
Work-in-Progress – A Vertically Integrated Framework to
Deploy Deep Neural Networks on Extreme Edge Devices

Francesco Conti1,2, Alessio Burrello1, Angelo Garofalo1,
Davide Rossi1 and Luca Benini1,2

1 Energy-Efficient Embedded Systems Laboratory, University of Bologna, Bologna, Italy

2 Integrated Systems Laboratory, ETH Zürich, Zürich, Switzerland
{f.conti,alessio.burrello,angelo.garofalo,davide.rossi,luca.benini}@unibo.it

Abstract. Running state-of-the-art Deep Neural Network (DNN) models on top
of a cheap and low-power microcontroller can be considered the holy grail of
current research on edge embedded devices. This requires beating fundamental
obstacles: 1) achieving a sufficient compute throughput within the allotted power
envelope; 2) squeezing the DNN model footprint to better fit within restricted (<
1MB) on-chip memory resources; 3) if the model still requires off-chip memory,
minimizing its required memory bandwidth. In this Work-in-Progress paper, we
describe the vertical integration framework we are designing to deploy DNNs on
top of SoC’s based on the PULP (Parallel Ultra-Low-Power) platform, from a
DNN specification in an open-source framework (PyTorch) down to execution
on optimized DSPs and hardware accelerators, passing through memory-aware
quantization and tiling.

Keywords: Extreme Edge Computing, Deep Neural Networks, PULP.

1 Introduction and Target Architecture

Future devices operating at the extreme edge of the Internet-of-Things (IoT) will
have to deliver high performance within a very low power envelope to run data analyt-
ics pipelines directly on-device, avoiding expensive communication of raw data. This
kind of sophisticated behavior is considered necessary for the next generation of bio-
medical devices, autonomous insect-sized drones, cheap smart sensors for structural
monitoring, and many other applications. Running state-of-the-art Deep Neural Net-
works (DNNs) such as MobileNet [1] or EfficientNet [2] can, therefore, be considered
the holy grail of current research on extreme edge devices. Due to the staggering limi-
tations of these platforms, fundamental obstacles have to be beaten before the execution
of Deep Neural Networks on such platforms is enabled. Achieve a good peak compute
throughput (> 1 GMAC/s) within a restricted amount power envelope (< 100 mW at
peak) is a necessary condition, but it is not sufficient: weight and activation data have
to be fit within the on-chip memory hierarchy [3] or brought from off-chip memory at
a high enough bandwidth not to hinder computational efficiency.

2

Fig. 1. PULP architecture template

Among the various architectural templates targeting extreme edge data analytics,
tightly-coupled clusters of in-order cores have attracted attention as they offer signifi-
cantly improved performance and energy-efficiency with respect to conventional sin-
gle-core microcontrollers without the drop-in flexibility typical of application-specific
accelerators. The PULP platform (http://pulp-platform.org) is an embodiment of this
template combining a single-core microcontroller unit with a cluster of 8 RISC-V cores
[4] with ISA optimizations dedicated to signal processing and DNN inference [5]. The
template of the PULP platform is schematically shown in Fig. 1. The cluster cores work
concurrently on a small high-bandwidth L1 scratchpad (64-128kB, up to 30 GB/s at
250 MHz), while the microcontroller hosts a larger but slower L2 (512kB, 1.5 GB/s at
100 MHz). PULP-based platforms have been demonstrated to achieve a performance
of ~1GMAC/s with 8-bit data using pure software [6], the minimum to support the real-
time execution of “meaningful” real-world DNNs. Further improvements can be
achieved by targeting low-precision data representation in Quantized Neural Networks
(QNNs) [3], which, however, are known to require specialized tools for retraining
and/or data-free quantization [7] and unique techniques for deployment.

In this Work-in-Progress contribution, we highlight our efforts towards the construc-
tion of a vertically integrated framework to deploy real-world Deep Neural Networks
on top of an extreme edge node based on PULP, starting directly from a DNN trained
in a standard framework (PyTorch) and performing quantization (with/without retrain-
ing), export of deployable weights, automatic memory-aware tiling and generation of
source code optimized to used the PULP ISA to achieve high throughput and energy
efficiency. We share preliminary results showing 1) the generation of a hardware-
equivalent model for a real-world DNN topology (MobileNet), achieving 69% with 8-
bit weights and activations or 65.5% with 6-bit weights and 4-bit activations.

