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Abstract. With the rise of deep learning and rapidly increasing pop-
ularity of it, neural machine translation (NMT) has become one of the
major research areas. Sequence-to-sequence models are widely used in
NTM tasks, and one of the state-of-the-art models, the Transformer, has
also encoder-decoder architecture with an additional attention mecha-
nism. Despite a substantial amount of research in improving NMT mod-
els’ translation qualities and speeds, to the best of our knowledge, none
of them gives a detailed performance analysis of each step in a model. In
this paper we analyze the Transformer model’s performance and trans-
lation quality in different settings. We conclude that beam search is the
bottleneck of the NMT inference and analyze beam search’s effect on
the performance and quality in detail. We observe that the beam size
is one of the largest contributors to the Transformer’s execution time.
Additionally, we observe that the beam size only affects BLEU score at
word level, and not at token level, indicating a mismatch between the
beam search internal evaluation metrics and the end-to-end metrics used
to evaluate models. We also show that the vocabulary size has a major
role in the performance of the beam search.

Keywords: Neural machine translation · Performance analysis · Beam
search.

1 Introduction

Machine translation has become a pivotal datacenter workload. As more on-
line services cater for uses distributed worldwide, processing user generated text
and generate more text as a result, machine translation is part of most online
services [4]. Following the advances in neural networks and natural language
processing, neural machine translation (NMT) has become the most successful
machine translation method. Unfortunately, neural machine translation com-
putational requirements are orders of magnitude higher than traditional online
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services, forcing service providers to increase the compute power of their infras-
tructure.

Microservices [5] and acceleration [2,4,7] are the two main techniques used by
service providers to cope with the computational requirements of DNN services
like machine translation. Microservices shift services into a group of loosely-
coupled smaller rather than monolithic services, in order to satisfy the per-
formance, availability and flexibility constraints. Service providers also adopt
accelerators like GPUs, FPGAs or TPUs in order to improve energy efficiency,
enabling a more load to be accommodated under the same power constraints.

The throughput observed of NMT services, therefore, has a large impact
over how online service providers design their systems. Unfortunately, the com-
putational performance of NMT services has a poorly understood, non-trivial
relationship to the quality of the translation generated. Each model feature are
a large number of parameters that affect both throughput and accuracy. While
prior work has partially explored the design space formed by such parameters,
there are no in-depth studies allow for a better understanding of the relationship
between quality and throughput.

In this work, we present an in-depth study of NMT performance, making the
following contributions:

– We profile a inference NMT microservice based on OpenNMT [10], showing
that the majority of processing time is dedicated to the NMT system, with
negligible time spent in external communication

– We provide a breakdown of the execution time in CPU and GPU bound NMT
systems. We show how much time is dedicated to each of the components.

– We study the effect of each of the major system parameters over throughput.

2 A primer on neural machine translation

Sequence-to-sequence models map varying sizes of fixed-length inputs to fixed-
length outputs (Sutskever, 2014) for tasks like machine translation, speech recog-
nition, and video captioning. These models have two parts: the encoder, witch
takes an input sequence and produces an intermediate vector, and the decoder,
which takes that intermediate vector as input and outputs the target sequence.

One of the state-of-the-art models for NMT is the Transformer [20]. The
Transformer has the encoder-decoder structure. Both the encoders and decoders
consist of stacked self-attention and point-wise, fully connected feed forward
neural network layers (see Figure 1).

Both the encoding and decoding components are seen in Figure 1, composed
by stacks of N layers each. The encoder processes sentences in groups of tokens
while the decoder take the output of the encoder and the previous outputs
as inputs and outputs a group of token. The N parameter is crucial to both
throughput and accuracy. As N increases, the translation time should increase
not linearly but close to the linear trend.
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Fig. 1. Transformer model architecture

The self-attention mechanism allows the model to associate the words with
each other when needed (for example finding which word “it” refers to in a sen-
tence). As seen in Figure 1, Transformer uses Multi-Head Attention which means
there are multiple attention heads (h), each focuses on a different position by
using different parameters. This provides information from different representa-
tion subspaces at different positions for the model. The number of heads h also
introduces a throughput vs. accuracy trade-off.

