
HW-Aware Initialization of DNN Auto-Tuning to
Improve Exploration Time and Robustness

Dennis Rieber
Corporate Research
Robert Bosch GmbH
Renningen, Germany

DennisSebastian.Rieber@de.bosch.com

Moritz Reiber Oliver Bringmann
Department of Embedded Systems

University of Tübingen
Tübingen, Germany

moritz.reiber@uni-tuebingen.de
oliver.bringmann@uni-tuebingen.de

Holger Fröning
Computing Systems Group

Heidelberg University
Heidelberg, Germany

holger.froening@ziti.uni-heidelberg.de

Abstract—The process of optimizing the latency of DNN
operators with ML models and hardware-in-the-loop, called
auto-tuning, has established itself as a pervasive method for
the deployment of neural networks. From a search space of
loop-optimizations, the candidate providing the best performance
has to be selected. Performance of individual configurations is
evaluated through hardware measurements. The combinatorial
explosion of possible configurations, together with the cost of
hardware evaluation makes exhaustive explorations of the search
space infeasible in practice. Machine Learning methods, like
random forests or reinforcement learning are used to aid in
the selection of candidates for hardware evaluation. For general
purpose hardware like x86 and GPGPU architectures impressive
performance gains can be achieved, compared to hand-optimized
libraries like cuDNN. The method is also useful in the space
of hardware accelerators with less wide-spread adoption, where
a high-performance library is not always available. However,
hardware accelerators are often less flexible with respect to
their programming which leads to operator configurations not
executable on the hardware target. This work evaluates how
these invalid configurations affect the auto-tuning process and its
underlying performance prediction model for the VTA hardware.
From these results, a validity-driven initialization method for
AutoTVM is developed, only requiring 41.6% of the necessary
hardware measurements to find the best solution, while improv-
ing search robustness.

Index Terms—AutoTuning, Tensor Computations, Neural Net-
works, Deep Learning Accelerators

I. INTRODUCTION

High performance implementations of DNN operators, re-
gardless of the specific target metric, are often enabled by
manually implemented libraries, written in low level languages
like C or assembly for a specific hardware target [7]. They aim
to optimally utilize the architecture and memory hierarchy of
the system by manipulating the loops of the original program.
In essence, the load, store and compute operations of a specific
operator are reordered in such a way, that cache misses,
bank conflicts, unnecessary memory accesses, pipeline stalls,
register spills or other performance bugs are avoided, or at least
minimized. Such implementations are time consuming to write
and require a deep understanding of the targeted system and
workload. Hardware-in-the-loop optimization, or auto-tuning,
helps to automate this process. Auto-tuning probes a search
space of different implementations for the operator. This space

is generated from the combination of different, individual
loop optimizations. The problem size often prevents exhaustive
attempts for any meaningful problem.

Auto-tuning is especially interesting for hardware accelera-
tors, which often are not ubiquitous enough to justify extensive
library development. At the same time, they have tight resource
budgets and more rigid code execution mechanisms, making
them hard to program for. For example, on the Versatile Tensor
Accelerator (VTA) [11] it is not possible to define a tiling
scheme that would overflow one of the local buffers. While a
CPU would be less efficient with such code, the VTA software
pipeline refuses to compile such code entirely. Many param-
eter configurations can cause this issue, as well as different
operator instances or deployment strategies. A consequence is
a large subspace of invalid configurations in the auto-tuning
search space. Many auto-tuning tools, like AutoTVM [6],
have at their core a statistical model to aid in the search
by predicting the performance of individual configurations.
However, when invalid configurations are a part of the search
space, the model has to the balance the ability to discern
valid from invalid configurations and accurately predict the
performance at the same time. It is not well known how
the models used in auto-tuning behave in such a context.
Therefore, investigating the effects of invalid configurations
on the auto-tuning process is of interest. This work presents
the following contributions:

• An analysis of occurrence and effect of such invalid
configurations in a search space for Conv2D on the
VTA accelerator. First, the distribution in different search
spaces is analysed. Then, how invalid configurations
influence the performance prediction model at the core of
AutoTVM [6], as well as the auto-tuning process itself.

• From these findings, a procedure to prevent the negative
influence of the invalid configurations on the auto-tuning
process is developed and evaluated.

In Section III, the occurrence, distribution and impact of
invalid configurations is explored. This exploration is the basis
for possible improvements, which are described in Section IV.
Evaluation of these improvement over a series of experiments
is detailed in Section V, where reduced tuning times and

TABLE I: Example of tuning knobs for a convolution layer.
Name Type Possible values
[h,oc] threading OtherOption 1, 2
loop order OtherOption 1, 2, 3, 4
tile b Split 1, 2
tile [h,w] Split 1, 2, 4, 7, 8, 14, 16, 28, 56, 112
tile ci Split 1, 2, 4
tile co Split 1, 2, 4

higher robustness are demonstrated.

