NPS: A Compiler-aware Framework of Unified
Network Pruning for Beyond Real-Time Mobile
Acceleration

Zhengang Li', Geng Yuan', Wei Niu?, Yanyu Li', Pu Zhao', Yuxuan Cai', Xuan Shen’, Zheng Zhan',
Zhenglun Kong', Qing Jin!, Bin Ren?, Yanzhi Wang!, Xue Lin!
'Northeastern University,
2College of William and Mary,

{l1i.zhen, yuan.geng, yanz.wang, xue.lin}@northeastern.edu

Abstract—With the increasing demand to efficiently deploy
DNNs on mobile edge devices, it becomes much more important
to reduce unnecessary computation and increase the execution
speed. Prior methods towards this goal, including model com-
pression and network architecture search (NAS), are largely
performed independently and do not fully consider compiler-
level optimizations which is a must-do for mobile acceleration. In
this work, we first propose (i) a general category of fine-grained
structured pruning applicable to various DNN layers, and (ii) a
comprehensive, compiler automatic code generation framework
supporting different DNNs and different pruning schemes, which
bridge the gap of model compression and NAS. We further
propose NPS, a compiler-aware unified network pruning and
architecture search. To deal with large search space, we propose
a meta-modeling procedure based on reinforcement learning with
fast evaluation and Bayesian optimization, ensuring the total
number of training epochs comparable with representative NAS
frameworks. Our framework achieves 6.7ms, 5.9ms, and 3.9ms
ImageNet inference times with 77%, 75% (MobileNet-V3 level),
and 71% (MobileNet-V2 level) Top-1 accuracy respectively on
an off-the-shelf mobile phone, consistently outperforming prior
work.

I. INTRODUCTION

The growing popularity of mobile Al applications and the
demand for real-time Deep Neural Network (DNN) executions
raise significant challenges for DNN accelerations. However,
the ever-growing size of DNN models causes intensive com-
putation and memory cost, which impedes the deployment on
resource limited mobile devices.

DNN weight pruning [15], [27], [43] has been proved as
an effective model compression technique that can remove re-
dundant weights of the DNN models, thereby reducing storage
and computation costs simultaneously. Existing work mainly
focus on unstructured pruning scheme [14], [24] where arbi-
trary weight can be removed, and (coarse-grained) structured
pruning scheme [27], [49] to eliminate whole filters/channels.
The former results in high accuracy but limited hardware par-
allelism (and acceleration), while the latter is the opposite. An-
other active research area is the Neural Architecture Search
(NAS) [50], which designs more efficient DNN architectures
using automatic searching algorithms. EfficientNet [41] and
MobileNetV3 [18] are representative lightweight networks

obtained by using NAS approaches. Recently, hardware-aware
NAS [7], [40], [44] has been investigated targeting acceleration
on actual hardware platforms.

Different from the prior work on coarse-grained pruning
and NAS that find a smaller, yet regular, DNN structure,
recent work [10], [25], [31] propose to prune the weights in a
more fine-grained manner, e.g., assigning potentially different
patterns to kernels. Higher accuracy can be achieved as a result
of the intra-kernel flexibility, while high hardware parallelism
(and mobile inference acceleration) can be achieved with the
assist of compiler-level code generation techniques [31]. This
work reveals a new dimension of optimization: With the aid of
advanced compiler optimizations, it is possible to achieve high
accuracy and high acceleration simultaneously by injecting a
proper degree of fine granularity in weight pruning. Despite
the promising results, pattern-based pruning [25], [31] is only
applied to 3x3 convolutional (CONV) layers, which limits the
applicability.

As the first contribution, we propose a general category of
fine-grained structured pruning schemes that can be applied to
various DNN layers, i.e., block-punched pruning for CONV
layers with different kernel sizes, and block-based pruning
for FC layers. We develop a comprehensive, compiler-based
automatic code generation framework supporting the proposed
pruning schemes in a unified manner, supporting other types of
pruning schemes, and different schemes for different layers. We
show (i) the advantage of the proposed fine-grained structured
pruning in both accuracy and mobile acceleration, and (ii) the
superior end-to-end acceleration performance of our compiler
framework on both dense (before pruning) and sparse DNN
models.

While our compiler optimizations provide notable mobile
acceleration and support of various sparsity schemes, it in-
troduces a much larger model optimization space: Different
pruning schemes result in different acceleration performances
on different types of layers under compiler optimizations.
Thus, it is desirable to perform a compiler aware, joint pruning
scheme and pruning rate search for each individual layer. The
objective is to maximize accuracy satisfying a DNN latency
constraint on the target mobile device. The DNN latency will



be actually measured on the target mobile device, thanks to
the fast auto-tuning capability of our compiler for efficient
inference on different mobile devices.

We develop the compiler-aware NPS framework to fulfill
the above goal. It consists of three phases: (1) replacement of
mobile-unfriendly operations, (2) the core search process, and
(3) pruning algorithm search. The overall latency constraint
is satisfied through the synergic efforts of (i) incorporating
the overall DNN latency constraint into the automatic search
in Phase 2, and (ii) the effective search of pruning algo-
rithm and performing weight training/pruning accordingly.
As Phase 2 exhibits a larger search space than prior NAS
work, to perform efficient search, we propose a meta-modeling
procedure based on reinforcement learning (RL) with fast
evaluation and Bayesian optimization. This will ensure the
total number of training epochs comparable with representative
NAS frameworks.

Our key contributions include:

« We propose a general category of fine-grained structured
pruning applicable to various DNN layers, and a compre-
hensive, compiler code generation framework supporting
different pruning schemes.

o We bridge the gap between model compression and NAS.
We develop a compiler-aware framework of network
pruning search, maximizing accuracy while satisfying
inference latency constraint.

