
You Only Spike Once: Improving Energy-Efficient
Neuromorphic Inference to ANN-Level Accuracy

Srivatsa P∗, Kyle Timothy Ng Chu∗, Yaswanth Tavva∗, Jibin Wu†,
Malu Zhang†, Haizhou Li† and Trevor E. Carlson∗
∗School of Computer Science †Department of Engineering

National University of Singapore

Abstract—In the past decade, advances in Artificial Neural
Networks (ANNs) have allowed them to perform extremely
well for a wide range of tasks. In fact, they have reached
human parity when performing image recognition, for exam-
ple. Unfortunately, the accuracy of these ANNs comes at the
expense of a large number of cache and/or memory accesses
and compute operations. Spiking Neural Networks (SNNs), a
type of neuromorphic, or brain-inspired network, have recently
gained significant interest as power-efficient alternatives to ANNs,
because they are sparse, accessing very few weights, and typically
only use addition operations instead of the more power-intensive
multiply-and-accumulate (MAC) operations. The vast majority
of neuromorphic hardware designs support rate-encoded SNNs,
where the information is encoded in spike rates. Rate-encoded
SNNs could be seen as inefficient as an encoding scheme because
it involves the transmission of a large number of spikes. A more
efficient encoding scheme, Time-To-First-Spike (TTFS) encoding,
encodes information in the relative time of arrival of spikes. While
TTFS-encoded SNNs are more efficient than rate-encoded SNNs,
they have, up to now, performed poorly in terms of accuracy
compared to previous methods.

Hence, in this work, we aim to overcome the limitations of
TTFS-encoded neuromorphic systems. To accomplish this, we
propose: (1) a novel optimization algorithm for TTFS-encoded
SNNs converted from ANNs and (2) a novel hardware accelerator
for TTFS-encoded SNNs, with a scalable and low-power design.

Overall, our work in TTFS encoding and training improves the
accuracy of SNNs to achieve state-of-the-art results on MNIST
MLPs, while reducing power consumption by 1.29××× over the
state-of-the-art neuromorphic hardware.

I. INTRODUCTION

In recent years, Artificial Neural Networks (ANNs) have
demonstrated excellent results in a wide range of real-world
computational problems such as object detection, speech recog-
nition and image classification. ANNs have been improving in
accuracy, and in 2015, crossed an important threshold, beating
human accuracy [1] at the ImageNet 2012 Visual Recognition
Challenge [2]. However, the effectiveness of ANNs comes at
the cost of high power consumption. In short, the performance
of these networks rely on an extremely large number of
model parameters, requiring a huge number of computational
resources. This tends to make large ANNs unsuitable for
low-powered applications such as Internet-of-Things (IoT)
and mobile devices. To address this issue, there has been
an increased focus on developing energy efficient networks,
including EfficientNet [3], MobileNet [4] and SqueezeNet [5],
to meet the efficiency needs of these low-power systems.

While these more efficient networks are promising for
deployment to low powered devices, the use of spiking neural
networks (SNNs) allows for even greater power savings. In
SNNs, information is represented by binary events called
spikes, similar to the way information is communicated in the

human brain. This technique of mimicking brain functionality,
called neuromorphic computing, makes use of only addition
operations, instead of multiply-and-accumulate operations in
standard ANNs, which has the capability to significantly reduce
the computational power and complexity needed. Furthermore,
SNNs can also take advantage of the sparsity of their neuron
activations to significantly reduce the movement of data. As
a result, SNNs have garnered significant interest over the last
few years as a candidate for low-powered accelerators [6].

While there are several encoding methods for SNNs [7], the
two most prominent ones are rate-based [8], [9] and temporal
encoding [10], [11]. Because temporally encoded networks
have not been able to match the state-of-the-art accuracy of
rate-based coded networks [12], rate-based encoding has been
the most common encoding scheme used in hardware SNN
accelerators [13], [14]. In rate-based encoding, information is
represented by the average number of spikes over a period
of time, and the inference results become more accurate as
additional spikes are generated. Because each spike triggers
memory accesses (to load parameter information) which
needs to be fetched from on- or off-chip memory, the power
consumption in rate-encoded networks can be relatively high.
Hence, some works have turned to temporal encoding instead
to further take advantage of the sparsity of the networks [15].
One type of temporal encoding is known as time-to-first-
spike (TTFS) encoding. Under this encoding, information is
represented by the relative time of arrival of the spikes with
respect to the first spike, not the average number of spikes
over a time period. Previously, TTFS encoding had traded
off power efficiency for accuracy, unable to match the results
of rate-encoded systems. In this work, we propose a training
method to leverage the power efficiency TTFS encoded SNNs
with minimal loss to accuracy.