The inputs to the transformer model go through pre-processing before execu-
tion start. First, words are converted into tokens in a process called tokenization
and then tokens are mapped into a vectorial space to generate embeddings. The
encoder take embeddings as inputs and the decoder generates them as outputs.
The last linear and softmax layers of the transformer converts the embeddings
probabilities for each token in the vocabulary. These layers are called Generator
layers. After that, the model searches through all the possible output sequences
in order to find the most likely sequence.
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However, the vocabulary has tens of thousands of tokens and the search
problem is exponential in the sequence length. One approach to overcome this
problem is greedy search, where the token with the highest probability is chosen
every time. Another approach, most commonly used, is the beam search, ex-
panded version of the greedy search, which keep the k most likely tokens at each
step. It is a sequential process that generates the output token-by-token keeping
the k active candidate tokens at each step and cumulatively adds their probabil-
ities to build paths. Beam search introduces two sources of inefficiencies. First, it
incurs unnecessary work because the decoder has to process k times more tokens
than necessary. Second, it is an irregular sequential process that combines dense
matrix multiplications with control heavy decisions after each token is generated.
As such, it complicates the use of accelerators, as it forces the execution flow to
go in and out of the accelerator multiple times during a single inference pass.

In this paper, we perform a detailed time analysis of the Transformer model,
and show that beam search is the bottleneck. In order to explain the effect
of beam search on the performance and the translation quality, we perform a
number of experiments. We also show the importance of the vocabulary size on
the performance of the beam search.

3 Methodology

We analyze the OpenNMT-py Transformer implementation, which is a Py-
Torch port of OpenNMT, an open-source neural machine translation system. We
use OpenNMT-py’s pretrained English-German translation model: Base Trans-
former configuration with standard training options. The model is trained with
WMT’17 train and validation data with shared SentencePiece, which is a to-
kenizer implementing subword units (e.g., byte-pair-encoding (BPE) [17] and
unigram language model [12] We conduct our experiments on English-German
neural machine translation task using WMT’17 test data (newstest2017) on In-
tel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz and NVIDIA GeForce GTX TITAN
Xp GPU. We use only one dataset since the dataset used does not affect per-
formance. The dataset consists of 3004 sentences/lines and all the experiments,
except the one reported in Table 1, are run with the complete dataset.

4 Evaluation and Results

4.1 Transformer with Different Configuration Values

We built a DNN microservice based on OpenNMT and measured end to end per-
formance. We observed that the network communication time is small compared
to the model execution time, and does not become a bottleneck. As such, the
bottleneck for these systems is the neural network model itself. Thus, in order
to speed up an NMT microservice one needs to focus on the NMT model.

We analyze the Transformer model in detail and in this scope, we first perform
the time analysis of the different configurations of Transformer in OpenNMT-py
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Table 1. Transformer’s BLEU scores and translation times with different configuration
values for 100 lines of input text

1 N dmodel dff h dk dv BLEU 100 lines

2 base 6 512 2048 8 64 64 25.8 43.816 s

3 Change in
number of
attention
heads

1 512 512 24.9 27.371 s
4 4 128 128 25.5 52.202 s
5 16 32 32 25.8 60.981 s
6 32 16 16 25.4 73.278 s

7 Change in
number of
layers

2 23.7 26.857 s
8 4 25.3 35.845 s
9 8 25.5 94.582 s

10
Change in
model size

256 32 32 24.5 37.398 s
11 1024 128 128 26 96.560 s
12 1024 25.4 60.178 s
13 4096 26.2 64.702 s

on CPU and compare the results with the different parameters for inference with
100 lines of input text (see Table 1). Here, the model is re-trained for each of
the configurations. Vaswani et. al. [20] reported the change in BLEU scores with
different configuration values in the Transformer model. However, to the best of
our knowledge there is no work on the performance of these configurations.

The translation time increases almost linearly as N increases as expected,
until N = 8, then there is a sharp increase (see Figure 2). The same trend is
also observed for the GPU (see Table 2).

Fig. 2. Translation Time vs. Number of
layers

Table 2. The change in model size
with the number of layers

N 100 lines
in GPU

Params
(×106)

Model
size(KB)

2 8.105 s 36 137.330

4 8.590 s 50 190.735

6 8.710 s 65 247.955

8 14.156 s 80 305.176

The reason behind this is that the model size increases with N (see Table 2).
The cache sizes in the computer used for the experiments are L1: 32K, L2: 256K,
L3: 30720K. So, until N=6 the model fits in L2, but for N=8 it needs to go to
L3 and it results in a large run-time increase.

Table 1 shows that decreasing the number of attention heads (h) results in
a high performance gain and not much quality loss (see line 3). We also observe
that when we change the number of layers (N), the BLEU decreases, but there
are large performance gains (see lines 2, 9 and 10).
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Model performance is affected by the change of configuration values, requiring
a detailed analysis of the whole model to understand its behavior. Thus, we
obtain the time breakdown of the entire model with the Base Transformer on
both CPU and GPU.