« We design a systematic search acceleration strategy, in-
tegrating pre-trained starting points, fast accuracy and
latency evaluations, and Bayesian optimization.

e Our NPS framework achieves by far the best mobile
acceleration: 6.7ms, 5.9ms, and 3.9ms ImageNet infer-
ence times with 77.0%, 75%, and 71% Top-1 accuracy,
respectively, on an off-the-shelf mobile phone.

II. RELATED WORKS
A. Network Pruning

Existing weight pruning research can be categorized accord-
ing to pruning schemes and pruning algorithms.

Pruning Scheme: Previous weight pruning work can be cat-
egorized into multiple major groups according to the pruning
scheme: unstructured pruning [14], coarse-grained structured
pruning [17], [24], [43], and pattern-based pruning [25], [31].

Unstructured pruning (Fig. 1 (a) and (b)) removes weights
at arbitrary position. Though it can significantly decrease the
number of weights in DNN model as a fine-grained pruning
scheme, the resulted sparse and irregular weight matrix with
indices damages the parallel implementations and results in
limited acceleration on hardware platforms.

To overcome the limitation in unstructured, irregular weight
pruning, many work [17], [24], [43] studied the coarse-grained
structured pruning at the level of filters and channels as shown
in Fig. 1 (c) and (d). With the elimination of filters or channels,
the pruned model still maintains the network structure with
high regularity which can be parallelized on hardware. The
downside of coarse-grained structured pruning is the obvious

accuracy degradation by removing the whole filters/channels,
which limits model compression rate.

Fig. 1 (e) shows the pattern-based pruning [25], [26], [31]
as a representative fine-grained structured pruning scheme. It
assigns a pattern (from a predefined library) to each CONV
kernel, maintaining a fixed number of weights in each ker-
nel. As shown in the figure, each kernel reserves 4 non-
zero weights (on a pattern) out of the original 3x3 kernels.
Besides being assigned a pattern, a kernel can be completely
removed to achieve higher compression rate. Pattern-based
pruning can simultaneously achieve high accuracy (thanks to
the structural flexibility) and high inference acceleration with
the aid of compiler-based executable code generation. Note
that compiler support [31] is necessary for pattern-based
pruning to deliver its promise on mobile acceleration.

A limitation is that pattern-based pruning is limited to 3x3
CONV layers in current work: 5x5 or larger kernel size results
in a large number of pattern types, which incurs notable com-
putation overheads in compiler-generated executable codes.
I1x1 CONV layers and FC layers leave no space of designing
different patterns for a kernel.

Pruning Algorithm: Two main categories exist: heuristic
pruning algorithm [13], [47] and regularization-based pruning
algorithm [11], [17], [24], [43], [48]. Heuristic pruning was
firstly performed in an iterative, magnitude-based manner
on unstructured pruning [!3], and gets improved in later
work [I1]. Heuristic pruning has also been incorporated into
coarse-grained structured pruning [47].

Regularization-based algorithm uses mathematics-oriented
method to deal with the pruning problem. Early work [17],
[43] incorporates ¢; or /{5 regularization in loss function
to solve filter/channel pruning problems. In [21], [48], an
advanced optimization solution framework ADMM (Alternat-
ing Direction Methods of Multipliers) is utilized to achieve
dynamic regularization penalty which significantly reduces
accuracy loss. In [16], Geometric Median is proposed to
conduct filter pruning.

B. Neural Architecture Search (NAS)

In general, NAS can be classified into the following cate-
gories by its searching strategy. Reinforcement Learning (RL)
methods [6], [32], [50] employ Recurrent Neural Network
(RNN) as predictor, with parameters updated by the accuracy
of child network validated over a proxy dataset. Evolution
methods [34], [45] develop a pipeline of parent initialization,
population updating, generation and elimination of offsprings.

One-shot NAS [5], [12] trains a large one-shot model
containing all operations and shares the weight parameters
to all candidate models. Gradient-based methods [7], [23]
propose a differentiable algorithm distinct from prior discrete
search, reducing searching cost while still getting comparable
results. Bayesian optimization [4], [35] uses optimal transport
program to compute the distance of network architectures.

Some recent work realize the importance of hardware co-
design and incorporate the inference latency into NAS, which



CONY Layer FC Layer
4-D Weight Tensor Format 2-D Weight Matrix Format 2-D Weight Matrix Format
chl ch2 chn pruned - - N Input
i CJ CJ chn
Unstructured K Weight \ DO0:0-0= _ D00
pruning g fit1 DO 00 | 00 3 - 17 1
it flit2 [iOD 00" oo Output | — T :
m E RS : : : 2 g
> _ B 0w 00
(@ fitm [0 0500 0o 0 )
S chl ch2 chn Input
e ) e —— . =
W
Coarse-grained H flt2 A Output pru?ling
structured flt m |l il ] vee | ] [ ] oo | ]
pruning chl ch2 chn (S O
“hannel o oo m™ Colus
el e e = R
% 0 [T 117 e
\ 1| ] oo | ]
_________________________________________________________________________________ @ .
chl ch2 chn
Pattern-based O S (0
pruning
B (T ™ (O
(Only for 3x3 : : : Unsupported
CONV Layer) (RN ) (R +++ ([THCI
T T T T T T Ylock T block ~ T T K
1Block-] hed
: o;mglil]rllgc e . ch 1 ch2 4] . chl ch2  ch(n-]) chny \ E
. : [Enmnns nlamnnnnnn] A Eennn N G — '
' (Proposed)  flt2 61056 S 1t 2 | [ [T || I B H":j . Block-based !
! fit 3 flt 3 [ IO (D], [ e e | : | o ning |
| flt4 flt 4 | OO (0| (O OO 1= - - w g pruning |
' _— . . . . L — . (Proposed):
! I
I ® (€3] )