II. AUTOTVM BACKGROUND

An auto-tuning search space is the Cartesian product of
all different possible optimization parameters, like loop tiling,
reordering and threading strategies, as shown by Table I. A
configuration is a vector of one possible value from each
parameter. AutoTVM works by selecting batches of config-
urations to evaluate in hardware in each tuning epoch. To
select them, the tuner optimizes the ranking loss over n
configurations via simulated annealing (SA), predicted by a
statistical model. These top-n candidates are selected for eval-
uation on hardware. The measurement results are then used to
further train the statistical model predicting the performance.
AutoTVM uses gradient boosted trees [8] as the underlying
statistical method. The candidate vectors can be used as
features directly (knob features) or used to generate a feature
set portable between operators (context relation features). The
latter also enables the training of the performance model on
data from previous tuning runs, before the optimization of a
new workload starts.

III. VTA AUTO-TUNING SEARCH SPACE ANALYSIS

When invalid candidates are in the training data for the
performance prediction model inside the auto-tuner, multiple
questions arise. Mainly, how to present these configurations
towards the model and subsequently, how does this represen-
tation influence the model? Two scenarios are possible for
representation. The first is to ignore invalid candidates and
only use valid performance results. This is useful to avoid
a distortion of the model and focusses on the prediction
task. However, this poses the question, if it also makes the
model blind to potential invalid configurations. AutoTVM
implements a second option, where invalid configurations are
fed back into the model with a heavy performance penalty.
The intention is to train the model towards avoiding the invalid
configurations. However, it is not known how the model reacts
to this additional complexity. Can the model discern valid
configurations and predict performance well enough?

To analyse this impact, a subset of the Baidu DeepBench
Inference Benchmark1 was picked for further experiments.
The selected convolutions are presented in Table II. The
ID in the table refers to the ID in the benchmark suite.
The original auto-tuning template was modified to include
additional loop permutations, which increase the search space.
These changes create both, valid and invalid configurations.

1https://github.com/baidu-research/DeepBench, accessed 05.2022

Fig. 1: Visualization of layer 48 search space as a graph with
connections between valid candidates.

For these workloads, an exhaustive exploration of the search
spaces was performed. This dataset serves as baseline for the
analysis in Section III-C and the experiments in Section V.
All experiments rely on the knob features. They represent
the selected configuration of loop tiling, permutation and
parallelization factors of the specific candidate in a flattened
vector.

The right-most column in Table II presents the share of
valid configurations of each search space. For all workloads,
a majority of configurations is invalid. When v is the amount
of valid configurations and t is the total search space size,
defined as the ratio = v

t .
The mean ratio over all workloads is 0.083, with 0.008 and

0.231 being the minimum and maximum, respectively.

A. Spatial Organization of Valid Configurations

Combining search-space knobs forms a regular, Cartesian
grid. When interpreting this grid as a graph, it is possible to
analyse the spatial distribution of valid and invalid configura-
tions in the search spaces. To interpret the search space as a
graph, two nodes are connected if the Manhattan distance [10]
between their indices in the grid is exactly one.

Only drawing edges connected to a valid candidate yields
the graph Figure in 1. This graph shows a clustering of
valid configurations, indicating a spatial relationship in the
search space. This behaviour is not unique, as it occurred in
all search spaces of Table II. This observation is valuable,
as it can be leveraged to improve the optimization process.
However, a detailed analysis of the effects forming clusters is
not deemed helpful, as every workload configuration creates
invalid configurations for many reasons.

B. Standalone Model Evaluation

As AutoTVM adds invalid configurations with a penalty to
the performance model training set, it poses the question, how
well the model can handle this. Specifically, if valid but low
performing and invalid configurations are related in the search
space and if treating them similarly distorts the prediction
ability of the model. The following sections present the used
methods to quantify the effects of invalid configurations on
the ranking performance.

1) Accuracy of Pairwise Comparisons: Here, pi is the
predicted performance and mi the measured performance.

TABLE II: Workloads set: The workload ID is the respective position in the Baidu DeepBench benchmark suite.

