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Abstract. Running state-of-the-art Deep Neural Network (DNN) models on top 
of a cheap and low-power microcontroller can be considered the holy grail of 
current research on edge embedded devices. This requires beating fundamental 
obstacles: 1) achieving a sufficient compute throughput within the allotted power 
envelope; 2) squeezing the DNN model footprint to better fit within restricted (< 
1MB) on-chip memory resources; 3) if the model still requires off-chip memory, 
minimizing its required memory bandwidth. In this Work-in-Progress paper, we 
describe the vertical integration framework we are designing to deploy DNNs on 
top of SoC’s based on the PULP (Parallel Ultra-Low-Power) platform, from a 
DNN specification in an open-source framework (PyTorch) down to execution 
on optimized DSPs and hardware accelerators, passing through memory-aware 
quantization and tiling. 
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1 Introduction and Target Architecture 

Future devices operating at the extreme edge of the Internet-of-Things (IoT) will 
have to deliver high performance within a very low power envelope to run data analyt-
ics pipelines directly on-device, avoiding expensive communication of raw data. This 
kind of sophisticated behavior is considered necessary for the next generation of bio-
medical devices, autonomous insect-sized drones, cheap smart sensors for structural 
monitoring, and many other applications. Running state-of-the-art Deep Neural Net-
works (DNNs) such as MobileNet [1] or EfficientNet [2] can, therefore, be considered 
the holy grail of current research on extreme edge devices. Due to the staggering limi-
tations of these platforms, fundamental obstacles have to be beaten before the execution 
of Deep Neural Networks on such platforms is enabled. Achieve a good peak compute 
throughput (> 1 GMAC/s) within a restricted amount power envelope (< 100 mW at 
peak) is a necessary condition, but it is not sufficient: weight and activation data have 
to be fit within the on-chip memory hierarchy [3] or brought from off-chip memory at 
a high enough bandwidth not to hinder computational efficiency. 
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Fig. 1. PULP architecture template 

Among the various architectural templates targeting extreme edge data analytics, 
tightly-coupled clusters of in-order cores have attracted attention as they offer signifi-
cantly improved performance and energy-efficiency with respect to conventional sin-
gle-core microcontrollers without the drop-in flexibility typical of application-specific 
accelerators. The PULP platform (http://pulp-platform.org) is an embodiment of this 
template combining a single-core microcontroller unit with a cluster of 8 RISC-V cores 
[4] with ISA optimizations dedicated to signal processing and DNN inference [5]. The 
template of the PULP platform is schematically shown in Fig. 1. The cluster cores work 
concurrently on a small high-bandwidth L1 scratchpad (64-128kB, up to 30 GB/s at 
250 MHz), while the microcontroller hosts a larger but slower L2 (512kB, 1.5 GB/s at 
100 MHz). PULP-based platforms have been demonstrated to achieve a performance 
of ~1GMAC/s with 8-bit data using pure software [6], the minimum to support the real-
time execution of “meaningful” real-world DNNs. Further improvements can be 
achieved by targeting low-precision data representation in Quantized Neural Networks 
(QNNs) [3], which, however, are known to require specialized tools for retraining 
and/or data-free quantization [7] and unique techniques for deployment.  

In this Work-in-Progress contribution, we highlight our efforts towards the construc-
tion of a vertically integrated framework to deploy real-world Deep Neural Networks 
on top of an extreme edge node based on PULP, starting directly from a DNN trained 
in a standard framework (PyTorch) and performing quantization (with/without retrain-
ing), export of deployable weights, automatic memory-aware tiling and generation of 
source code optimized to used the PULP ISA to achieve high throughput and energy 
efficiency. We share preliminary results showing 1) the generation of a hardware-
equivalent model for a real-world DNN topology (MobileNet), achieving 69% with 8-
bit weights and activations or 65.5% with 6-bit weights and 4-bit activations.  

2 Deployment Framework 

2.1 Quantization and Graph Transform 

The first step of the deployment procedure concerns the transformation of an input 
Deep Neural Network, selected and pretrained for a specific task such as object detec-
tion or image classification. State-of-the-Art Deep Neural Network frameworks such 
as PyTorch and TensorFlow are primarily targeted at the training of float32 (i.e., full 
precision) models, although they also typically support “fake-quantized” training and 
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export of 8-bit models. To fully exploit the capabilities of the underlying PULP plat-
form, which includes extensions to accelerate also low-precision and mixed-precision 
networks, we developed a custom library for layer-wise quantization called NEMO 
(Neural Minimizer for pytOrch) capable of 1) fake-quantized retraining of Deep Neural 
Networks, based on an extension of the PACT model [8], and 2) progressively trans-
forming the network from the Quantized-Fake (QF) representation to a more realistic 
representation where all nodes in the network are replaced with entirely quantized 
nodes (Quantized-Deployable or QD) and, finally, to a version where all tensors are 
replaced by integer equivalents (Integer-Deployable or ID).  Differently from most 
state-of-the-art tools, the NEMO transformations target not only 8-bit deployment but 
also lower (e.g., 4-bit and 2-bit) and mixed-precision deployment. 