Fig. 1. Different weight pruning schemes for CONV and FC layers using 4D tensor and 2D matrix representation.

is more accurate than the intuitive volume estimation like Mul-
tiply—Accumulate operations (MACs) [7], [40], [44]. MnasNet
[40] utilizes latency on mobile device as the reward to perform
RL search, where gradient-based NAS work FBNet [44] and
ProxylessNAS [7] add a latency term to the loss function.
However, none of these hardware-targeting work fully exploit
the potential of compiler optimizations or satisfy an overall
latency requirement, not to mention accounting for compiler-
supported sparse models. This motivates us to investigate
another dimension of model optimization, that is, compiler-
aware, latency-constrained, architecture and pruning co-search.

C. Compiler-assisted DNN Frameworks on Mobile

Recently, mobile-based, compiler-assisted DNN execution
frameworks [20], [46] have drawn broad attention from both
industry and academia. TensorFlow-Lite (TFLite) [1], Alibaba
Mobile Neural Network (MNN) [2], and TVM [£] are repre-
sentative state-of-the-art DNN inference frameworks. Various
optimization techniques, such as varied computation graph
optimizations and half-float support, have been employed to
accelerate the DNN inference on mobile devices (mobile CPU
and GPU).

Recent work PatDNN [31] and PCONV [25] employ a set of
compiler-based optimizations to support specific pattern-based
sparse DNN models to accelerate the end-to-end inference on
mobile devices. However, the lack of support for different
types of layers (e.g., 1x1 CONV, 5x5 CONYV, and FC) limits
the versatility of such framework.

III. PROPOSED FINE-GRAINED STRUCTURED PRUNING

Pattern-based pruning scheme [25], [26], [3 1], as mentioned
in Section II-A, reveals a new optimization dimension of fine-
grained structured pruning that can achieve high accuracy
and high inference acceleration simultaneously with the assist
of compiler optimizations. As pattern-based pruning is only
applicable to 3 x 3 CONV layers, we propose a general
category of fine-grained structured pruning scheme that can
be applied to various DNN layers: block-based pruning for
FC layers and block-punched pruning for CONV layers with
different kernel sizes.

Block-based Pruning: Fig. 1 (g) shows the block-based
pruning scheme in 2D weight matrix format for FC layers.
The entire weight matrix is divided into a number of equal-
sized blocks, then the entire column(s) and/or row(s) of
weights are pruned within each block. Compared to the coarse-
grained structured pruning, block-based pruning provides a
finer pruning granularity to better preserve the DNN model
accuracy. With an appropriate block size selected, the remain-
ing computation within a block can still be parallelized on
mobile device with the help of compiler. As a result, block-
based pruning can achieve comparable hardware (inference)
performance as coarse-grained structured pruning, under the
same overall pruning rate.

Block-punched Pruning: The CONV layers prefer the
tensor-based representation and computation rather than
matrix-based computation used for FC layers. Inspired by
block-based pruning, we develop block-punched pruning
scheme tailored for CONV layers, which can be accelerated



using the same compiler optimizations. As shown in Fig. 1 (f),
block-punched pruning requires pruning a group of weights
at the same location of all filters and all channels within a
block to leverage hardware parallelism from both memory
and computation perspectives. With effective compiler-level
executable code generation, high hardware parallelism (and
inference acceleration on mobile) can also be achieved.

Compiler Optimizations: We develop a comprehensive,
compiler-based automatic code generation framework sup-
porting the proposed (block-punched/block-based) pruning
schemes in a unified manner. It also supports other pruning
schemes such as unstructured, coarse-grained, pattern-based
pruning. In fact, unstructured and coarse-grained structured
pruning schemes are just special cases of block-punched
pruning, the former with block size 1 x 1 and the latter with
block size of the whole weight tensor/matrix. A novel layer
fusion technique is developed, which is critical to the efficient
implementation of super-deep networks. Fast auto-tuning ca-
pability is incorporated for efficient end-to-end inference on
different mobile CPU/GPU.

Q 77
<76 3 o
> %
Q75
5 74 @ unstructured
8 X ¢ 8x4
< 73 8x8
:,1' 72 X 16x4
|9 1 X 32x4
10 15 20 25 30 35

Latency (ms)

Fig. 2. Accuracy vs. Latency with different block sizes on ImageNet using
ResNet-50 under uniform 6 pruning rate.

Sample Results and Block Size Determination: Fig. 2
shows example results of the accuracy vs. latency when
applying block-punched pruning on ResNet-50 with different
block sizes. A uniform pruning rate (i.e., 6x) and block
size are adopted through all layers. Under the same pruning
rate, unstructured pruning (i.e., 1x1 block size) preserves the
highest accuracy but has the worst performance in latency.
On the contrary, coarse-grained structured pruning (i.e., whole
weight matrix as a block) achieves the lowest latency but with
a severe accuracy degradation. The results of block-punched
pruning show high accuracy and high inference speed (low
latency) simultaneously.

The reason is that the maximum hardware parallelism is
limited by computation resources. Thus, even when dividing
the weights into blocks, each block’s remaining weights are
still sufficient to fulfill on-device hardware parallelism, es-
pecially on resource-limited mobile devices. One reasonable
block size determination strategy is to let the number of
channels contained in each block match the length of the
vector register (e.g., 4) on the target mobile CPU/GPU to
ensure high parallelism. Then determine the number of filters
to be contained (e.g., 8) by considering the given design
targets.