Workload ID batch channel out image kernel channel in stride pad search space size valid ratio
3 1 32 79× 341 10× 5 32 [2 2] [0 0] 768 0.060
5 4 32 79× 341 10× 5 32 [2 2] [0 0] 3072 0.068
8 1 64 12× 120 3× 3 32 [1 1] [1 1] 9216 0.067

17 1 256 56× 56 3× 3 128 [1 1] [1 1] 20480 0.027
42 1 64 56× 56 3× 3 64 [1 1] [1 1] 9216 0.047
48 1 1024 14× 14 1× 1 256 [2 2] [0 0] 2240 0.151
53 2 128 28× 28 3× 3 128 [1 1] [1 1] 18433 0.035
59 2 512 7× 7 1× 1 2048 [2 2] [3 3] 6145 0.008
76 1 64 112× 112 1× 1 64 [1 1] [0 0] 14400 0.088
78 1 64 56× 56 1× 1 256 [1 1] [0 0] 15361 0.099
92 2 64 112× 112 1× 1 64 [1 1] [0 0] 28800 0.082

106 2 2048 14× 14 1× 1 1024 [2 2] [0 0] 7169 0.122
107 2 512 7× 7 1× 1 2048 [1 1] [0 0] 6144 0.231

Invalid configurations are scored with mi = 0. The accuracy
of pairwise comparisons is then defined as

accuracy =
1

n2 − n
2

∑
i>j

{
1 if sign(mi −mj) = sign(pi − pj)

0 else
(1)

or the number of correct comparisons divided by the total
number of comparisons. Comparisons between pairs of invalid
configurations are ignored when computing the total accuracy,
as there is no well-defined ranking among them.

2) Precision: The share of valid configurations among all
configurations in the ranking is the precision of a model.
Since AutoTVM selects the top-n candidates from the total
ranking, the precision@n is the ratio of valids in these n
configurations. It is defined as

precision@n =
1

n

n∑
i=1

{
1 if valid(xri)

0 else
, (2)

with xri being a specific configuration from the search space
at place i in the ranking.

3) Normalized Discounted Cumulative Gain: Precision is
only a metric for the ability of the model to retrieve valid
configurations. It does not give indication of ranking quality
in the top-n candidates. The normalized discounted cumulative
gain nDCG is a metric to quantify this ranking ability.

Discounted cumulative gain (DCG) is defined as

DCG@n =

n∑
i=1

cri
log2(ri + 1)

, (3)

the sum of true ranking scores cri , discounted by their
respective position ri produced in the ranking. The nDCG
is computed by dividing DCG with the ideal discounted
cumulative gain (iDCG), the maximum DCG score, achieved
by an optimal ranking r∗

iDCG@n =

n∑
i=1

cr∗i
log2(r

∗
i + 1)

(4)

Thus, the normalized discounted cumulative gain is com-
puted by

nDCG@n =
DCG@n

iDCG@n
(5)

Each time a candidate among the top-n is ranked above
another candidate with better measured performance, the score
decreases. This quantifies the ranking quality. And since
invalid configurations in the top-n will always have a worse
measured performance than any valid configuration, the metric
can also be used to measure ability of the model to discerning
valid and invalid configurations.

4) Experiments & Results: For the following experiments,
workloads Baidu DeepBench Workloads 3 − 57 2 were ran-
domly sampled for configurations and their performance mea-
sured on hardware. Based on this dataset, the model was
evaluated in isolation. The configurations from every workload
were randomly split into training data (75%) and testing data
(25%). Experiments for the presented metrics were done with
a controlled ratio of valid configurations in the training set. A
ratio of 0.3 means that 30 out of 100 samples in the training are
valid. This set was then used to train the performance model.
This model’s behaviour is then evaluated on an unmodified test
set. Repeating this process for every workload and averaging
over the results yielded the data in Figure 2.

Training the model on more data (larger sample size)
improved the performance through all experiments. Experi-
ments over different training batch sizes showed diminish-
ing returns after 100 samples. This shows that the model
requires relatively few samples to perform well. A low ratio
of valid samples in the training set improves the models
ability to distinguish between valid and invalid configurations,
especially in the accuracy of valid-invalid (Figure 2c) and
precision (Figure 2b) metrics. With a higher frequency of
valids, both precision (Figure 2b) and valid-invalid (Figure
2c) performance drop significantly. When the model learns
less about invalid configurations, it becomes harder for it to
distinguish them from valid configurations. Even further, the
diminishing ability to separate valids from invalids outweighs
the theoretically better ranking performance in models trained
on higher ratios. Both observations are combined in Figure 2a,

2except workloads 6, 10, 15, 21, 27, 34 and 41, which are not executable
on VTA

(a) nDCG (b) Precision (c) Accuracy Valid-Invalid (d) Accuracy Valid-Valid

Fig. 2: Cost-model performance evaluation.

