update is
discarded and the Hardware Description graph is reverted
to it’s state during the last iteration.

exp(min(0,
T − Tnew

K
)) ≥ x ∼ U(0, 1) (6)

T and Tnew correspond to the latency before and after
this update respectively. K is a hyper-parameter, also
known as temperature, that decays linearly over iterations.
x is sampled from a uniform distribution U(0, 1).
Equation (6) reflects the probability that an update is
accepted. When the latency Tnew is smaller than T ,
(6) is always satisfied. Otherwise, the optimiser accepts
this update with a probability relating to the difference
between Tnew and T as well as the temperature K.

The Simulated Annealing optimiser implemented in SAMO
will also attempt to fix any constraint violations during each
step. The occurrence of constraint violations is due to the
variables V = {sI , sO, k} being optimised independently in
each iteration, which ignores any dependencies between them.
When an optimisation variable is updated, our optimiser will
propagate these changes through the whole graph. Therefore,
any conflict between optimisation variables that causes a
constraint violation is resolved during this propagation.

C. Exporter

The optimised Hardware Description graph is transformed
back to the customised IR of each backend, and is used to
configure the hardware building blocks with the optimised
design parameters. The configured hardware building blocks
are converted into synthesisable hardware description code,
and this is used to generate bitstreams that can be programmed
on to the target FPGA platform.

Fig. 1: Overview of the proposed SAMO framework



V. EVALUATION

In this section, we will describe how the chosen backends
have been integrated into the SAMO framework, and evaluate
the framework’s potential to find optimal designs using both
Brute Force and Simulated Annealing optimisation methods.

We have evaluated SAMO on three different open-source
Streaming Architectures: HLS4ML [2], FINN [3] and fpga-
ConvNet [15]. Although all these backends share the fact
that they are Streaming Architectures, each of them have
different properties when it comes to their design parameters
and constraints. The relationship between the parameters for
each backend and the respective optimiser variables of the
SAMO framework are given in Table II.

Variable Backend
fpgaConvNet FINN HLS4ML

Input Channel Folding Coarse-In SIMD Reuse-FactorKernel Folding Fine
Output Channel Folding Coarse-Out PE

TABLE II: Relationship between backend parameters and
SAMO optimiser variables.

For HLS4ML, all possible degrees of parallelism are sum-
marised within one tunable parameter, as in the backend the
operations are fully unrolled and the HLS tool uses the reuse-
factor as a design target for latency. FINN combines input
channel folding and kernel folding together, as the kernel dot
product dimensions are combined into the channel dimension
of the incoming feature-map for their computation nodes. The
fpgaConvNet toolflow has explicit design parameters for each
of the given optimiser variables.

In terms of constraints, Table III summarises which con-
straints apply to the different backends. All of them follow
the constraints on the channel folding variable being a factor
of the channel dimension.

Constraint fpgaConvNet FINN HLS4ML
intra channel matching 3 3 7
inter channel matching 7 3 3

TABLE III: Constraints on the backends.

In addition to these constraints, there are constraints defined
on the kernel folding. For fpgaConvNet, this is a factor of the
kernel size of the respective convolution layer. With HLS4ML,
the kernel size captures the complete achievable parallelism of
the unrolled node as all the optimisation variables are com-
bined into a single design parameter. However, the HLS4ML
tool ensures that the inter channel matching constraint is met.

In terms of latency and resource models, currently only
fpgaConvNet and FINN4 have both. For the HLS4ML tool,
we have provided a latency model as well as a model for
DSP utilisation based on observations of the relationship
between their reuse-factor parameter and resource utilisation
and latency.

For the evaluation, we have decided on four CNN models to
evaluate the effectiveness of the framework. These models are

4FINN does not support Flip Flop resource estimation.

described in Table IV, which gives an indication of the size
and complexity of the CNN model, all of which are taken
from examples given by the evaluated backends.

Network Parameters No. Conv No. Dense
4-layer 4K 0 4

TFC 60K 0 4
LeNet 430K 2 2
CNV 1.5M 6 3

TABLE IV: CNN models for evaluation.

A. Brute Force

As described in Section IV, a Brute Force optimisation
method has been designed that explores the entire design space
in order to determine the design with the greatest performance.
In Table V, a comparison of runs for different networks is
shown. The table highlights the size of the unconstrained
design space (referred to as the problem size), the number
of designs evaluated per second, and the estimated time to
evaluate the whole design space.