IV. MOTIVATION OF COMPILER-AWARE UNIFIED
OPTIMIZATION FRAMEWORK

Our compiler optimizations provide notable acceleration of
different filter types, and support for various sparsity schemes.
A key observation is that different filter types and sparsity
schemes have different acceleration performance under com-
piler optimizations (when computation (MACs) is the same).
The following are measured on Qualcomm Snapdragon 865
Octa-core mobile CPU of a Samsung Galaxy S20 phone.

Different Filter Types (Kernel Sizes): Fig. 3 (a) shows
the latency vs. computation (MACs) of a CONV layer with
different kernel sizes. We fix the input feature map to 56x56
and change the number of filters. Under the same computation,
33 kernels achieve the best performance, where the 1x1 ker-
nels are the second. Because 3x3 kernels can be accelerated
using Winograd algorithm, and makes it the most compiler-
friendly; while 1x1 kernels result in no input redundancy
in GEMM computation, which also relieves the burden on
compiler optimizations.

Different Pruning Schemes: Fig. 3 (b) shows the compu-
tation speedup vs. pruning rate of a 3x3 CONV layer with
different pruning schemes. We choose the input feature map
size of 56x56 and 256 input and output channels. We can
observe that, with compiler optimizations, fine-grained prun-
ing schemes (i.e., pattern-based and block-punched pruning)
consistently outperform the unstructured pruning and achieve
comparable acceleration compared to the coarse-grained struc-
tured pruning below 5x pruning. Since, under reasonable
pruning rate of fine-grained structured pruning schemes, the
remaining weights in each layer are still sufficient to fully
utilize hardware parallelism.

Based on the above observations, it is desirable to perform
a compiler-aware network pruning and architecture search,
determining the pruning scheme and pruning rate for each
individual layer. The objective is to maximize DNN accuracy
satisfying an inference latency constraint when actually exe-
cuting on the target mobile device, accounting for compiler
optimizations.

*1x1 3x3 77 - unstructured

6‘35 +5x5 e1-3-1 g 61 - structured
£ 30 E 54 -epattern
‘;25 T 4]+ block-punched
2720 =2
= =3
215 =1
= 10 g2
~ 5 21
n
0+ 0+

100 150 200

0 50
Computation (MMACs)
(a)

1 3 5 7 9
Conv3x3 Pru1(1]i)13g Rate (times)

Fig. 3. (a) Latency vs. Computation with different filter types, (b) speedup
vs. pruning rate with different pruning schemes.

V. PROPOSED UNIFIED NETWORK PRUNING AND
ARCHITECTURE SEARCH (NPS) ALGORITHM

A. Overview of NPS Framework

Fig. 4 shows the proposed NPS framework. To take advan-
tage of recent NAS results and accelerate the NPS process,



Pretrained

DNN Model
v NPS Candidate
NPS Scheme
Phase 1: Mobile-unfriendly Agent ‘
Operation Replacement T Per-layer Pruning Scheme
Compil Per-layer Pruning Rate
ompiler-
DNN Model with aware

N Latency
Replaced Operations Reward
Accuracy
Reward

In parallel
Phase 2: NPS
Scheme Search

{ } Deploy

Desirable Compiler |
NPS Scheme Generated Code

!

Phase 3: Pruning
Algorithm Search

Final DNN
Model

Fig. 4. Overview of the proposed NPS framework.

Fast Retraining

Compiler Optimized Code Generation

Fast Evaluation

we start from a pre-trained DNN model, and go through three
phases as shown in the figure.

Phase 1: Replacement of Mobile-Unfriendly Operations:
Certain operators are inefficient to execute on mobile de-
vices (mobile CPU and GPU). For instance, certain activa-
tion functions, such as sigmoid, swish, require exponential
computation, and can become latency bottleneck on mobile
inference. These unfriendly operations will be replaced by
compiler-friendly alternatives such as hard-sigmoid and hard-
swish, with negligible effect on accuracy.

Phase 2: NPS Scheme Search: This phase generates and
evaluates candidate NPS schemes, defined by the collection of
per-layer pruning schemes and rates, and finally chooses the
best-suited one. As per-layer pruning schemes and rates are
being searched, Phase 2 exhibits a much large search space,
which renders representative NAS algorithms like RL-based
ones ineffective. To accelerate such search, we present a meta-
modeling procedure based on RL with Bayesian Optimization
(BO). A fast accuracy evaluation method is developed, tailored
to NPS framework.

Moreover, we incorporate the overall DNN latency con-
straint effectively in the reward function of NPS scheme
search, ensuring that such constraint can be satisfied at the
search outcome. The overall DNN latency is actually measured
on the target mobile CPU/GPU based on the candidate NPS
scheme currently under evaluation. We rely on actual measure-
ment instead of per-layer latency modeling as many prior NAS
work. This is because our advanced compiler optimizations
incorporate a strong layer fusion beyond prior compiler work,
which is critical for efficient implementation of super-deep
networks, and will make per-layer latency modeling less
accurate.

Phase 3: Pruning Algorithm Search: The previous phase
has already determined the per-layer pruning schemes and
rates, so that the compiler-generated codes can satisfy the
overall latency constraint. The remaining task of this phase

is to search for the most desirable pruning algorithm to
perform actual pruning and train the remaining weights'. As
the per-layer pruning rates are already determined, the can-
didate pruning algorithms to select from are limited to those
with pre-defined per-layer pruning rates, including magnitude-
based ones [13], ADMM-based algorithm [48], etc. As an
extension over prior work, we generalize these algorithms to
achieve different sparsity schemes with the help of group-
Lasso regularization [43]. In Phase 3, we compare the resulted
DNN accuracy from the candidate pruning algorithms in a
few epochs, select the one with the highest accuracy, and
continue a best-effort algorithm execution to derive the final
DNN model and compiled codes.