Fig. 3: Number of trials to find the best candidate. Plotted over
20 runs with the auto-tuner, for each workload.

where across the full ratio scale a bell-shaped curve appeared.
Since nDCG ranks both the retrieval and ranking ability, this
makes sense. With a low ratio, the model fails at ranking the
valid samples. This improves until an equilibrium at a ratio
of 0.5 is reached. A further increase in valid samples then
leads to a dropping score, as the ability to filter the invalids
in the ranking correctly is reduced. Note that the score of
nDCG should not be interpreted in same way as precision or
accuracy. A score of 0.9 does not mean, that 90% of decisions
were correct. It rather allows relative comparisons in ranking
ability between two nDCG scores, where a higher score means
a better overall performance.

The observations confirm the hypothesis that ignoring in-
valid configurations distorts the performance model. When
treating invalid configurations the same way as low perfor-
mance configurations, the model’s ranking quality is improved.
Further, it seems that identifying invalid candidates has more
influence on the ranking than the ability to rank among valids
(see Figures 2d and 2c). Interesting is the equilibrium reached
in the areas of balanced valid/invalid ratios, as the models
seems to reach a sweet spot that, given enough data, has
satisfactory ranking ability as well as the ability to distinguish
between valid and invalid configurations.

C. Tuning Robustness

After evaluating the performance model in isolation, this
section takes a look at the full auto-tuning process. The exper-
iments use an untrained performance model, as is the default
in AutoTVM. Tuning starts with a randomly sampled batch of
size e = 50 and a total tuning duration of t = 750 trials. The

optimization was repeated 20 times for all workloads in Table
II.

The performance of the auto-tuner is defined as the ability to
find good configurations fast and consistently. The following
experiments use the median and interquartile range (IQR) as
a measure for the former and latter criterion, respectively. The
median gives a good indication on the convergence time of
the auto-tuner. IQR on the other hand describes central half
of all median values in multiple experiments and is useful to
determine how robust the overall process is.

Figure 3 reports the amount of trials necessary to find the
best performing configuration, aggregated over all 20 runs for
each layer. The first, and most important observation is the
wide IQR across most workloads.

For most layers, the tuner’s convergence time varies greatly,
hinting at large inconsistencies in the performance model’s
quality. Figure 4 shows all runs for layers 59, 92 and 107
which offers additional information on the behaviour of indi-
vidual runs. For example, in layer 59 and 92 some runs did
not find the best configuration during the 750 trials. This is
shown by the traces of individual runs in Figure 4, that do
not reach the upper performance bound. It also shows that
the initial set of 50 randomly selected configurations greatly
influence how long it takes the tuner to converge towards a
good solution. Bad initial configurations can lead to plateaus in
the search, which can last over multiple epochs. It is suspected,
that the improvements found after several hundred trials can
be attributed to random components in the search, rather than
model quality.

IV. VALIDITY DRIVEN MODEL INITIALIZATION

Following the data in Section III, a better initialization
process for the performance model seems like a promising
path to improve robustness and reduce the number of necessary
hardware measurements. The main problem to address is the
uniform sampling over a non-uniformly distributed solution
space, as shown by the locality analysis in Figure 1. The new
process is aimed to improve the substantial robustness issues of
auto-tuning runs by training a fresh model with a better initial
data set, to achieve a balance in valid/invalid classification as
well as performance prediction. Data in Figures 2a , 2b and

(a) Layer 59 (b) Layer 92 (c) Layer 107

Fig. 4: Progression of multiple auto-tuning runs: Each curve shows the best performance (GFLOP/s) found in tuning run so
far. The median over all runs is plotted bold and the shaded area is the inter-quartile range.

Algorithm 1 Algorithm for locality driven search space
sampling.
1: procedure PRESAMPLE(n samples, n parallel, S)
2: N ← ∅
3: P ← randomly sample n parallel points from the search space S
4: while |N | < n samples do
5: C ← ∅
6: for p in P do
7: rp ← evaluate validity of p with validity check
8: N ← N ∪ {(p, rp)}
9: if is-valid(rp) then

10: C ← C ∪ { neighbors of p /∈ C ∪N}
11: else
12: C ← C ∪ { random point p ∈ S ∧ p /∈ C ∪N}
13: end if
14: end for
15: P ← randomly sample n parallel points from the candidates C
16: end while
17: return N
18: end procedure

2c shows that this is achievable with a balanced data set and
relatively few samples for the model, starting from 50 to 100
training examples. Sampling valid candidates from the search
space is the first step in this process.

