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Abstract—Deep neural networks (DNNs) have recently gained
unprecedented success in various domains. In resource-
constrained systems, QoS-aware DNNs are designed to meet the
latency requirements of mission-critical deep learning applica-
tions. However, none of the existing DNNs have been designed
to satisfy both latency and memory bounds simultaneously as
specified by end-users in the resource-constrained systems. In
this paper, we propose BLINKNET, a runtime system that can
guarantee both latency and memory/storage bounds via efficient
QoS-aware per-layer approximation. We implement BLINKNET
in Apache TVM and evaluate it using Cifar10-quick and VGG
network models. Our experimental results show that BLINKNET
can meet the latency and memory requirements with 2% accu-
racy loss on average.

Index Terms—Machine Learning, Approximation, Quality of
Services

I. INTRODUCTION

Deep neural networks (DNNs) have been attracting atten-
tion in computer vision [1], natural language processing [2],
robotics [3], and many other fields. With the need for pri-
vacy, security, short latency, and limitations of communication
bandwidth, the trained DNN models are gradually increasingly
deployed to edge end such as mobile devices and wearable
devices [4]–[8].

However, the deployment of DNN models on resource-
constrained computing systems (e.g., embedded or IoT plat-
forms) is pretty challenging. On the one hand, due to the dense
computation intensity of neural networks, the application of
neural networks need a guarantee of latency bounds on the
systems. On the other hand, the limited memory and storage
resources are the obstacles for the embedded or IoT platform
to support the inference tasks which require efficiently moving
a large amount of data in its memory hierarchy. Therefore, it
is in much more urgent need for QoS-aware DNN models that
can satisfy both latency and memory bounds on the resource-
constrained computing platforms.

Most of the existing DNN frameworks do not enforce
latency bounds or memory bound. For example, model com-
pression techniques reduce the weight storage and computation
cost using weight quantization [9]–[14] and pruning [15]–[20].
They do not consider the trade-off between accuracy loss,
memory and storage cost, and latency bounds. Most recently,
ApNet was designed to meet the latency bounds of applica-

tions through layer-specific approximation [21]. Nevertheless,
it does not consider the memory cost of DNN models.

In this paper, we propose a new QoS-aware deep learning
framework, named BLINKNET. It has three novel features.
First, BLINKNET provides a performance interface for users
to specify performance requirements as latency and memory
bounds. It allows users to set memory bounds for individual
deep learning applications or collectively for a group of
related applications in a deep learning workflow. Second, it
automatically creates an approximation model corresponding
to the basic model provided by end-users. BLINKNET runs
the approximation model during the inference phase to enforce
latency bounds and memory bounds. The model is dynamically
generated by TVM [22] and stored in a catalog database.
These approximation models in the catalog can be reused for
other applications having similar QoS requirements. Finally,
the approximation model is periodically refined according to
the user’s input and the characteristics of workloads.

We have implemented a prototype of BLINKNET and inte-
grated it with Apache TVM. Our evaluation with representa-
tive DNNs (e.g., VGG16 [23] and Cifar10-quick [24]) shows
that BLINKNET can provide a performance guarantee for both
deep learning applications and dynamically allocate resources
according to their memory demands.

II. RELATED WORK

Research on the model approximation of DNNs. Weight
pruning is one of the key model compression techniques. It
is widely used to reduce the memory and storage cost of
DNNs and accelerate the DNNs with ignorable accuracy loss.
The key idea of weight pruning is to remove the relatively
unimportant weights in the weight matrix in order to reduce the
redundancy. According to the granularity, network pruning can
be classified into two categories: unstructured pruning [25]–
[27] and structured pruning [28]–[30]. The unstructured prun-
ing methods prune the individual parameters resulting in an
irregular compressed model. Though it can yield a higher
pruning ratio, it leads to irregular memory access and an
imbalanced load on each parallel processing engine. Compared
to unstructured pruning, structured pruning approaches remove
the filters or the channels. Intuitively, this kind of pruning
is more aggressive and is more likely to degrade accuracy.
However, in these works [31], the accuracies are comparable
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Fig. 1. Architecture overview of BLINKNET. The components in the
solid rectangular are the new functionalities added for BLINKNET and the
components in the rectangular of dashed lines are the existing functionalities
in TVM.

to unstructured pruning methods or even higher. BLINKNET
supports a variety of model approximation schemes to enforce
the latency and memory bounds.