2 Deployment Framework

2.1 Quantization and Graph Transform

The first step of the deployment procedure concerns the transformation of an input
Deep Neural Network, selected and pretrained for a specific task such as object detec-
tion or image classification. State-of-the-Art Deep Neural Network frameworks such
as PyTorch and TensorFlow are primarily targeted at the training of float32 (i.e., full
precision) models, although they also typically support “fake-quantized” training and

3

export of 8-bit models. To fully exploit the capabilities of the underlying PULP plat-
form, which includes extensions to accelerate also low-precision and mixed-precision
networks, we developed a custom library for layer-wise quantization called NEMO
(Neural Minimizer for pytOrch) capable of 1) fake-quantized retraining of Deep Neural
Networks, based on an extension of the PACT model [8], and 2) progressively trans-
forming the network from the Quantized-Fake (QF) representation to a more realistic
representation where all nodes in the network are replaced with entirely quantized
nodes (Quantized-Deployable or QD) and, finally, to a version where all tensors are
replaced by integer equivalents (Integer-Deployable or ID). Differently from most
state-of-the-art tools, the NEMO transformations target not only 8-bit deployment but
also lower (e.g., 4-bit and 2-bit) and mixed-precision deployment.

The NEMO QF retraining exploits the simple heuristic observation that a “good re-
gion” where to look for optimally quantized DNNs is in the vicinity of a full-precision
or more loosely quantized solution. The backend approximation methodology utilized
for quantization is a variant of PACT [8], relying on linear quantization of both weights
(asymmetric signed) and activations (unsigned). The tool applies a “local search" heu-
ristic, which progressively relaxes the value of the precision 𝜀 (i.e., the minimum rep-
resentable value) when the total loss/accuracy is enough, alternating precision relaxa-
tion with “annealing” / retraining on the original dataset. In Fig. 2, we show an example
of the precision relaxation procedure operated on a 1.0-MobileNet-224 network trained
on ImageNet.

Fig. 2. Example of NEMO precision relaxation on 1.0-MobileNet-224 / ImageNet

A) B) C)

Fig. 3. Example of quantization and transformation from a Quantized-Fake representation (A)
to Quantized-Deployable (B) and then to Integer-Deployable (C)

The second operation performed by NEMO, transformation to a full integer ID rep-
resentation can be operated on a QF network obtained by the relaxation procedure de-
scribed above or directly on a pretrained full-precision. Fig. 3 shows an example of this
transformation operating upon a “super-layer” composed by a linear node followed by
batch-normalization and activation. The transformation to a QD version implies chang-

3

4

5

6

7

8

9

3 4 5 6 7 8 9 10 11

Ac
tiv

at
io

n
B

its

Weight Bits

1.0-MobileNet-224 Top-1 Accuracy

69.4%

68.1%

67.2%

65.5%37.8%

Size of each point ~ top-1 error

4

ing layers such as batch-norm (untouched in QF representation) so that all tensors in-
volved are quantized, i.e., they are representable in the form 𝑻 = 𝑻𝒊𝒏𝒕 ⋅ 𝜀𝑻 where 𝑻𝒊𝒏𝒕
is an integer-valued tensor and 𝜀𝑻 a real-valued scalar. The example in Fig. 3B shows
the batch-norm layer being replaced by a quantized version implemented as an affine
transformation. By propagating the input 𝜀, NEMO computes the 𝜀 of all nodes in its
internal DNN graph representation, enabling the representation of the network in a for-
mat where the 𝜀 is left out: the Integer-Deployable ID. The transformation from QF to
ID representation is typically non-destructive; for example, transforming the 8-bit ver-
sion of 1.0-MobileNet-224 from QF to ID causes a loss of ~0.3% in top-1 accuracy.

2.2 Memory-Aware Tensor Tiling

Running a DNN model on top of a device optimized for the extreme edge of the IoT
requires not only making it "small," as targeted by the NEMO tool but also map the
DNN so that it maximally exploits the available hardware, in particular in terms of the
memory hierarchy. PULP systems lack a coherent hardware cache to save energy at the
cost of labor-intensive explicit memory management, making it practically challenging
to achieve high bandwidth utilization rates. We automatize this by performing tiling,
i.e., by dividing the tensors in the work set of each graph in blocks (tiles) that can be
operated upon independently from one another.

We developed a tool called DORY (Deployment Oriented to memory) [9] to this end.
Thanks to the predictable nature of each node’s computation, DORY abstracts the op-
timization of tile sizes as an integer Constraint Programming problem. From a practical
viewpoint, DORY takes as input the ONNX ID representation generated by NEMO,
constructs an internal graph of super-nodes (composed of a single linear layer followed
by pointwise operations and pooling), and calculates the optimal tiling of one super-
node at a time, targeting minimization of the overall layer-wise traffic. We subject this
minimization to several constraints:
• the combined size of all tiles, taking into account also double buffering schemes if

present, must be smaller than a given budget (e.g., 64 kB for the L1);
• the relationships between weight, input, and output tile dimensions are mandated

by the characteristics of the layer (convolutional vs. fully-connected, etc.);
• the tiles should be sized in such a way to provide a well-parallelizable input to the

backend library (PULP-NN [6]), maximizing its efficiency.
DORY uses the open-source OR-tools constraint solver from Google AI to derive a

solution (in terms of tile sizes) that is compatible with all constraints; using these, it
generates the C code of the DNN running on PULP, including data movement and dou-
ble buffering, according to these tile sizes. Fig. 4A shows the L2/L1 data movement
scheme targeted by DORY.