A. Neighbourhood-driven presampling

Instead of randomly selecting the initial measurement batch,
a balanced set of valid and invalid configurations is used.
Validity information is obtained by a presampling algorithm,
exploring the search space and storing information about the
validity of each encountered configuration. By leveraging the
spatial locality of valid candidates found in Section III-A, the
randomness is reduced and more valid samples are retrieved
from the search space. To check validity, the existing VTA
compiler is used as a checking function.

Algorithm 1 describes how this feature is used to find
more valid samples in the search space. In a first step, a
randomly sampled set of configurations P0 from search space
S is classified as valid or invalid (line 3). Each configuration
p ∈ P is added to output set N , together with the validity
information. If p is valid, locality is exploited by adding all

its neighbours to the set of potential candidates for the next
evaluation step C (line 10). Two configurations are neighbours,
if their Manhattan distance is 1. The set of neighbours has a
higher chance of containing additional valid configurations. To
maintain exploration, each invalid configuration adds a random
new candidate from S to C (lines 11− 12). After processing
all members of P , a new set P is sampled from C, as shown
in line 13. These steps are repeated until the limit of nsamples

is reached. The valid and invalid candidates to generate the
balanced initialization set for AutoTVM are sampled from N .

B. Sample Selection with Distance Maximization

Presampling, as described in the previous section, generates
a set N of configurations and information on their validity.
From N , the initial measurement epoch E0 ⊂ N is selected,
such that a desired ratio of valid and invalid configurations
is achieved. To do this, N should be larger than E0, to
ensure a degree of diversity in the possible candidates for
E0. A result of presampling algorithm is that N can be
defined as N = Nvalid ∪ N invalid. Therefore, E0 can be
constructed from the configurations Evalid

0 ⊂ Nvalid and
Einvalid

0 ⊂ N invalid as E0 = Evalid
0 ∪Einvalid

0 . The selection
from Evalid

0 and Einvalid
0 happens individually, maximizing

the Manhattan distance between all selected candidates.

C. Biased Simulated Annealing

Since the validity of a search space subset is already known
at runtime, this information can be used to bias the simulated
annealing. In experiments, the value of performance model
predictions were mostly in the interval [−7, 7]. Known invalids
are set to −106, removing them from the top-n ranking.
Known valids are handled with more care. Since we do
not know their performance, a place in the top-n cannot be
guaranteed. Therefore, we bias known valids with a value of
+1. This boosts their chance to place in the top-n ranking
without overshadowing potentially better implementations.

V. EXPERIMENTS

The previous section presented multiple changes to the
auto-tuning process, with the goal to improve the robustness
and reduce the convergence time. Mainly the initialization of
the model was of concern, as this proved to be a source
of instability during the search. The following sections will
evaluate the modifications and compare them to the baseline
AutoTVM. The comparison will consider both trained and
untrained models.

A. Experimental Setup

All experiments in this section use pre-recorded ground
truth data from the VTA hardware, the same as in the search
space analysis evaluation in Section III. They act as proxys to
real hardware measurements. This reduces the time to evaluate
individual candidates and enables repeated experiments for
robustness evaluation. Details on the operators in the working
data set are in Table II.

Before the actual tuning process begins, the presampling
algorithm from section IV-A explores the search space and
gathers the data to replace random initialization of the first
measure epoch E0 with a set of configurations created by
the process from section IV-B. From there, the existing flow
of AutoTVM is used: measurements in epoch Ei are used
to train the performance model. This performance model is
then used by the simulated annealing algorithm to select
the configuration for next measure epoch Ei+1. This new
batch of configurations is then evaluated on hardware and
the cycles repeats. The original AutoTVM implementation has
been altered in two locations: 1) The simulated annealing now
uses the bias information from section IV-C and 2) hardware
evaluations are replaced with querying the ground truth data
gathered once for the full search space. All experiments use an
epoch size of 50 measurements, or trials, until a total of 750
evaluations on hardware are performed. In all experiments with
the extended auto-tuning, the presampling set N ⊂ S of each
search space S is built form min(1000, |S|) configurations.
Model initialization is then performed as described in Section
IV: E0 = Evalid∪Einvalid, with Evalid = min(|Nvalid|, 25)
and Einvalid = min(|N invalid|, 50− |Nvalid|).