B. Details of Phase 2: NPS Scheme Search

TABLE I
NPS SEARCH SPACE FOR EACH DNN LAYER

{Filter [49], Pattern-based [31],
Block-punched/block-based }

Pruning rate \ { 1x, 2x, 2.5%, 3%, 5x, 7x, 10x }

Pruning
scheme

1) Search Space of NPS in Phase 2: Per-layer prun-
ing schemes: The NPS agent can choose from filter (chan-
nel) pruning [49], pattern-based pruning [31] and block-
punched/based pruning for each layer. As different layers may
have different compatible pruning schemes, we allow the NPS
the flexibility to choose different pruning schemes for different
layers. This is well supported by our compiler code generation.

Per-layer pruning rate: We can choose from the list
{1x,2%,2.5%,3x,5x,7x,10x} (1x means no pruning).

2) Q-Learning Training Procedure: As per-layer pruning
scheme and rate is integrated in NPS scheme search, the
search space is beyond that of conventional NAS. To ensure
fast search, we employ the RL algorithm Q-learning as the
base technique, assisted by fast evaluation and Bayesian opti-
mization (BO) for search speedup. The Q-learning algorithm
consists of an NPS agent, states and a set of actions.

For the state of the ¢-th layer in a given DNN, it is
defined as a tuple of pruning scheme and pruning rate i.e.,
{pruning_scheme;, pruning_rate;}, and each can be se-
lected from the corresponding search space. We add the layer
depth to the state space to constrict the action space such that
the state-action graph is directed and acyclic (DAG).

For action space, we allow transitions for a state with layer
depth i to a state with layer depth i+ 1, ensuring that there are
no loops in the graph. This constraint ensures that the state-
action graph is always a DAG. When layer depth reaches the
maximum layer depth, the transition terminates.

Based on above-defined state s € S and action a € A,
we adopt Q-learning procedure [42] to update Q-values. We
specify final and intermediate rewards as follows:
rr =V — - max(0,h — H), %T (1)

Tty =

IThe above process cannot be accomplished by the fast accuracy evaluation
in Phase 2 as we need to limit the number of training epochs.



where V is the validation accuracy of the model, h is the model
inference speed or latency (actually measured on a mobile
device), and H is the threshold for the latency requirement.
Generally, r7 is high when the model satisfies the real-
time requirement (h < H) with high evaluation accuracy.
Otherwise the final reward is small, especially when the
latency requirement is violated. For the intermediate reward r;
which is usually ignored by setting it to zero [3] as it cannot
be explicitly measured, the reward shaping [30] is employed
as shown above to speed up the convergence. Setting r; = 0
could make the Q-value of s much larger than others in the
early stage of training, leading to an early stop of searching
for the agent.

We adopt the e-greedy strategy [28] to choose actions. In
addition, as the exploration space is large, the experience
replay technique is adopted for faster convergence [22].

3) Fast Evaluation Methods: We develop and adopt multi-
ple tailored acceleration strategies to facilitate fast evaluation
in NPS scheme search.

One-shot Pruning and Early Stopping for Fast Ac-
curacy Evaluation: During the accuracy evaluation pro-
cess, we follow the pruning scheme and pruning rate (for
a specific layer) in a candidate NPS scheme, and conduct
a one-shot pruning (on the target layer) based on weight
magnitude.Thisstraightforward pruning will result in accuracy
degradation.But after a couple of epochs of retraining, it can
distinguishthe relative accuracy of different NPS schemes

Overlapping Compiler Optimization and Accuracy Eval-
uation: We use compiler code generation and actual on-device
latency measurement because of (i) higher accuracy than per-
layer latency modeling due to layer fusion mechanism, and (ii)
the fast auto-tuning capability of compiler to different mobile
devices. Please note that the compiler code generation and
latency measurement do not need the absolute weight values.
Compiler code generation is much faster than DNN training
(even a single epoch), and can be performed in parallel with
accuracy evaluation (as accurate weight values are not needed).
As a result, it will not incur extra time consumption to NPS.

4) Bayesian Predictor for Reducing Evaluations: As per-
forming evaluation on a large amount of sampled NPS
schemes is time-consuming, we build a predictor with BO
[9], [39]. The NPS agent generates a pool of NPS schemes.
We first use BO to select a small number of NPS schemes
with potentially high rewards from the pool. Then the selected
NPS schemes are evaluated to derive more accurate rewards.
We reduce the evaluation of NPS schemes with possibly weak
performance, thereby reducing the overall scheme evaluation
effort.

We build a predictor combining Gaussian process (GP)
with a Weisfeiler-Lehman subtree (WL) graph kernel [29] to
handle the graph-like NPS schemes. The WL kernel compares
two directed graphs in iterations. In the m-th WL iteration,
it first obtains the histogram of graph features ¢,,(s) and
¢m (') for two graphs. Then it compares the two graphs with
Ebase (@ (8), dm(s')) where kpase is a base kernel and we

Algorithm 1 Q-learning with Bayesian Predictor Algorithm

Input: Observation data D, BO batch size B, BO acquisition
function «(-)
Output: The best NPS scheme s
for steps do
Generate a Eool of candidate NPS schemes S.;
Select {8'}iZ, = arg maxses, a(s|D);
Evaluate the scheme and obtain reward {r'}2, of {§}E2,;
Update Q values based on Q-learning with reward;
DFDU({S i= 1,{7‘ }1 1)
Update GP of BO with D;
end for

employ dot product here. The iterative procedure stops until
m = M and resultant WL kernel is

Z wmkbase ¢m( )7¢m(sl))- 2

m=0

kL (s,8)

where w,, contains the weights for each WL iteration m,
which is set to equal for all m following [38]. The Expected
Improvement [33] is employed as the acquisition function in
the work. Algorithm 1 provides a summary.