The NEMO QF retraining exploits the simple heuristic observation that a “good re-
gion” where to look for optimally quantized DNNs is in the vicinity of a full-precision 
or more loosely quantized solution. The backend approximation methodology utilized 
for quantization is a variant of PACT [8], relying on linear quantization of both weights 
(asymmetric signed) and activations (unsigned). The tool applies a “local search" heu-
ristic, which progressively relaxes the value of the precision 𝜀 (i.e., the minimum rep-
resentable value) when the total loss/accuracy is enough, alternating precision relaxa-
tion with “annealing” / retraining on the original dataset. In Fig. 2, we show an example 
of the precision relaxation procedure operated on a 1.0-MobileNet-224 network trained 
on ImageNet. 

 

 
Fig. 2. Example of NEMO precision relaxation on 1.0-MobileNet-224 / ImageNet 

 

A)  B)  C)  

Fig. 3.  Example of quantization and transformation from a Quantized-Fake representation (A) 
to Quantized-Deployable (B) and then to Integer-Deployable (C) 

The second operation performed by NEMO, transformation to a full integer ID rep-
resentation can be operated on a QF network obtained by the relaxation procedure de-
scribed above or directly on a pretrained full-precision. Fig. 3 shows an example of this 
transformation operating upon a “super-layer” composed by a linear node followed by 
batch-normalization and activation. The transformation to a QD version implies chang-
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ing layers such as batch-norm (untouched in QF representation) so that all tensors in-
volved are quantized, i.e., they are representable in the form 𝑻 = 𝑻𝒊𝒏𝒕 ⋅ 𝜀𝑻 where 𝑻𝒊𝒏𝒕 
is an integer-valued tensor and 𝜀𝑻 a real-valued scalar. The example in Fig. 3B shows 
the batch-norm layer being replaced by a quantized version implemented as an affine 
transformation. By propagating the input 𝜀, NEMO computes the 𝜀 of all nodes in its 
internal DNN graph representation, enabling the representation of the network in a for-
mat where the 𝜀 is left out: the Integer-Deployable ID. The transformation from QF to 
ID representation is typically non-destructive; for example, transforming the 8-bit ver-
sion of 1.0-MobileNet-224 from QF to ID causes a loss of ~0.3% in top-1 accuracy.  

2.2 Memory-Aware Tensor Tiling 

Running a DNN model on top of a device optimized for the extreme edge of the IoT 
requires not only making it "small," as targeted by the NEMO tool but also map the 
DNN so that it maximally exploits the available hardware, in particular in terms of the 
memory hierarchy. PULP systems lack a coherent hardware cache to save energy at the 
cost of labor-intensive explicit memory management, making it practically challenging 
to achieve high bandwidth utilization rates. We automatize this by performing tiling, 
i.e., by dividing the tensors in the work set of each graph in blocks (tiles) that can be 
operated upon independently from one another.  

We developed a tool called DORY (Deployment Oriented to memory) [9] to this end. 
Thanks to the predictable nature of each node’s computation,  DORY abstracts the op-
timization of tile sizes as an integer Constraint Programming problem. From a practical 
viewpoint, DORY takes as input the ONNX ID representation generated by NEMO, 
constructs an internal graph of super-nodes (composed of a single linear layer followed 
by pointwise operations and pooling), and calculates the optimal tiling of one super-
node at a time, targeting minimization of the overall layer-wise traffic. We subject this 
minimization to several constraints: 
• the combined size of all tiles, taking into account also double buffering schemes if 

present, must be smaller than a given budget (e.g., 64 kB for the L1); 
• the relationships between weight, input, and output tile dimensions are mandated 

by the characteristics of the layer (convolutional vs. fully-connected, etc.); 
• the tiles should be sized in such a way to provide a well-parallelizable input to the 

backend library (PULP-NN [6]), maximizing its efficiency. 
DORY uses the open-source OR-tools constraint solver from Google AI to derive a 

solution (in terms of tile sizes) that is compatible with all constraints; using these, it 
generates the C code of the DNN running on PULP, including data movement and dou-
ble buffering, according to these tile sizes. Fig. 4A shows the L2/L1 data movement 
scheme targeted by DORY. 

We verified the efficiency of L2/L1 tiling [9] by comparing the performance of an 
L2/L1 tiled DNN with an identical one without tiling, executed on the virtual platform 
simulating actual PULP chips. Fig. 4B shows the L2/L1 tiling efficiency of the DNN 
code produced by DORY in the case of a small (142 kB) network. The code generated 
by DORY acts as a very specialized software cache to effectively hide the fact that ex-
ecution happens on L1 instead of L2 for convolutional layers. In fully-connected layers, 
whose arithmetic intensity is 100x lower, the “caching” mechanism is less efficient – 
however, performance is still ~2x that achieved with direct execution on the L2 
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memory. Overall, the execution of this small network with tiling consumes 3.2x less 
time and 1.9x less energy than direct L2 execution. 

 

 
A) 

 
B) 

Fig. 4. A) DORY memory tiling scheme between L2 and L1; B) example performance [9] 

 
At the time of this writing, full L3/L2 tiling (with activation data movement) is not 

yet entirely supported; therefore, DORY organizes execution layer-wise and assumes 
that activations never have to be moved between on- and off-chip, while weights for 
the following layer can be fully or partially preloaded while the cluster is performing 
the current layer’s execution. Using a PULP-based GreenWaves Technologies GAP8 
SoC and a Cypress 8MB HyperRAM as testbench, we measured an L3/L2 bandwidth 
of 180 MB/s at the peak, which is sufficient to support real-time computation for a real-
world, non-toy network.  
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