B. Evaluation against Baseline

First, the effects of the improved model are investigated.
Runs with randomly initialized search and an unmodified
AutoTVM serve as a baseline. The results for the individual
runs are in Figure 5. The improved methods outperform the
baseline for every workload, with a mean of only 0.416×
as many trials for convergence. Two results stand out: layer
59 is remarkably better (0.111×) than the mean and layer
107 shows weaker improvements (0.735×). These are also
the workloads with lowest (layer 59) and the highest (layer
107) numbers of valids in the search space. For layer 59, if
there are very few valids, finding any of these has much higher
chance of being the best one. Layer 107 on the other hand, has
the highest number of valids candidates, meaning that finding
valids alone is not sufficient for good performance, making

Fig. 5: Convergence and robustness of the novel method (Full
enhanced initialization) and the AutoTVM baseline over 20
tuning runs.

Fig. 6: Convergence and robustness for each workload over
20 runs this work (Full enhanced initialization) and 10 runs
for the transfer-learning solution (TL Baseline).

the search process harder. Nonetheless, our method improved
the convergence time by 1.36×. Across all experiments, the
mean IQR is only 0.424× of the baseline. In some layers, like
3, 5, 8, 42, 48 or 92, IRQ measure was improved by factors
of three to six.

All the median values of the presented method are consis-
tently below 300 trials, with only layers 8, 17 and 53 requiring
more than 200 trials. Further, the robustness of the proposed
method roughly follows the baseline, but always improves
upon it. Meaning that a layer with narrow IQR in the baseline,
will also have a narrow IQR with the improved initialization
and a wide IQR in the baseline leads to a wider IQR in the
new method. While the overall performance improved, some
runs still produced outlier performing significantly worse than
the rest, for example layers 8, 42 or 53. Interesting is layer
42, where the IQR with presampling is narrow, but several
positive and negative outliers exist. The baseline, on the other
hand spreads from 50 to 750 trials, with IQR between 200
and 450. This hints towards a workload, that is rather difficult
for the performance model to reason about and where the
initial dataset has a large impact on the rest of the search.
This is the complete opposite of layers 3, 5 or 106, where the
spread is narrowed considerably and outliers are few or non-
existent. The high robustness of 59 can again be explained with
extremely low number of valid configurations in the search
space. Often the best candidate was in the initial training batch.

C. Evaluation against Trained Performance Model

In the previous experiments, the AutoTVM model used
random sampling to start the search process and used an
uninitialized model, whereas the presampling method already
provided validity information for the start of the tuning pro-
cess. This showed to significantly search performance and
robustness. In the following experiments AutoTVM with a
performance prediction model trained on 30000 random sam-
ples from all workloads in Table II is compared against the
presampling based tuning. Since the model only learned about
other workloads, this feature is called transfer learning.

The experiments with transfer learning will use the context
relation features, as they provide the ability to learn across
different operators [6]. From the fully evaluated search spaces,
30000 configurations were randomly sampled as training data
(but never from the workload under evaluation). From these,
ca. 63.04% could be used to train the model. The other
samples proved to be invalid configurations during feature
extraction phase and thus were removed from the training set.
Although the context relation features are designed to produce
feature vectors compatible across workloads, the vectors of
some workloads still required zero padding to fit the input
length. Due to the large overheads during transfer learning,
experiments were only repeated 10 times, instead of 20.

Figure 6 compares the convergence time of this work and
the trained tuner. Overall, the pretrained model is only needs
90.5% of the trials to find the best result, compared to the
AutoTVM baseline. However, in almost half of the experi-
ments, the tuning performance decreased. Five workloads (3,
5, 78, 92, 106) perform worse than the random baseline, layer
5 needs 2.085× as many trials in the median. On the other
hand, layers 8 or 42 performed significantly better than the
presampling based method by factors of 2.24× and 1.54×.
For the robustness, transfer learning improves the baseline by
a factor of 1.107×, but has strong variations in both directions.
Layers 8 and 42, achieve an exceptional robustness, with the
IQR being only 2.7% and 6.5% of the baseline. For layer
59, learning from other workloads is not successful, as IQR
increases by a factor of 5.386×, although the convergence is
slightly better.

Overall, the pretrained model consistently requires over
200 samples for median convergence, with the exceptions
of layers 42, 53 barely and 107. Layers 8, 42, 53 and 107
show high robustness and no outliers, while outperforming
the presampling method. However, workloads 5, 78, 92 or
106 are the opposite of this. They need over 300, the latter
three over 500 samples to converge to the best solution. They
also have a low robustness with the outer quartiles reaching
up to the sampling limit. While these results improve upon the
random baseline, our presampling based method outperforms
the transfer learning approach in more than half the cases and
never drops below baseline performance.