VI. RESULTS AND EVALUATION
A. Experimental Setup

In this section, we use the image classification task and
ImageNet dataset to show the effectiveness of our framework.

All training processes use the SGD optimizer with a mo-
mentum rate set to 0.9 and weight decay set to 0.0005 and
use the batch size of 2048 per node. The starting learning
rate is set to 0.001, and the cosine learning rate scheduler is
used if not specified in our paper. For Phase 1, we conduct
a fast fine-tuning with 5 training epochs after replacing the
mobile-unfriendly operations (only once for the entire NPS
process). In Phase 2, 40 Nvidia Titan RTX GPUs are used
to conduct the fast accuracy evaluation for candidate NPS
schemes concurrently. Since we start from a well-trained
model, we retrain 2 epochs for each candidate one-shot pruned
model for fast evaluation. For each candidate model, we
measure 100 runs of inference on target mobile devices and
use the average value as end-to-end latency.

In Phase 3, we search the most desirable pruning algorithm
including magnitude-based algorithm, ADMM-based algo-
rithm [21], [48] and geometric median-based algorithm [16]
(only for filter pruning). We adopt 100 epochs for weight
pruning and 100 epochs on remaining weights fine-tuning with
knowledge distillation [37].

The overall GPU days are varied based on pre-trained
network and are reduced thanks to our fast evaluation and
BO. For example, using EfficientNet-B0 as starting point, the
overall searching time is 15 days, where Phase 1 only takes 5
epochs, and Phase 3 takes 1.5 days.

B. Evaluation Results

In Fig. 5 and 6, we compare our accuracy and latency
results with representative DNN inference acceleration frame-
work MNN, PyTorch Mobile, and TFLite. Four dense DNN



TABLE II
COMPARISON RESULTS OF NPS AND REPRESENTATIVE LIGHTWEIGHT NETWORKS.

A. /P Search Params CONV MACs Accuracy (Top-1/5) Latency (CPU/GPU) Device
MobileNet-V1 [19] N./N. 4.2M 575M 70.6 / 89.5 -/ - -
MobileNet-V2 [36] N./N. 3.4M 300M 72.0 /91.0 -/ - -
MobileNet-V3 [18] Y./N. 5.4M 227M 75.2/922 -/ - -
NAS-Net-A [51] Y./N. 5.3M 564M 74.0/91.3 183ms / NA Google Pixel 1
AmoebaNet-A [34] Y./N. 5.1M 555M 74.5/92.0 190ms / NA Google Pixel 1
MnasNet-Al [40] Y./N. 3.9M 312M 75.2 /925 78ms / NA Google Pixel 1
ProxylessNas-R [7] Y./N. NA NA 74.6 /922 78ms / NA Google Pixel 1
NPS (ours) Y./N. 4.1M 290M 77.0/93.3 11.8ms / 6.7ms Galaxy S20
NPS (ours) Y./Y. 3.5M 201M 75.0/92.0 9.8ms / 5.9ms Galaxy S20
NPS (ours) Y./Y. 3.0M 147M 70.9 / 90.5 6.9ms / 3.9ms Galaxy S20
NPS (ours) Y./Y. 2.8M 98M 68.3/89.4 5.6ms / 3.3ms Galaxy S20

models are used for the comparisons, which are MobileNet-
V3, EfficientNet-BO, shrunk versions of EfficientNet-BO to
70% original computation and 50% original computation.
The results are tested on a Samsung Galaxy S20 smartphone
using a Qualcomm Snapdragon 865 Octa-core mobile CPU
and a Qualcomm Adreno 650 mobile GPU. PyTorch Mobile
does not support mobile GPU, so no corresponding results.
EfficientNet-BO is used as our pretrained model.

First, without incorporating NPS, one can observe that our
compiler optimizations can effectively speed up the same DNN
inference, up to 46% and 141% (on MobileNet-V3), compared
with the currently best framework MNN on mobile CPU and
GPU, respectively. The red star shapes in the figures represent
the NPS generated results under different latency constraints.
Our NPS results consistently outperform the representative
DNN models, and achieve the Pareto optimality in terms of
accuracy and inference latency. With the highest accuracy
(77.0% Top-1), the end-to-end inference time of NPS solution
(290M MACs) is only 11.8ms and 6.7ms on mobile CPU and
GPU, respectively. With MobileNet-V3 level accuracy (75%
Top-1), our inference time (201M MAC:sS) is 9.8ms and 5.9ms,
respectively. With MobileNet-V2 level accuracy (71% Top-1),
the inference time of NPS solution (147M MACs) is 6.9ms
and 3.9ms, respectively. To the best of our knowledge, this is
never accomplished by any existing NAS or weight pruning
work.

Table II shows the model details, with representative hand-
crafted and hardware-aware NAS models as references. One
can observe the computation (MACs) reduction under the same
accuracy compared with the prior references, thanks to the
network pruning search.

VII. CONCLUSION

In this work, we propose (i) a fine-grained structured prun-
ing applicable to various DNN layers, and (ii) a compiler auto-
matic code generation framework supporting different DNNs
and different pruning schemes, which bridge the gap of model
compression and NAS. We further propose NPS, a compiler-
aware unified network pruning and architecture search, and
several techniques are used to accelerate the searching process.