Among existing rate-based accelerators, IBM’s TrueNorth
is the most well known. With the ability to hold up to 1
million neurons and 256 million synapses, and can consume
65mW when running typical computer vision applications [16],
TrueNorth still remains the state-of-the-start in terms of
power efficiency. However, while TrueNorth is extremely
power efficient at implementing rate-based networks, it is
unable to take full advantage of the properties of temporally
encoded networks. One of the main reasons behind TrueNorth’s
impressively low power usage is that the number of memory
accesses on each core does not scale with the number of spikes
it receives and remains constant. While having a constant
number of memory accesses per tick works well for rate-based
networks which produce large numbers of spikes, it prevents
TrueNorth from maximizing efficiency of temporally encoded

networks with sparse spikes. Thus, this work introduced the You
Only Spike Once, or YOSO, accelerator, a novel architecture
specifically designed to leverage the sparsity in the spiking
behavior of temporally coded networks.

One of the largest barriers preventing the widespread
adoption of SNNs is the fact that SNNs are notoriously difficult
to train from scratch. While significant progress has been made
in recent years [17], their results are still far behind what has
been achieved by state-of-the-art ANNs today for classification
problems. To circumvent this problem, we instead chose to
convert pre-trained ANN models into SNNs before mapping
them onto the proposed hardware. Previous work [18] has
introduced a technique that can convert ANNs to SNNs with
minimal loss in accuracy for small networks. For larger and
deeper networks, this approach does not work as well. Hence
we have developed a novel training method that improves the
accuracy of the converted SNNs through this technique.

The main goal of this paper is to run highly accurate networks
on low power devices, with minimal loss to accuracy. Therefore,
this work focuses on (1) optimizations to improve the accuracy
of TTFS-encoded SNNs, and (2) optimizations to the hardware
running the network. Hence, the contributions of this work are:
• An end-to-end neuromporhic technique that demonstrates

state of the art performance and accuracy for TTFS-
encoded SNNs

• A new training algorithm that reduces the approximation
error which accumulates as a result of converting ANNs to
SNNs. In doing so, our TTFS-encoded SNNs reach near
ANN-accuracy (within 0.2%), allowing TTFS-encoded
SNNs to be considered for traditional ANN tasks, at much
higher efficiency.

• An implementation of a novel hardware accelerator for
TTFS-encoded SNNs that is configurable and scalable. Our
work significantly improves power efficiency with minimal
reduction in the accuracy of network performance.

II. BACKGROUND

Spiking neural networks (SNNs) have garnered significant
interest over the last few years, primarily as a candidate for
energy-efficient inference on low-powered devices. In SNNs,
information is represented by discrete binary events called
spikes, similar to the way the brain represents information.
This is unlike a standard artificial neural network (ANN)
where information is represented as continuous values [19].
The use of SNNs reduces the computational power needed
by only requiring cheaper addition operations compared to
the more power-intensive multiply-and-accumulate (MAC)
operations used in ANNs. Furthermore, SNNs typically have
an extremely low activation count, in comparison to their non-
spiking counterparts. Activations are low because every neuron
is only activated by a strictly positive input, a subset of all
possible inputs, above a pre-defined threshold. This translates to
just a small subset of all neurons firing for any given inference.
A small subset of neurons firing translates into a low memory
access count and, hence, a low cost when performing inference
tasks.