D. Tuning Overhead

The previous sections compared the tuning performance by
the number of trials, not time-to-solution. This metric makes

TABLE III: Tuning overheads (in seconds) averaged over 10
runs. presampling and sample selection for the work presented
in this section. Pretraining for transfer learning with context
relation features. Features based on AutoTVM.

Pre-tuning Overhead Runtime Overhead
Pre- Sample Pre- Context-

Layer Sample selection training Knob Relation
78 416.8 13.4 512.8 77.8 656.8
8 375.5 13.0 839.9 77.5 1118.7

92 396.0 11.7 653.7 88.4 1139.7

comparison of different approaches easier and decouples the
evaluation from runtime effects. However, these methods also
introduce overheads in the overall process. While hardware ex-
ecution is a major contributor to the overall tuning time, other
overheads can increase the absolute runtime. Table III lists the
per run overheads of the different methods. Performing the
validation of individual candidates for model initialization has
a significant overhead, while the sample selection overhead is
the negligible. For layers 78, 8 and 92 presampling plus sample
selection is still 82.6s, 415.4s and 246s faster than transfer
learning. However, the presampling has to be performed for
every new workload, whereas a once trained model can be
reused for different workloads. Tuning the knob features,
which just flatten the configuration into a vector, is faster
than the curve features by factors of 8.44×, 14.42× and
12.89× for the layers in Table III. The data shows that for
actual tuning runs, both the pre-tuning and runtime overhead
are lower with our method, compared to the transfer-learning
solution of TVM. Even when using an already trained model,
the presampling overhead is amortized against the much more
expensive feature extraction.

VI. DISCUSSION AND RELATED WORK

Prior art on auto-tuning is mostly focussed on improvements
of the underlying ML-model and the search algorithm to
improve result quality. In CHAMELEON [2], SA and boosted
trees are replaced with a reinforcement-learning agent. Further,
sampling time was reduced by using only a single hardware
measurement for similar configurations. Likewise, AutoHalide
[1] and Ansor [12] further evolve the search processes and
underlying models. However, the influence of invalid config-
urations is not discussed, as they are mostly focussed on x86
and GPU architectures, where this issues is much less domi-
nant. Another approach is followed by TELAMON [4], which
avoids invalid configurations by relying on a constraint based,
manually crafted hardware model. The model predicts the
upper performance bound, while avoiding the construction of
invalid configurations. Similarly, DORY [5] builds a constraint
model of the PULP hardware’s memory hierarchy. These hand-
crafted approaches deliver good performance, however come
at high engineering cost, requiring deep hardware knowledge.

Auto-tuning and performance optimization in general are
a trade-off between data cost, engineering cost, measure-
ment cost. For general purpose systems with an abundance
of measurement data, like GPUs in a cloud environment,

fully data driven approaches can generate impressive results
quickly, at the cost of millions of training samples [9], while
excluding all invalid candidates from search and training. This
is not always feasible for specialized devices, like embedded
systems where sufficient training data is not readily available.
Approaches with higher engineering cost can be a hurdle in
some contexts, like hardware development. While feedback
driven approaches are more portable, the reduction of hardware
measurements is the key to reduce optimization times. In this
context, the presampling method for search spaces with a
large share of invalid configurations demonstrated significant
performance improvements over the baseline. The experiments
with the curated initial data set and the transfer learning
showed how important the composition of the training set
is to the auto-tuning performance. In the transfer-learning
scenario, the training set only contains information about a
similar but not identical problems. The individuality of each
workload with respect to valid and invalid configurations is
not yet learned at this point. A possible explanation for this
is feature complexity. The context relation features used for
transfer learning provides a more detailed view of a candidate’s
execution, at the cost of significantly larger feature vectors,
compared to the cheaper knob features. And while the knobs
are a simpler representation, they accurately capture both,
validity and performance information. The context relation
features lose this specificity to gain portability. Improving the
initialization point is not a novel concept, per se. Algorithms
like kmeans++ [3] already demonstrated the benefits of
starting point optimizations.

VII. CONCLUSION

While auto-tuning itself is already an established approach
to DNN optimization, dedicated accelerators can add another
dimension to this problem.

Insights into the solution distribution and behaviour of the
performance prediction model in the light of a dominant
subspace of invalid configurations forms the base for a new
initialization process of the auto-tuner. First, the search space
is sampled for valid and invalid configurations, without consid-
ering performance, yet. Since clusters of valid configurations
were found in the search spaces, the presampling algorithm
utilizes this to exploit these local pockets of possible solu-
tions. Otherwise, the space is explored randomly. From the
information of valid and invalid subsets, a curated training set
is created.