MobileNet-V3:
A MNN
M pyTorch
® TF-Lite
& Our Compiler
EfficientNet-BO0 :
A VNN
M PyTorch
TF-Lite (38 ms)
Y Our Compiler
EfficientNet-B0 (x0.7) :
MNN
PyTorch
TF-Lite
Our Compiler
EfficientNet-B0 (x0.5) :
A VNN
W PyTorch
@ TF-Lite
s Our Compiler

(MACs=290M) -
11.8,177.0)

ATM) -~ 1---(15.4, 745}~
: 1—8.34,—7 :5)—

(11:9;71:5)

EX-XI S
A im (14.2,68.1) ! A
12 14 16 18 20 22 24 26 28 30
Mobile CPU Latency (ms)

46810 J NPS (Ours)

Fig. 5. Accuracy vs. Latency comparison on mobile CPU.

=)
S

MobileNet-V3:
A VNN
® TF-Lite
 Our Compiler
EfficientNet-B0 :
A VNN
TF-Lite (24 ms)
Y Our Compiler
EfficientNet-B0 (x0.7) -
MNN
TF-Lite
Our Compiler
EfficientNet-B0 (x0.5) :
A MNN
@ TF-Lite
Y Our Compiler

-
©

L (Macs=290
U (6.7,77.0)

\‘
@

Top-1 Accuracy (%)
3 ¥IN I XN A3 X

[
o

Y NPS (Ours)

P Lo R T Y S B
3 4 56 7 8 9 10 11 12 13 1415 16 17 18 19
Mobile GPU Latency (ms)

Fig. 6. Accuracy vs. Latency comparison on mobile GPU.

ACKNOWLEDGEMENTS

This project is partly supported by NSF under CNS-
1739748 and CCF-1733701, Army Research Office (ARO)
76598CSYIP, a grant from Semiconductor Research Corpo-
ration (SRC), and Jeffress Trust Awards in Interdisciplinary
Research. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the authors
and do not necessarily reflect the views of NSF, ARO, SRC,
or Thomas F. and Kate Miller Jeffress Memorial Trust.



[1]
[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]
[24]

[25]

REFERENCES

https://www.tensorflow.org/mobile/tflite/. 3
https://github.com/alibaba/MNN. 3

Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. De-
signing neural network architectures using reinforcement learning. In
International Conference on Learning Representations (ICLR), 2017. 6
James Bergstra, Daniel Yamins, and David Cox. Making a science of
model search: Hyperparameter optimization in hundreds of dimensions
for vision architectures. In International conference on machine learn-
ing, pages 115-123, 2013. 2

Andrew Brock, Theodore Lim, James M Ritchie, and Nick Weston.
Smash: one-shot model architecture search through hypernetworks.
arXiv preprint arXiv:1708.05344, 2017. 2

Han Cai, Tianyao Chen, Weinan Zhang, Yong Yu, and Jun Wang.
Efficient architecture search by network transformation. arXiv preprint
arXiv:1707.04873, 2017. 2

Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neu-
ral architecture search on target task and hardware. arXiv preprint
arXiv:1812.00332, 2018. 1, 2, 3,7

Tiangi Chen et al. Tvm: An automated end-to-end optimizing compiler
for deep learning. In 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18), pages 578-594, 2018. 3
Yutian Chen, Aja Huang, Ziyu Wang, loannis Antonoglou, Julian
Schrittwieser, David Silver, and Nando de Freitas. Bayesian optimization
in alphago. arXiv preprint arXiv:1812.06855, 2018. 6

Peiyan Dong, Siyue Wang, Wei Niu, Chengming Zhang, Sheng Lin,
Zhengang Li, Yifan Gong, Bin Ren, Xue Lin, Yanzhi Wang, et al.
Rtmobile: Beyond real-time mobile acceleration of rnns for speech
recognition. arXiv preprint arXiv:2002.11474, 2020. 1

Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic network surgery
for efficient dnns. In Advances in neural information processing systems
(NeurIPS), pages 1379-1387, 2016. 2

Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu,
Yichen Wei, and Jian Sun. Single path one-shot neural architecture
search with uniform sampling. In European Conference on Computer
Vision, pages 544-560. Springer, 2020. 2

Song Han, Huizi Mao, and William J. Dally. Deep compression:
Compressing deep neural networks with pruning, trained quantization
and huffman coding. In International Conference on Learning Repre-
sentations (ICLR), 2016. 2, 5

Song Han, Jeff Pool, John Tran, and William Dally. Learning both
weights and connections for efficient neural network. In Advances
in neural information processing systems (NeurIPS), pages 1135-1143,
2015. 1, 2

Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song
Han. Amc: Automl for model compression and acceleration on mobile
devices. In Proceedings of the European Conference on Computer Vision
(ECCV), pages 784-800, 2018. 1

Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang. Filter
pruning via geometric median for deep convolutional neural networks
acceleration. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 4340-4349, 2019. 2, 6

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerat-
ing very deep neural networks. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), pages 1389-1397, 2017. 2
Andrew Howard et al. Searching for mobilenetv3. In /CCV, 2019. 1, 7
Andrew Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam.
Mobilenets: Efficient convolutional neural networks for mobile vision
applications. arXiv:1704.04861, 2017. 7

Nicholas D Lane et al. Deepear: robust smartphone audio sensing in
unconstrained acoustic environments using deep learning. In Proceed-
ings of the 2015 ACM International Joint Conference on Pervasive and
Ubiquitous Computing, pages 283-294. ACM, 2015. 3

Tuanhui Li et al. Compressing convolutional neural networks via
factorized convolutional filters. In CVPR, 2019. 2, 6

Long-Ji Lin. Reinforcement Learning for Robots Using Neural Net-
works. PhD thesis, USA, 1992. 6