4.2 Transformer Performance in Detail

As shown in the Table 3, decoder takes 60% of the total translation time in CPU,
and 41% in GPU. The generator and beam search together take 32% of the total
translation time in CPU, and 45% in GPU. The decoder takes a smaller fraction
of execution time on the GPU because it is composed mostly of large matrix
multiplications. However, beam search is a sequential process as stated before
and the time portion of beam search on GPU is larger.

Table 3. Transformer’s time breakdown for each layer in CPU and GPU with 3004
lines of text.

Layer CPU CPU Fraction GPU GPU Fraction

Encoder
Multi-Head
Attention

7 s 0.56% 1.8 s 0.33%

Normalization 1.1 s 0.09% 0.2 s 0.04%
Feed Forward NN 7.5 s 0.60% 0.8 s 0.15%

Decoder

Masked Multi-
Head Attention

358 s 28.70% 87.3 s 16.22%

Normalization 23.8 s 1.91% 11.9 s 2.21%
Multi-Head
Attention

242.9 s 19.47% 63.3 s 11.76%

Normalization 22.8 s 1.83% 12.1 s 2.25%
Feed Forward NN 102.3 s 8.20% 48 s 8.92%

Generator Generator 119.3 s 9.56% 2 s 0.37%

Beam Search Beam Search 276 s 22.12% 238 s 44.22%

TOTAL 1247.6 s 538.19 s

4.3 Beam Search

The beam search process includes the following steps: When beam search is ap-
plied to the translation of a sentence, we only have the token probabilities in
the first iteration. Beam search chooses the k tokens with the highest proba-
bilities. Starting from the second iteration, beam search adds the current token
probabilities to the previous sum, then operates the same on the new scores.

Unfortunately, beam search presents three performance bottlenecks. First, it
is a sequential process, that forces examples to be processed one by one. Second,
it incurs a lot of extra unnecessary work like decoding words that won’t be used
in the end. Finally, it is irregular, and thus, it either requires implementation
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in high level (slow) languages or it has high engineering costs if implemented in
low level (fast) languages.

For these reasons, beam search is the bottleneck of the model. Improving
other parameters result in modest throughput increase, while beam search incurs
a 5× throughput decrease (when the beam size is 5). So we investigate the beam
search process further.

4.4 Beam Size vs. Performance & BLEU Scores

Increasing the beam size results in longer translation time, but also affects the
translation quality. In order to see the relation, we vary the beam size, and
measure the translation times and evaluate BLEU scores in both word-level (after
we detokenize the output) and token-level (without any detokenization) (Table
4). The beam size has a high impact on performance but a small impact over
quality. Additionally, while beam size affects the BLEU score calculated using
words, it does not affect the BLEU score calculated with tokens. We theorize
that because beam search optimizes results at token level (i.e. it maximizes the
likelihood of the model predicting the correct tokens), it requires smaller beam
sizes to reach better results. Unfortunately, translation quality is measured with
word level BLEU. As such, the beam search process does not have the means to
properly search the sentence space, as it uses incomplete information to make
decisions. We believe this insight is important as it indicates that a word focused
beam search could reach better word-level BLEU scores.

Table 4. Beam size vs. performance in CPU & BLEU scores for 3004 lines of text

Beam Size Translation Time Word-level BLEU Token-level BLEU

2 665.51 s 27.58 33.77

3 856.17 s 27.88 33.93

4 1087.96 s 27.99 33.99

5 1247.60 s 28.09 33.97

10 2092.67 s 28.07 33.69

15 2931.36 s 27.83 33.37

In addition to these, we also measured line-by-line translation times for 3004
lines of text. The results show that the translation time for a sentence is domi-
nated by the lengths, in number of tokens, of the target or predicted sentences,
whichever is longest. When we divide the sentence translation times to sentence
lengths, the average translation time of a token, is generally around 0.02 for
the longer one. The translation time of a token in target sentences, in predicted
sentences and the minimum of these two are usually around 0.02. The number
of sentences having more than 0.025 ratio are 74 for target sentences, 327 for
predicted sentences, and 39 for the minimum of the two.
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4.5 Vocabulary Size in Beam Search

As shown above, beam search is the bottleneck of the neural machine translation.
There has been a significant amount of research on how to speedup this process.
One popular method is reducing the vocabulary size [16, 19]. Using a smaller
vocabulary results in faster translation but the current research does not provide
the reason behind this.