Research on resource-constrained DNNs. MCDNN is
designed to replace a full DNN model with its approximated
model considering memory size, energy budget, and cloud
cost budget [32]. TVM is an end-to-end DNN optimization
framework [22]. It uses compilers to reduce DNN latency
on resource-constrained hardware. New DNN models have
been designed for resource-constrained hardware. For exam-
ple, MobileNets presents a class of DNN models for mobile
and embedded vision applications. It allows users to make
trade-offs between latency and accuracy [33]. However, none
of them enforces latency bounds for real-time applications.
Most recently, Bateni et al. designed the ApNet framework
which enforces latency bounds for real-time applications.
It maximizes the accuracy potential by applying different
approximation schemes to individual layers of DNNs. Ap-
Net does not consider resource constraints including memory
and storage bounds, which should be enforced in resource-
constrained systems. BLINKNET enforces both latency and
memory bounds simultaneously. It is integrated with TVM to
support a variety of hardware platforms leveraging its end-to-
end compiling framework.

III. DESIGN OF BLINKNET

A. Overview of BLINKNET

The architecture of the BLINKNET framework is shown in
Figure 1. It has four major components: compiler, catalog
database, scheduler, and performance interface. They work
coordinately to enforce latency and memory bounds specified
by end-users of deep learning applications.

• BLINKNET compiler. Given a basic DNN model, the
compiler is used to generate a set of approximation

1 n_layer = int(name.split(‘-’)[1])
2 mod,params = relay.testing.vgg.get_workload(num_layers=n_layer,
..., latency_bound=latency, memory_bound=mem, group_ID=gid)
3 ...
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Fig. 2. Performance interface of BLINKNET.

DNN models. The set of DNN models is managed as a
DNN catalog. The compiler currently supports two model
approximation schemes: low-rank (LR) [34] and deep-
compression (DC) [35]. Low-rank performs low-rank
decomposition in feature maps to replace a basis filter
with a sequence of horizontal and vertical filters. Deep-
compression applies pruning, quantization, and Huffman
coding to reduce the storage requirement of DNNs. Given
a new basic model of N layers, the BLINKNET compiler
applies low-rank and deep-compression to layer i (1 ≤
i ≤ N ), respectively. For a DNN, initially, its catalog
Catalog includes only SetLR = {DNN i

LR} where only
layer i is compressed using the low-rank scheme and
SetDC = {DNN i

DC} where only layer i is compressed
using the deep-compression scheme. All the approxima-
tion models in Catalog are then executed given the
training and testing datasets to get their characteristic
profile ProfileDNNi

x
(x ∈ {LR,DC}) for models in

SetLR and SetDC . Currently, their profiles include clas-
sification accuracy, memory cost, and inference latency.
At runtime, the BLINKNET compiler will store new
approximation models to Catalog as specified by the
BLINKNET scheduler.

• Catalog database. The Catalog and Profile data of
a DNN is stored in a catalog database. We use an in-
memory database to support low-latency retrieval of the
approximation models and their corresponding profiles.

• BLINKNET scheduler. Given the user’s input of la-
tency and memory bounds, the scheduler determines an
approximated model Modelapproximated to enforce the
bounds. The algorithm used by the scheduler is described
in Section III-B. Its output is Modelapproximated =
{Layerix}, where x ∈ [LR,DC], 1 ≤ i ≤ N , and
Layerix denotes approximation scheme x is applied to
layer i. For example, if its output is Modelapproximated =
{Layer1DC , Layer2LR, Layer3LR}, BLINKNET will apply
deep-compression to layer 1 and low-rank to layer 2
and 3, respectively. If Modelapproximated is available
in the catalog database, the BLINKNET runtime will
use it for the deep learning application. Otherwise, the
Modelapproximated will be generated online by the com-
piler and stored in the database for future reference. When
the scheduler cannot enforce the bounds because of the
low availability of system resources, it will serve a task
on a best-effort basis.

• Performance interface. We implement the perfor-
mance interface in the relay python frontend in Apache



TVM [36]. An example is shown in Figure 2. Users can
specify the latency and memory bounds when a network
is created. Further, they need to provide a group ID,
which is assigned to correlated machine learning ap-
plications belonged to the same workflow. BLINKNET
uses group ID to further refine the allocation of system
resources and alleviate performance interference between
groups of applications. Providing a TVM-compatible
interface will significantly accelerate the adoption of
BLINKNET.