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable
architecture search. arXiv preprint arXiv:1806.09055, 2018. 2

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor
Darrell. Rethinking the value of network pruning. arXiv preprint
arXiv:1810.05270, 2018. 1, 2

Xiaolong Ma, Fu-Ming Guo, Wei Niu, Xue Lin, Jian Tang, Kaisheng Ma,
Bin Ren, and Yanzhi Wang. Pconv: The missing but desirable sparsity

[26]

(27]

(28]

[29]

(30]

[31]

(32]

[33]

[34]

(36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]
[45]
[46]

[47]
[48]

[49]
[50]

in dnn weight pruning for real-time execution on mobile devices. In
Thirty-Four AAAI Conference on Artificial Intelligence, 2020. 1, 2, 3
Xiaolong Ma, Wei Niu, Tianyun Zhang, Sijia Liu, Fu-Ming Guo, Sheng
Lin, Hongjia Li, Xiang Chen, Jian Tang, Kaisheng Ma, et al. An
image enhancing pattern-based sparsity for real-time inference on mobile
devices. arXiv preprint arXiv:2001.07710, 2020. 2, 3

Chuhan Min, Aosen Wang, Yiran Chen, Wenyao Xu, and Xin Chen.
2pfpce: Two-phase filter pruning based on conditional entropy. arXiv
preprint arXiv:1809.02220, 2018. 1

Volodymyr Mnih et al. Human-level control through deep reinforcement
learning. nature, 518(7540):529-533, 2015. 6

Christopher Morris, Kristian Kersting, and Petra Mutzel. Glocalized
weisfeiler-lehman graph kernels: Global-local feature maps of graphs.
In 2017 IEEE International Conference on Data Mining (ICDM), pages
327-336. IEEE, 2017. 6

Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance
under reward transformations: Theory and application to reward shaping.
In ICML, volume 99, pages 278-287, 1999. 6

‘Wei Niu, Xiaolong Ma, Sheng Lin, Shihao Wang, Xuehai Qian, Xue Lin,
Yanzhi Wang, and Bin Ren. Patdnn: Achieving real-time dnn execution
on mobile devices with pattern-based weight pruning. arXiv preprint
arXiv:2001.00138, 2020. 1, 2, 3, 5

Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and Jeff Dean.
Efficient neural architecture search via parameter sharing. arXiv preprint
arXiv:1802.03268, 2018. 2

Chao Qin, Diego Klabjan, and Daniel Russo. Improving the expected
improvement algorithm. In Advances in Neural Information Processing
Systems, pages 5381-5391, 2017. 6

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regu-
larized evolution for image classifier architecture search. In Proceedings
of the aaai conference on artificial intelligence, volume 33, pages 4780—
4789, 2019. 2, 7

Binxin Ru, Xingchen Wan, Xiaowen Dong, and Michael Osborne.
Neural architecture search using bayesian optimisation with weisfeiler-
lehman kernel. arXiv preprint arXiv:2006.07556, 2020. 2

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov,
and Liang-Chieh Chen. Mobilenetv2: Inverted residuals and linear
bottlenecks. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 4510-4520, 2018. 7

Zhigiang Shen and Marios Savvides. Meal v2: Boosting vanilla resnet-
50 to 80%-+ top-1 accuracy on imagenet without tricks. arXiv preprint
arXiv:2009.08453, 2020. 6

Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt
Mehlhorn, and Karsten M. Borgwardt. Weisfeiler-lehman graph kernels.
Journal of Machine Learning Research, 12(77):2539-2561, 2011. 6
Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian
optimization of machine learning algorithms. In Advances in neural
information processing systems, pages 2951-2959, 2012. 6

Mingxing Tan et al. Mnasnet: Platform-aware neural architecture search
for mobile. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 2820-2828, 2019. 1, 3, 7
Mingxing Tan and Quoc V Le. Efficientnet: Rethinking model scaling
for convolutional neural networks. arXiv preprint arXiv:1905.11946,
2019. 1

Christopher John Cornish Hellaby Watkins.
rewards. 1989. 5

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li.
Learning structured sparsity in deep neural networks. In Advances
in neural information processing systems (NeurIPS), pages 2074-2082,
2016. 1, 2,5

Bichen Wu et al. Fbnet: Hardware-aware efficient convnet design via
differentiable neural architecture search. In CVPR, 2019. 1, 3

Lingxi Xie and Alan Yuille. Genetic cnn. In Proceedings of the IEEE
international conference on computer vision, pages 1379-1388, 2017. 2
Mengwei Xu et al. Deepcache: Principled cache for mobile deep vision.
In Proceedings of the 24th Annual International Conference on Mobile
Computing and Networking, pages 129-144. ACM, 2018. 3

Ruichi Yu et al. Nisp: Pruning networks using neuron importance score
propagation. In CVPR, 2018. 2

Tianyun Zhang, Shaokai Ye, Yipeng Zhang, Yanzhi Wang, and Makan
Fardad. Systematic weight pruning of dnns using alternating direction
method of multipliers. arXiv preprint arXiv:1802.05747, 2018. 2, 5, 6
Zhuangwei Zhuang et al. Discrimination-aware channel pruning for deep
neural networks. In NeurIPS, 2018. 1, 5

Barret Zoph and Quoc V. Le. Neural architecture search with reinforce-
ment learning. In International Conference on Learning Representations
(ICLR), 2017. 1, 2

Learning from delayed



[51] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le.
Learning transferable architectures for scalable image recognition. In
Proceedings of the IEEE conference on computer vision and pattern
recognition (CVPR), pages 8697-8710, 2018. 7