We verified the efficiency of L2/L1 tiling [9] by comparing the performance of an
L2/L1 tiled DNN with an identical one without tiling, executed on the virtual platform
simulating actual PULP chips. Fig. 4B shows the L2/L1 tiling efficiency of the DNN
code produced by DORY in the case of a small (142 kB) network. The code generated
by DORY acts as a very specialized software cache to effectively hide the fact that ex-
ecution happens on L1 instead of L2 for convolutional layers. In fully-connected layers,
whose arithmetic intensity is 100x lower, the “caching” mechanism is less efficient –
however, performance is still ~2x that achieved with direct execution on the L2

5

memory. Overall, the execution of this small network with tiling consumes 3.2x less
time and 1.9x less energy than direct L2 execution.

A)

B)

Fig. 4. A) DORY memory tiling scheme between L2 and L1; B) example performance [9]

At the time of this writing, full L3/L2 tiling (with activation data movement) is not

yet entirely supported; therefore, DORY organizes execution layer-wise and assumes
that activations never have to be moved between on- and off-chip, while weights for
the following layer can be fully or partially preloaded while the cluster is performing
the current layer’s execution. Using a PULP-based GreenWaves Technologies GAP8
SoC and a Cypress 8MB HyperRAM as testbench, we measured an L3/L2 bandwidth
of 180 MB/s at the peak, which is sufficient to support real-time computation for a real-
world, non-toy network.

References

[1] A. G. Howard et al., “MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applica-
tions,” ArXiv170404861 Cs, Apr. 2017.

[2] M. Tan and Q. V. Le, “EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks,”
ArXiv190511946 Cs Stat, May 2019.

[3] M. Rusci, A. Capotondi, and L. Benini, “Memory-Driven Mixed Low Precision Quantization For Ena-
bling Deep Network Inference On Microcontrollers,” ArXiv190513082 Cs Stat, May 2019.

[4] A. Pullini, D. Rossi, I. Loi, A. D. Mauro, and L. Benini, “Mr. Wolf: A 1 GFLOP/s Energy-Proportional
Parallel Ultra Low Power SoC for IOT Edge Processing,” in ESSCIRC 2018 - IEEE 44th European
Solid State Circuits Conference (ESSCIRC), 2018, pp. 274–277.

[5] M. Gautschi et al., “Near-Threshold RISC-V Core With DSP Extensions for Scalable IoT Endpoint De-
vices,” IEEE Trans. Very Large Scale Integr. VLSI Syst., vol. 25, no. 10, pp. 2700–2713, Oct. 2017.

[6] A. Garofalo, M. Rusci, F. Conti, D. Rossi, and L. Benini, “PULP-NN: Accelerating Quantized Neural
Networks on Parallel Ultra-Low-Power RISC-V Processors,” ArXiv190811263 Cs, Aug. 2019.

[7] M. Nagel, M. van Baalen, T. Blankevoort, and M. Welling, “Data-Free Quantization Through Weight
Equalization and Bias Correction,” ArXiv190604721 Cs Stat, Sep. 2019.

[8] J. Choi, Z. Wang, S. Venkataramani, P. I.-J. Chuang, V. Srinivasan, and K. Gopalakrishnan, “PACT:
Parameterized Clipping Activation for Quantized Neural Networks,” ArXiv180506085 Cs, May 2018.

[9] A. Burrello, F. Conti, A. Garofalo, D. Rossi, and L. Benini, “Work-in-Progress: DORY: Lightweight
Memory HierarchyManagement for Deep NN Inference on IoT Endnodes,” in 2019 International Con-
ference on Hardware/Software Codesign and System Synthesis (CODES+ISSS), 2019, pp. 1–2.

In.
copy

Convol.
kernel

In.
copy

Out.
copy

Convol.
kernel

Input feature map I

Output feature map O

Filters weights W

L1 buffer I

L1 buffer II

Input buffer

Output buffer

Weights buffer

Input buffer

Output buffer

Weights buffer

L1 memory

L2 memory

Cluster

In.
copy

Out.
copy

Convol.
kernel

In.
copy

Out.
copy

Convol.
kernel

t0 t1 t2 t3 … tn

CONVOLUTIONAL PIPELINE

Cycle 0

Cycle 1

Cycle 2

DMA ch. 0-1 DMA ch. 2

Cluster computation

Inputs

Weights

iM

wM

hM

oM

wM

hM

oM

iM

Co
re

 0
Co

re
 1

Co
re

 2
Co

re
 3

Co
re

 4
Co

re
 5

Co
re

 6
Co

re
 7

iIND = 0,
hIND = 0,
wIND = 0

iIND = 0,
hIND = 0,
wIND = 1

iIND = 0,
oIND = 0

oIND = 0,
hIND = 0,
wIND = 0

oIND = 0,
hIND = 0,
wIND = 1

In.
copy