SNNs are fundamentally different from ANNs. ANNs
traditionally involve a synchronous tensor multiplication for
each layer while SNNs involve an asynchronous propagation of
information. The way information can be propagated through

an SNN can vary. The two most prominent methods are rate-
based [8], [9] and temporal encoding [10], [11]. In rate-based
encoding, information is represented by the mean firing rate of
the neurons. Although there exist different definitions of firing
rate, it often denotes either spikes averaged over repetitions
of an experiment or the average number of spikes over a
period of time. This work refers to the latter when referring to
rate-encoded networks. Rate-encoded networks become more
accurate over time as more spikes are generated. From a power
consumption point of view, each spike will require a weight
look-up. Because rate-based encoding has many spikes, having
a weight look-up for each spike limits the minimum number
of memory accesses and the corresponding amount of energy
saved.

An alternative form of encoding uses temporal encoding
which is based on spike timing [15]. Common temporal
encoding schemes include Time to First Spike (TTFS), where
information is represented by the relative time of arrival of the
spikes with respect to the first spike, and phase-of-firing, where
information is encoded using the time at which neurons fire
within a periodic cycle [20]. When information is encoded in
the TTFS scheme, neurons in an SNN spike at most once during
each inference pass and see many fewer spikes compared to
their rate-based counterparts. By definition, the rate encoding
scheme relies on the generation of multiple spikes over a fixed
period of time, while the TTFS encoding scheme relies on
the time taken for a single neuron to spike. Therefore, TTFS
encoding scheme allows for fewer spikes compared to a rate-
based encoding scheme. Assuming a spike corresponds to
a memory access, TTFS encoding scheme allows for a low
number of memory accesses. In addition, an inference pass of a
TTFS network can end once the output layer produces its first
output spike instead of waiting for the rest of the inputs to arrive.
As a result, a minimal number of computations are performed
for any particular inference, making temporal encoding a highly
suitable candidate for encoding energy-efficient SNNs.

A. Formalizing TTFS-SNNs
SNNs have been proposed to model the biological neural

network of brains that use spikes to represent and communicate
information across neurons [9]. As the fundamental information
processing units in the biological neural networks, the spiking
neurons are composed of dendrite, soma, and axon. Dendrites
receive weighted inputs from the preceding neurons, which are
further integrated into the membrane potential of the soma. An
output spike is generated from the soma once the membrane
potential crosses the firing threshold. The output spike is
then transmitted to the subsequent neurons through the axonal
connections. A number of spiking neuron models have been
proposed to describe the internal dynamics and diversified
characteristics of biological neurons.

In this work, to properly encode information into spike
timings, we use a non-leaky IF neuron model [18]. The
membrane potential dynamics of this model can be described
by the following equation:

dV i
mem(t)
dt

= ∑
j

wi j ∑
n

κi j(t− tn
j)+bit (1)

where V i
mem is the membrane potential of neuron i, and wi j is

the weight of the synaptic connection from the pre-synaptic

2

neuron j to the post-synaptic neuron i. tn
j is the timing of

the nth spike from the pre-synaptic neuron j. Since in TTFS-
encoding we are concerned with the time associated with only
the first spike (n = 1), hereon we ignore subsequent spikes and
refer to the time of the first spike of neuron j using t j. κi j is
the kernel that describes the induced post-synaptic potential
(PSP) by the incoming spikes and is defined as follows:

κ(t− t j) = [t− t j]Θ(t− t j) (2)

where Θ is the heaviside step function. The heaviside step
function Θ can be ignored by only considering input spikes
that arrive before ti for each neuron i. Because it is these
input spikes that influence the output spike of each neuron i,
we consider the pre-synaptic neurons that produce these input
spikes as a set of causal neurons. The set of causal neurons
Γ
<
i , can hence be defined as Γ

<
i := { j|t j < ti}. The time to

first spike for the neuron i can be expressed as follows:

ti =
1
µi

θ + ∑
j∈Γ

<
i

wi jt j

 (3)

where
µi := ∑

j∈Γ
<
i

wi j +bi. (4)

As the instantaneous firing rate ri of the neuron i is the in-
verse of ti, the proposed ANN-to-SNN conversion method [18]
equates activation ai in an ANN to the instantaneous rate ri of
the corresponding neuron i in the converted SNN, assuming
the use of ReLU activation functions in the ANN. The state of
SNNs have changed over the years, and have shown significant
progress.