Network Backend Problem Size Iter. /s Est. Eval. Time

4-layer
HLS4ML 1.02x104 25000 407 ms
FINN 3.18x107 120 3 days
fpgaConvNet 6.35x105 1000 10 min

TFC
HLS4ML 5.46x108 15000 10 hr
FINN 6.35x109 125 588 days
fpgaConvNet 1.33x1013 900 47 decades

LeNet
HLS4ML 6.76x108 14000 13 hr
FINN 5.02x1012 110 145 decades
fpgaConvNet 2.01x1013 600 106 decades

CNV
HLS4ML 6.32x1024 6000 3.3x1011 centuries
FINN 1.95x1035 50 1.2x1024 centuries
fpgaConvNet 1.22x1038 300 1.3x1026 centuries

TABLE V: Comparison of Brute Force optimisation for the
networks (4-layer, TFC, LeNet and CNV) and backends

(HLS4ML, FINN and fpgaConvNet).

The table shows that each backend has different charac-
teristics, in terms of both problem size and iterations per
second. The reason for differences in problem size is due
to the number of design parameters and constraints for the
Streaming Architectures. For example, fpgaConvNet typically
has a larger problem size due to not having the inter channel
matching constraint as well as supporting all the optimisation
variables. The iterations per second are due to both the
Hardware Description graph’s size as well as the complexity
in evaluating resource and latency models. As the network size
increases, more nodes must be evaluated at every iteration of
the Brute Force optimiser.

Apart from the 4-layer network, exploring the design space
is intractable, with some designs being estimated to take
centuries to evaluate. This is due to the large design space
which scales with the size of the CNN model, as well as the
limitations on the rate of evaluating these design points due
to the complex latency and resource model evaluation as well
as constraint evaluation. These results serve as the motivation
for exploring more feasible optimisation methods.



Network Platform Precision Latency (cycles) Increase
Resource Utilisation (%)

DSP BRAM LUT FF
Init. Opt. Init. Opt. Init. Opt. Init. Opt. Init. Opt.

4-layer ZedBoard w16a16 2058 42 49x 1.8 89.5 2.5 6.4 20.6 23.6 16.4 17.4
TFC 1154785 1164 992x 1.8 95.5 23.9 18.2 76.1 132.5 75.1 116.4

(a) HLS4ML

Network Platform Precision Latency (cycles) Increase
Resource Utilisation (%)

DSP BRAM LUT FF
Init. Opt. Init. Opt. Init. Opt. Init. Opt. Init. Opt.

4-layer ZedBoard
w16a16

2203 143 15x 1.8 31.4 4.6 3.2 12.7 45.4 8.1 31.1
TFC 50980 814 63x 1.8 40.5 13.6 33.2 21.3 164.1 12.8 94.5

LeNet ZC706 1600066 8046 199x 0.6 33.6 9.7 41.2 12.8 67.7 8.0 44.9
CNV U250 28901422 200749 144x - 21.4 - 47.3 - 118.4 - 80.6

(b) fpgaConvNet

Network Platform Precision Latency (cycles) Increase
Resource Utilisation (%)

DSP BRAM LUT FF
Init. Opt. Init. Opt. Init. Opt. Init. Opt. Init. Opt.

4-layer † ZedBoard
w4a4

2059 42 49x 1.8 75.9 2.1 3.9 14.9 29.1 9.0 13.1
TFC † 50176 403 125x 1.8 100 5.7 11.1 5.8 22.4 - 15.0

LeNet † ZC706 1600000 14546 110x 0.4 36.0 13.2 15.3 12.1 11.8 - 6.1

CNV ‡ U250 28901376 28800 1004x 0.3 92.5 31.6 25.6 4.8 71.4 - -
w1a1 28901376 8196 3526x 0.0 0.0 0.0 0.0 9.6 82.1 - -

(c) FINN

TABLE VI: Comparison of optimised designs to initial configurations using the Simulated Annealing optimiser for the
networks (4-layer, TFC, LeNet and CNV) and backends (HLS4ML, FINN and fpgaConvNet).

† Values for initialised design based on the resource and latency models
‡ Values for initialised and optimised design based on the resource and latency models

B. Simulated Annealing

Now we turn to the Simulated Annealing optimiser, and
evaluate the designs it is able to produce. In our experiment,
the hyper-parameter temperature K is initialised as 1000 and
it is reduced by 2% for every iteration. The optimisation will
be terminated once K is reduced to 1.