Experiments show that this method consistently outperforms
the baseline with random initialization and is more robust than
tuning with a pretrained model. The median time to find the
best solution is reduced across all workloads and the difference
between individual runs for the same workload are minimized.
Experiments with transfer learning showed that both, quality
and quantity of training data need consideration.

For real world applications, this new process can bring
two advantages. The first is more confidence in the selected
tuning duration. In practice, we do not know in advance if the
solution has been found, thus the search usually runs longer

than necessary. With the improved robustness, tuning can end
sooner and give greater confidence in the result.

Second, the process only relies on data for a single workload
and is not dependent on existing training data. This is helpful
for non-commodity hardware and HW/SW-Codesign.

What remains to be explored is the generalization of this
method. How well it translates to other hardware architectures
is highly dependent on both the architecture itself and code
generation. However, since the primary insight is that a more
nuanced initialization of the prediction model yields better
tuning performance, the method is agnostic to the source of the
invalid configuration. If the performance prediction model can
interpret validity from the presented features, a generalization
should be possible.

REFERENCES

[1] ADAMS, A., MA, K., ANDERSON, L., BAGHDADI, R., LI, T.-M.,
GHARBI, M., STEINER, B., JOHNSON, S., FATAHALIAN, K., DURAND,
F., ET AL. Learning to optimize halide with tree search and random
programs. ACM Transactions on Graphics (TOG) 38, 4 (2019), 1–12.

[2] AHN, B. H., PILLIGUNDLA, P., YAZDANBAKHSH, A., AND ES-
MAEILZADEH, H. Chameleon: Adaptive code optimization for expedited
deep neural network compilation. In International Conference on
Learning Representations (ICLR ’20) (2020).

[3] ARTHUR, D., AND VASSILVITSKII, S. K-means++: The advantages of
careful seeding. In Proceedings of the Eighteenth Annual ACM-SIAM
Symposium on Discrete Algorithms (USA, 2007), SODA ’07, Society
for Industrial and Applied Mathematics, p. 10271035.

[4] BEAUGNON, U., POUILLE, A., POUZET, M., PIENAAR, J., AND CO-
HEN, A. Optimization Space Pruning without Regrets. In International
Conference on Compiler Construction (CC ’17) (Feb. 2017), ACM Press,
pp. 34–44.

[5] BURRELLO, A., GAROFALO, A., BRUSCHI, N., TAGLIAVINI, G.,
ROSSI, D., AND CONTI, F. Dory: Automatic end-to-end deployment of
real-world dnns on low-cost iot mcus. IEEE Transactions on Computers
(2021).

[6] CHEN, T., ZHENG, L., YAN, E., JIANG, Z., MOREAU, T., CEZE, L.,
GUESTRIN, C., AND KRISHNAMURTHY, A. Learning to optimize tensor
programs. In 32nd International Conference on Neural Information
Processing Systems (2018), NIPS’18, Curran Associates Inc., pp. 3393–
3404.

[7] CHETLUR, S., WOOLLEY, C., VANDERMERSCH, P., COHEN, J., TRAN,
J., CATANZARO, B., AND SHELHAMER, E. cudnn: Efficient primitives
for deep learning. ArXiv 1410.0759 (2014).

[8] FRIEDMAN, J. H. Greedy function approximation: a gradient boosting
machine. Annals of statistics (2001), 1189–1232.

[9] HEGDE, K., TSAI, P.-A., HUANG, S., CHANDRA, V., PARASHAR, A.,
AND FLETCHER, C. W. Mind mappings: Enabling efficient algorithm-
accelerator mapping space search. In Proceedings of the 26th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems (New York, NY, USA, 2021), ASP-
LOS 2021, Association for Computing Machinery, p. 943958.

[10] KRAUSE, E. F. Taxicab geometry: An adventure in non-Euclidean
geometry. Courier Corporation, 1986.

[11] MOREAU, T., CHEN, T., VEGA, L., ROESCH, J., YAN, E., ZHENG,
L., FROMM, J., JIANG, Z., CEZE, L., GUESTRIN, C., AND KRISHNA-
MURTHY, A. A hardware-software blueprint for flexible deep learning
specialization. IEEE Micro 39 (2019).

[12] ZHENG, L., JIA, C., SUN, M., WU, Z., YU, C. H., HAJ-ALI, A.,
WANG, Y., YANG, J., ZHUO, D., SEN, K., GONZALEZ, J. E., AND
STOICA, I. Ansor: Generating high-performance tensor programs for
deep learning. In Operating Systems Design and Implementation (OSDI
20) (Nov. 2020), USENIX Association, pp. 863–879.