III. RELATED WORK

There are three key approaches to achieve power efficient
neural network inference covered by this work. They include
spiking neural networks, hardware accelerators and neural
network optimizations.

A. Spiking Neural Networks
SNNs can be constructed by either training from scratch

or converting from a pre-trained ANN. Although many spike-
based training algorithms [21], [22], [23] have shown promising
results on the MNIST [18] dataset, these algorithms have not
been tested rigorously on larger network architectures and more
challenging datasets. As an alternative to SNN-based training,
pre-trained ANNs can be converted into SNNs. This method
has been shown to be highly successful for rate-encoded SNNs
on the CIFAR-10 and ImageNet [24] datasets. These previous
works have focused on rate-encoded SNNs, where a large
number of synaptic operations are required As a result, rate-
based encoding greatly limits the power efficiency of SNN
models when deployed onto the neuromorphic hardware.

Compared to rate-encoded SNNs, temporally encoded SNNs
are able to run with fewer operations and memory accesses [15]
which are highly desirable attributes for low-powered devices
(details in Section II). Although significant power savings can
be achieved by using TTFS-encoded SNNs instead of rate-
encoded SNNs, TTFS-encoded SNNs that are constructed by

either training from scratch [15], [17], [25], [26] or converting
from the pre-trained SNN [18] did not perform as well as their
ANN counterparts in terms of the classification accuracy. As
demonstrated in a recent study [18], converting from ANNs
to TTFS-encoded SNNs, unfortunately, leads to accumulated
approximation errors, which results in significantly lower
accuracy in the SNNs as compared to the equivalent ANNs,
particularly in larger network architectures. Our work tackles
this problem by proposing a novel training approach to refine
the network weights after conversion, which improve the
performance of the converted TTFS-encoded SNNs.

B. Hardware Accelerators
In the past few years, there have been several architectures

that have been proposed for neuromorphic hardware. The most
prominent among them is IBM’s TrueNorth neuromorphic
chip [16], which has an extremely low power density of just
20 milliwatts per square centimeter and has shown results
equivalent to state of the art on several benchmarks. However,
TrueNorth does not take advantage of sparse activations to
reduce the number of memory accesses. Regardless of the
number of spikes, cores on the TrueNorth chip will always
perform a read for each neuron in their core SRAM. Such an
implementation can be attributed to the usage of non-standard
networks for inference, making no assumptions about the
networks that are run. As a result, TrueNorth needs to handle
connections on a per-neuron basis, requiring the hardware to
keep track of the connections of every single neuron. There
is a high overhead for such an implementation, where half of
the data used during read operations (256 out of 410 bits) on
TrueNorth are to check for connectivity.

Unlike TrueNorth, our work implements standard networks
with an exploitable access pattern. Hence, we are able to
make reasonable assumptions about neuron connectivity and
can express these connections as a layer-wise access pattern
instead of storing them individually for each neuron. As a
result, we are able to perform significantly fewer reads per
time step

In the space of Time-To-First-Spike (TTFS) based hardware
accelerators, the viability of Time-To-First-Spike based systems
have been demonstrated by examining the sparsity of TTFS-
encoded networks [15]. However, the work did not explore the
potential for a low powered accelerator, as the authors have
not leveraged the sparsity of activations in a TTFS-encoded
SNN in a significant way. Furthermore, the accuracy reported
was far below the state-of-the-art.

Other notable SNN architectures include Intel’s Loihi [13]
and Minitaur [14], which feature online training, and a
processor for Deep Neural Networks with Binary/Ternary
Weights in 28nm CMOS [27].

C. Quantization
Quantization is one technique that is often applied to SNNs,

with layers having 4- or 8-bit precision [28]. In this work,
we examine the effects of 8-bit quantization on efficiency and
accuracy.

D. Summary
Power efficient inference can be achieved through the use of

extremely sparse SNNs. While most works use rate-encoded

3

SNNs instead of TTFS-encoded SNNs, trading accuracy for
power efficiency, we show that is possible to achieve greater
power efficiency for comparable accuracy, through the use of
TTFS-encoded SNNs.