B. QoS-Aware Scheduling Algorithm

The general goal of the scheduling algorithm in BLINKNET
is to analyze the approximated versions of DNNs (i.e., those in
SetLR and SetDC) at a per-layer level in order to maximize
accuracy while meeting the latency bound and other resource
constraints. For example, if resource and accuracy information
were known about a basic network model (e.g., VGG) and
its approximated variants (e.g., DNN i

DC and DNN i
LR) the

scheduling algorithm will exam layer by layer analyzing the
trade-offs between accuracy and resource usage for each
variant, deciding if an approximated version of the network
should be used or not. The output of the scheduling algorithm
would be {Layerix} (x ∈ [LR,DC]), a list of the layer
configuration with which variant of the network to be used.
Only one approximation algorithm would be applied to an
individual layer. As the future work, we plan to support more
compression algorithms in BLINKNET.

In order to determine which variant is optimal, it is nec-
essary to develop a metric to quantify the trade-off between
resources saved and accuracy lost. We define a layer’s time-
saving potential (Time potentialix) as

Time potentialix =
∆Timeix

Approx(%)
,

where

∆Timeix =
Timeix − Timeibaseline

Timeibaseline

Here, Timeix is the execution time of layer i of the approx-
imated model using approximation scheme x. Timeibaseline
is the execution time of layer i of the corresponding basic
model. Approx is percentile accuracy loss. Similar values can
be calculated for other resources, such as memory (memory
saving potential). Let Sizeix be memory usage of layer i, then

Mem potentialix =
∆Sizeix

Approx(%)
,

where

∆Sizeix =
Sizeix − Sizeibaseline

Sizeibaseline

These saving potentials can be combined to produce a more
general resource-saving potential for users having perfor-
mance requirements on other dimensions (e.g., energy budget).

Πi
x = Time potentialix + Mem potentialix

This allows the future inclusion of other resources and the
potential to weight different resources as more important in
the BLINKNET framework.

Algorithm 1: BLINKNET scheduler
Input: Time limit: time bound of the task;

Memory limit: memory bound of the task;
Timeij and Sizeij : execution time and memory
cost of layer i of the approximated model
using approximation scheme j.

Output: MinSeti: configuration of layer i.
// Choose the approximation schemes which

meet the memory bound

1 for layer i in 1, ..., n do
2 Seti ← LR ∪DC;
3 for j in LR, DC do
4 if Sizeij > memoryLimit then
5 Seti ← Seti − j;

6 totalT ime← 0;
7 temp← INF ;
// Choose the approximation scheme which

has the minimum execution time

8 for layer i in 1, ..., n do
9 MinSeti ← NULL;

10 for j in Seti do
11 temp← min(Timeij , temp);
12 if temp = Timeij then
13 min← j;

14 MinSeti ←MinSeti + j;
15 totalT ime← totalT ime + temp;

// Improve the accuracy after meeting the

latency and time bounds

16 timeLeft← Time limit− totalT ime;
17 while timeLeft > 0 do
18 temp← INF ;

// Choose the layer which has the

minimum time-saving potential

19 for layer i in 1, ..., n do
20 temp← min(Time potentiali, temp);
21 if temp = Time potentiali then
22 m← i;

23 MinSetm ← NULL;
// For layer m, select the scheme that

has the best accuracy

24 n← best accuracy(m);
25 timeLeft← timeLeft+TimemMinSetm−Timemn ;
26 if timeLeft > 0 then
27 MinSetm ←MinSetm + n;

We design a heuristic algorithm that achieves an optiaml
schedule given the list of possible compression algorithms
for each layer. We describe the scheduling algorithm of



BLINKNET in Algorithm 1. The algorithm takes as inputs
a time limit, a memory bound, and execution time and
memory cost of each layer of the approximated models. Its
output MinSeti is a list of configurations (i.e. approximation
schemes) of individual layers. First, the algorithm needs to
choose the configurations Seti which meet the memory bound
for each layer (Lines 1-5). Then it determines the configuration
which has the minimum execution time (Lines 8-15). The
configuration data is stored in MinSeti. Finally, without
violating the time bound, it further improves the accuracy of
the approximated models using time-saving potentials (Lines
16-26). Specifically, it identifies the configuration of layer
m which has the minimum time-saving potential. Then it
replaces m with the configuration n, which may lead to higher
accuracy. Then n replaces m in MinSeti. BLINKNET keeps
the accuracy improvement process until the total time cost is
larger than the time bound.

IV. EVALUATION

Basic DNN models. We implement the BLINKNET proto-
type in Python and evaluate it using two basic DNN models,
including VGG [23] and Cifar10-quick [24]. Table I shows
the configurations of the two models. It also shows the
maximum accuracy loss after applying the low-rank and deep-
compression approximation schemes to all the layers of the
models, respectively.