In Figure 2, we can see the design space evaluated by the
optimiser for the CNV model, and all the backends. The red
cross indicates the final design which is chosen. The resource
utilisation is described in Eq. (7). The predicted utilisation is
for a U250 FPGA platform.

rsc =
1

4
(

BRAMdesign

BRAMplatform
+

DSPdesign

DSPplatform

+
LUTdesign

LUTplatform
+

FFdesign

FFplatform
)

(7)

From the figure, we can see the design space that has been
explored. It is clear that the simulated annealing run is able
to cut down searched design space significantly compared
to brute force, with each run exploring around 6000 design
points. Although it is difficult to evaluate whether these anneal-
ing runs achieve a global optimum, the pareto-optimal front
suggests that the optimiser is able to search a large spectrum of
meaningful designs and significantly reduce latency compared
to the starting point.

Having evaluated the design space that is explored by
the Simulated Annealing optimiser, we can now evaluate the
designs produced by the tool, which are shown in Table VI.
In this table, we can see a comparison between a design
from the initial starting point and the generated design point

from Simulated Annealing, shown by the latency and resource
utilisation from synthesis and implementation of these designs
(unless stated otherwise). It is the author’s understanding that
convolution layers are not yet fully supported by HLS4ML,
hence why the LeNet and CNV networks are not evaluated for
this backend. For running the CNV network with FINN, we
are aware that it is supported, however we were not able to
generate designs due to the Vivado HLS tool hanging, despite
validating the generated designs using the FINN toolflow. We
were also not able to obtain bitstreams for initial configurations
of FINN, due to issues with the HLS tool.

This table highlights the power of automated design space
exploration in order to achieve high performance designs.
For example, we are able to achieve a performance increase
of 1000x compared to a baseline design for the HLS4ML
toolflow. It’s shown that using the SAMO tool, users will be
able to achieve significant latency reduction with only being
required to provide a CNN model and target platform. The
table also shows the resource utilisation of the target platform
for the generated designs. It can be seen that the SAMO tool
aims for as much utilisation as possible, however may over
utilise resources due to inaccuracies in the backend’s resource
models. For the HLS4ML backend, this is due to the fact
that there is only a DSP model, so there is no understanding
of LUT, BRAM or FF resources. With fpgaConvNet, the
tool struggles with modelling BRAM utilisation as it over-
estimates, and so observed BRAM utilisation is often a lot
lower than predicted whilst LUT utilisation is a lot higher.
Conversely, FINN benefits from quite an accurate resource
model, and alongside the low precision it supports, it is able to



achieve high performance designs which stay within resource
limits. A particularly interesting design is that of CNV for
FINN with a w1a1 precision. The example design that the
FINN creators give for this CNN model achieves a latency of
roughly 33000 cycles5, while the SAMO tool is able to find
a valid design that has a predicted latency of 8192 cycles,
leading to a 4x increase in performance compared to the hand-
tuned design.

(a) HLS4ML

(b) FINN

(c) fpgaConvNet

Fig. 2: Pareto-optimal front for the CNV network using the
Simulated Annealing optimiser. The red line indicates the
pareto-optimal front. The blue markers indicate the valid
design points explored, and the red marker indicates the

chosen design point.

VI. CONCLUSION

This paper presents the SAMO framework, a Streaming
Architecture Mapping Optimiser, which serves as a starting
point for research into optimisation methods for this class of

5https://github.com/Xilinx/finn-examples/blob/main/finn examples/
notebooks/1 cifar10 with cnv networks.ipynb

CNN accelerators. We evaluated the potential of Simulated
Annealing as an optimiser and have seen considerable gains
in performance using this. The framework has been integrated
with popular open-source Streaming Architectures in order to
demonstrate it’s ability to achieve high performance designs
across a range of FPGA platforms. With this framework
established we hope to further explore improved optimisation
methods as well as different application settings, such as the
Neural Architecture Search (NAS) co-design space.

REFERENCES

[1] S. I. Venieris and C.-S. Bouganis, “fpgaconvnet: Mapping regular and
irregular convolutional neural networks on fpgas,” IEEE Transactions
on Neural Networks and Learning Systems, vol. 30, no. 2, 2019.