In this work, we demonstrate a novel hardware accelerator
specifically designed for TTFS-encoded SNNs. Along with the
energy-efficient accelerator, we propose a method to convert
ANNs to SNNs which allows our TTFS-encoded SNNs to
leverage network compression techniques for more power
savings. In this work, we propose the combination of enhanced
training and efficient hardware to demonstrate the potential of
TTFS-based platforms.

IV. TRAINING COMPETITIVE TTFS-SNNS

TTFS-encoded SNNs have shown better power efficiency
and inference speed as compared to their rate-based variants.
The converted TTFS-encoded SNNs, however, suffer from
quantization errors that accumulate across layers. This signifi-
cantly deteriorates the classification accuracy, particularly in
deeper SNNs, as compared to their equivalent ANNs. Another
source of error arises when an input spike, coming from the
synaptic connection with a large weight, drives a neuron’s
internal membrane potential across the firing threshold, before
subsequent inhibitory input spikes that targeting the same post-
synaptic neuron arrives. This problem can be explained by
the different operating mechanism of the spiking neuron and
artificial neuron, wherein the input information is distributed
and integrated over time by the SNN rather than at the same
time instant as happened in the ANNs. Raising the threshold
value of the post-synaptic neurons may alleviate this problem.
However, it is not a good option in practice since it adversely
increases the latency for decision making.

To address these problems, we propose a training method to
systematically convert pre-trained ANNs to the TTFS-encoded
SNNs. First, we apply a data-driven weight normalization
strategy such that the neuron activation is not dominated by a
few input spikes with large weights while also ensure timely
decision making. Finally, to mitigate conversion errors, we
propose a layerwise training methodology. As a whole, the
proposed training framework effectively closes the accuracy
gap between the pre-trained ANNs and the converted SNNs.

A. Firing Threshold Determination
Determining the right combination of neuronal firing thresh-

old, weight and bias values is crucial to striking a balance
between the classification accuracy and latency. Apart from the
learnable parameters (weights and biases) that can be directly
taken from the pre-trained ANNs, the firing threshold requires
extra effort to be determined. An inappropriate threshold value
will cause the converted SNN to perform significantly poorer
compared to the equivalent ANN. One common approach to
this problem would be to set the threshold to 1 and adjust the
weights such that the activations are normalized.

B. Weight Normalization
In order to prevent the converted SNNs from underestimating

output activation of the corresponding ANNs, this work applies
weight normalization. One way to normalize weights is to
consider all possible combinations of positive activations that
could occur at a particular ANN layer and scale the weights

by that maximum quantity. The benefit of such an approach is
that it only depends on the weights and biases of the network.
However, in reality the maximum activation that determined
in this way might be far from the actual activation values for
majority of neurons. This leads to weights and biases that are
much smaller than they need to be, increasing the time taken for
a neuron to get activated. Because the time taken for a neuron
to first spike increases, a longer duration will be required
to achieve high classification accuracy. This problem will be
exacerbated in deeper networks if weights are normalized in
this way for all layers.

Instead of this conservative approach, we estimate the
maximal activation values of an ANN by making use of the
training data [29]. Note that because this algorithm uses data
from the training set, a strong performance guarantee cannot
be extended to the test set. As long as the training and test sets
have a similar data distribution, the activation vectors observed
using the training set would be similar to that observed in the
test set. The benefit of this method over the former method is
that it provides a much better trade off between latency and
accuracy. This is because the time taken to spike is shorter to
achieve a similar accuracy.

C. Training Network

Errors arising from converting ANNs to SNNs can be
further reduced through (1) retraining an ANN with constraints
or (2) refining the learnable parameters on the converted
temporally-encoded SNN. While retraining a standard ANN
with constraints might be feasible for small tasks such as the
MNIST dataset, it might be extremely challenging to do so
with larger networks on larger tasks such as ImageNet.

We propose coupling each layer in an ANN and the
corresponding layer in the converted SNN, and minimzing
a layer wise cost function. Unlike traditional SNN training
algorithms which utilize a loss computed at the final layer,
the algorithm we are proposing is aimed at minimizing the
divergence between ANN activations aLi and SNN activations
sLi for every neuron with index i in a layer L.