We know that beam search uses the generator’s output of probabilities, adds
these probabilities to the previous cumulative sums on the active paths, and
chooses the top k. However, choosing the top k tokens from a huge list takes a
long time and so do all the operations containing the vocabulary. In order to
understand this better we provide time breakdowns of both cases.

A pseudocode of the important steps of beam search in OpenNMT-py for
Transformer and its line-by-line time analysis are given in Table 5.

Table 5. Beam search time breakdown in CPU with 3004 lines of text. ”Subvocab”
and ”Vocab” stand for ”Subvocabulary” and ”Vocabulary” respectively

Pseudocode Subvocab Vocab

If beginning of the sentence:
beam scores are the token probabilities 0.01 s 0.01 s

Else:
Add the current token probabilities to beam scores which are the

sum of the previous scores for that path
4.1 s 11.3 s

If there is EOS, stop the path there and don’t let it have children 11.4 s 13.3 s
Find the top k tokens with highest probabilities 15.8 s 184.9 s
Find and store the indices of these tokens in the vocabulary 13.9 s 3.4 s
Update the beam search path information stored 15.5 s 17.4 s
If one of the top k tokens is EOS add this path to the finished path 12.3 s 12.8 s

TOTAL BEAM SEARCH TIME 82.73 s 252.78 s

BLEU SCORE 17.42 28.09

When the full vocabulary is used, the most time-taking part is the 3rd step
since the vocabulary contains tens of thousands of words/tokens (184.9 s of total
252.78 s). We produce a subvocabulary by using MUSE (Multilingual Unsuper-
vised or Supervised word Embeddings) [14]. MUSE aligns two vector spaces of
two languages in order to build a bilingual dictionary. When the input sentence
comes, for each word in the input, the trained MUSE model finds the closest
n words in the target language’s aligned vector space and creates a subvocab-
ulary. This way, the vocabulary size can be reduced to a hundred or less, then
this part takes only 15.8 s of total 82.73 s for a test input with 3004 sentences.
The time breakdown for the fundamental beam search steps is shown in Table
5(intermediate processes are skipped):

Using a subvocabulary, we obtain 3× speedup in beam search, however, the
subvocabulary affects the translation quality.
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5 Related Work

Beside proposing new models in NMT, many researchers focus on analyzing and
improving the existing systems. Junczys-Dowmunt et. al. [8] compared several
translation directions on different state-of-the-art systems and developed an ef-
ficient NMT decoder. Niehues et. al. [15] separated the modeling and the search
space, and analyzed the existing systems in order to measure their sufficiency
on the translation quality. Vaswani et. al.[20]’s Transformer is one of the state-
of-the-art and the most-studied models in the literature.

There has been extensive work on the analysis, speeding up and improving
the translation quality of the Transformer [1,9, 11,13,18] listed main challenges
for NMT models which are also applied to the Transformer. They showed that
increasing the beam size decreases the translation quality after some point. Fo-
cusing on this problem, Yang et. al. [21] analyzed several variations of the beam
search and they developed a method increasing the BLEU score for the large
beam sizes. Another version of the beam search has been developed by Huang
et. al. [6], increasing the BLEU score on Chinese-English translation task.

In addition to its effect on translation quality, Freitag et. al. [3] worked on
increasing the performance. They proposed several pruning techniques on beam
search and they speed-up their decoder by 43%. Shi et. al. [19] pointed out the
importance of the size of the vocabulary used in the translation in order to
speed up NMT on GPUs. They offered the word alignment method to shrink
the vocabulary and got 2x speedup on the decoder. Senellart et. al. [16] worked
on speeding up the Transformer in OpenNMT’s Tensorflow port by using several
methods including Shi et. al.’s solution.

6 Conclusion

In this work, we first built a DNN microservice around Vaswani et. al.’s NMT
model Transformer in order to see the bottlenecks. We observed that due to the
small input size, the network communication is not the bottleneck, so we need to
speed up the model itself in order to speed up this DNN microservice. In order
to understand what affects the model, we ran the Transformer with different
configuration values and saw that the performance can easily change with the
selection of configuration values. After that we performed a detailed time analysis
of the Transformer to have a better understanding of its behaviour. We observed
that the beam search is the bottleneck and we analyzed the time requirements for
each step in the beam search. We also showed that the translation quality metric
BLEU score is insensitive to beam size when it is measured in token-level. When
a small-sized vocabulary used, the beam search can have 3x speedup however
the choice of this subvocabulary is important since it affects translation quality
.
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