[2] J. Duarte, S. Han, P. Harris, S. Jindariani, E. Kreinar, B. Kreis,
J. Ngadiuba, M. Pierini, R. Rivera, N. Tran, and Z. Wu, “Fast inference
of deep neural networks in FPGAs for particle physics,” Journal of
Instrumentation, vol. 13, no. 07, Jul. 2018.

[3] M. Blott, T. B. Preußer, N. J. Fraser, G. Gambardella, K. O’brien,
Y. Umuroglu, M. Leeser, and K. Vissers, “Finn-r: An end-to-end deep-
learning framework for fast exploration of quantized neural networks,”
ACM Transactions on Reconfigurable Technology and Systems (TRETS),
vol. 11, no. 3, 2018.

[4] S. I. Venieris, A. Kouris, and C.-S. Bouganis, “Toolflows for mapping
convolutional neural networks on fpgas: A survey and future directions,”
arXiv preprint arXiv:1803.05900, 2018.

[5] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter
performance analysis of a tensor processing unit,” in Proceedings of the
44th annual international symposium on computer architecture, 2017.

[6] D. A. Vink, A. Rajagopal, S. I. Venieris, and C.-S. Bouganis, “Caffe
barista: Brewing caffe with fpgas in the training loop,” in 2020 30th In-
ternational Conference on Field-Programmable Logic and Applications
(FPL). IEEE, 2020.

[7] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre,
and K. Vissers, “Finn: A framework for fast, scalable binarized neural
network inference,” in Proceedings of the 2017 ACM/SIGDA Interna-
tional Symposium on Field-Programmable Gate Arrays, 2017.

[8] X. Wei, C. H. Yu, P. Zhang, Y. Chen, Y. Wang, H. Hu, Y. Liang,
and J. Cong, “Automated systolic array architecture synthesis for high
throughput cnn inference on fpgas,” in Proceedings of the 54th Annual
Design Automation Conference 2017, 2017.

[9] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
FPGA-based Accelerator Design for Deep Convolutional Neural Net-
works,” in FPGA, 2015.

[10] R. DiCecco, G. Lacey, J. Vasiljevic, P. Chow, G. Taylor, and S. Areibi,
“Caffeinated fpgas: Fpga framework for convolutional neural networks,”
in 2016 International Conference on Field-Programmable Technology
(FPT). IEEE, 2016.

[11] H. Li, X. Fan, L. Jiao, W. Cao, X. Zhou, and L. Wang, “A high perfor-
mance fpga-based accelerator for large-scale convolutional neural net-
works,” in 2016 26th International Conference on Field Programmable
Logic and Applications (FPL). IEEE, 2016.

[12] X. Zhang, J. Wang, C. Zhu, Y. Lin, J. Xiong, W.-m. Hwu, and
D. Chen, “Dnnbuilder: an automated tool for building high-performance
dnn hardware accelerators for fpgas,” in 2018 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD). IEEE, 2018.

[13] J. Faraone, G. Gambardella, D. Boland, N. Fraser, M. Blott, and P. H.
Leong, “Customizing low-precision deep neural networks for fpgas,” in
2018 28th International Conference on Field Programmable Logic and
Applications (FPL). IEEE, 2018.

[14] T. Aarrestad, V. Loncar, N. Ghielmetti, M. Pierini, S. Summers, J. Ngadi-
uba, C. Petersson, H. Linander, Y. Iiyama, G. Di Guglielmo et al., “Fast
convolutional neural networks on fpgas with hls4ml,” arXiv preprint
arXiv:2101.05108, 2021.

[15] S. I. Venieris and C.-S. Bouganis, “fpgaconvnet: A framework for map-
ping convolutional neural networks on fpgas,” in 2016 IEEE 24th Annual
International Symposium on Field-Programmable Custom Computing
Machines (FCCM), 2016.

[16] C. R. Reeves, Ed., Modern Heuristic Techniques for Combinatorial
Problems. USA: John Wiley & Sons, Inc., 1993.

https://github.com/Xilinx/finn-examples/blob/main/finn_examples/notebooks/1_cifar10_with_cnv_networks.ipynb
https://github.com/Xilinx/finn-examples/blob/main/finn_examples/notebooks/1_cifar10_with_cnv_networks.ipynb

	Introduction
	Background
	Optimisation Problem
	Hardware Description Graph
	Variables
	Constraints
	Models
	Objective

	Framework
	Parser
	Optimiser
	Exporter

	Evaluation
	Brute Force
	Simulated Annealing

	Conclusion
	References