TABLE I
DNN CONFIGURATION EVALUATED IN THIS PAPER.

DNN Layers Accuracy loss
VGG16 16 ≈1%

Cifar10-quick 3 ≈5%

Model catalogs. In the experiments, we utilize caffe [37]
to train our models and run the models through TVM’s
AutoRelay [22] and BLINKNET compiler to get the catalog
of per-layer approximation DNN models and their profiles.
Let’s take VGG as an example. We create 16 models by
applying low-rank to one layer of VGG [23] at a time, only
adjusting one layer per model. Then we conduct a similar
process again using deep-compression. It is an unstructured
pruning algorithm, which zeroes out the lowest magnitude
weights. It also uses 256 bits for quantization. The process
ends with 32 total models in the catalog of VGG.

Datasets. We choose two datasets in the evaluation. The
CIFAR10 dataset consists of 60000 32*32 color images in 10
classes with 6000 images per class [38]. The dataset is divided
into five training batches and one test batch. The MNIST
dataset comes from a database of handwritten digits [39]. It
contains 60,000 training images and 10,000 testing images.

System configuration. The computer system has an Intel
processor of Core 2 Duo CPU E8400 3.00 GHz and 16 GB
DRAM. We run Ubuntu 18.04.5 LTS on the server with the
latest version of Caffe and TVM 6.0. We use this server
to emulate different types of resource-constrained computing

systems with varying capacity of DRAM and CPU speed
through dynamic voltage scaling [40]. We only use CPUs in
the evaluation in the paper. As future work we will study its
performance on GPU platforms.

A. Performance with VGG

TABLE II
EXECUTION TIME OF VGG WITH DIFFERENT LATENCY BOUNDS.

Latency bound Memory bound Measured latency
800 ms 4.25 MB 808 ms

1000 ms 4.25 MB 997 ms

In this experiment, we use VGG with the CIFAR10 dataset.
We set the latency bounds as 800 ms and 1000 ms respectively
and memory bound as 4.25 MB. As shown in Table II,
BLINKNET achieves the performance goals of users with up
to 1% accuracy loss. The assignment of the approximation
schemes for each layer of VGG is presented in Table III.

TABLE III
ASSIGNMENT OF PER-LAYER APPROXIMATION SCHEMES WHEN THE

LATENCY BOUNDS ARE 800 MS AND 1000 MS RESPECTIVELY. B:
LATENCY BOUND; DC: DEEP COMPRESSION; LR: LOW RANK; AND NA:

NO APPROXIMATION.

Layers B=800ms B=1000ms
1 DC DC
2 LR LR
3 NA LR
4 LR LR
5 LR LR
6 LR LR
7 LR LR
8 LR LR
9 DC DC

10 DC LR
11 DC DC
12 DC DC
13 LR LR

B. Performance with Cifar10-quick

We evaluate BLINKNET using the Cifar10-quick model with
both CIFAR10 and MNIST datasets. The results are shown in
Table IV. We can observe that BLINKNET enforces the latency
bounds given both of the datasets. Its per-layer assignment is
given in Table V.

TABLE IV
EXECUTION TIME OF CIFAR10-QUICK WITH DATASETS.

Dataset Latency bound Memory bound Measured latency
CIFAR10 60 ms 4.2 MB 54 ms
MNIST 6 ms 3.8 MB 5 ms



TABLE V
ASSIGNMENT OF PER-LAYER APPROXIMATION SCHEMES FOR THE

CIFAR10 AND MNIST DATASETS RESPECTIVELY. B: LATENCY BOUND;
DC: DEEP COMPRESSION; LR: LOW RANK; AND NA: NO APPROXIMATION.

Layers CIFAR10 MNIST
1 NA DC
2 NA LR
3 LR LR

V. CONCLUSION

This paper presents BLINKNET, a user-configurable deep
learning framework. It leverages the per-layer analysis of
the approximated DNN models to meet user’s performance
requirements while maximizing the accuracy of approximated
models given the resource constraints. Our evaluation results
with VGG and Cifar10-quick show that BLINKNET can au-
tomatically and efficiently enforce the performance policies
specified by end-users.

For future work, we plan to support more compression
schemes for building the model catalog. We will evaluate
BLINKNET with other state-of-the-art networks (i.e., ResNet
and MobileNet) and datasets (i.e., MNIST and ImageNet). We
will also use other hardware platforms (i.e., FPGAs and GPUs)
for the evaluation.
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