From the ANN-SNN conversion, the analog activation of a
neuron in the ANN is equivalent to the instantaneous firing rate
of TTFS-encoded SNN. The instantaneous firing rate is given
by the inverse of the time taken for a neuron to first spike. It
is possible to model the approximation between the activation
of a single neuron neuron i in a particular layer l in an ANN
and the corresponding neuron in an SNN: al

i =
1
t l
i
+ ε where

the introduction of ε allows for activation between SNN and
ANN to deviate by a reasonable margin of error. A potential
loss function is the L2-norm, given by L = 1

2 ∗ (a
l
i− rl

i)
2 where

rli is the instantaneous firing rate of neuron i in layer l given
by rl

i =
1
t l
i
.

The loss function is minimized by updating synaptic weights
as described in Algorithm 1. For each layer, L, the divergence
between the ANN activation vector and SNN instantaneous
rate vector is computed and minimized. This has the effect
of delaying or advancing spike times in the network. In
Section VIII, we demonstrate how this improve training method
works to increase inference accuracy.

4

Algorithm 1: train network: SNN training

Input: {I1...In}: Set of n input spikes vectors generated
from randomly sampling n images from training set

Input: β : Fraction of neurons to keep in each layer
Input: η : Learning rate
Input: ε: Margin of error
Input: K: Number of iterations
Output: Finetuned weights vector w
wi ← get parameters from ann(β);
wn ← normalize weights(wi, {I1...In});
k = 0
while k < K and error > ε do

for Ir in {I1...In} do
// Get activation vectors for each layer in an

L-layered ann
{a1...aL} ← ann forward pass(Ir);
// Get vectors of spike times for each layer in an

L-layered snn
{t1...tL} ← snn forward pass(Ir);
// Get vectors of instantaneous spike rates for

each layer in an L-layered snn {r1...rL} ←
get spike rates({t1...tL});

for q=1 to L do
layer type ← get layer from index(q);
if layer type in {batch norm, dropout} then

skip
else

error = L2(aq,rq);
// update weight
wn -= η ∗ ∂L

∂w ∗ error;

k+=1

V. ARCHITECTURE DESCRIPTION

A. Abstract Hardware Model
This section describes an abstract hardware model which

we used to translate the mathematical SNN models described
in earlier sections into a model that is easier to translate into
actual physical hardware. The abstract model consists of a
computational block that loads from and writes to three storage
blocks and represents a single layer of neurons i. The hardware
unit receives two forms of inputs - (1) incoming spikes from
neurons j in the previous layer and (2) End-of-Timestep (EoT)
packets used to signal the unit to move onto the next timestep
t +1.

The Weight block stores the weights of the synaptic connec-
tions wi j while the Accumulated Weights block keeps track
of the gradient of the neuron potential dV i

mem(t)
dt in equation

1. The Neuron Potentials block stores the neuron potential
V imem(t) as well as information on whether the neuron has
already produced a spike.

The Computational Block contains a set of registers that are
used to either keep track of the current state of layer or are
used to generate various access patterns of different network
types.

1) Processing input spikes: The core implements a spike
processing algorithm which uses four registers to implement an

access pattern. One register is used to keep track of the address
to be accessed while another will be used to keep track of
the number of accesses made. The remaining two registers are
populated on program time and store the number of accesses
P that need to be made and the address increment after each
access M. When a spike arrives at the core from neuron j,
the address register will be set based on the index of j. The
core will then generate P memory accesses, incriminating the
address by M after each access. Using this algorithm, our
core is able to implement fully connected networks efficiently,
as unnecessary computations and memory accesses will be
skipped over by the access pattern.

2) Processing End-of-Timestep (EoT) Signals: In SNNs,
time is used as an additional mechanism to store information.
In YOSO, EoT signals are used to indicate that a timestep
is complete and the accelerator can move on to the next one.
Unlike the processing of input spikes, no additional information
needs to be decoded from the EoT signals. The Computational
Block supports two ways of handling EoT signals - the standard
Integrate-and-Fire method and the softmax method which is
normally used in the final layer of the networks.
In the standard Integrate-and-Fire method, spikes are generated
as long as the neuron potential crosses the threshold and the
neuron has not spiked before. However, in the softmax method,
only the neuron with the largest neuron potential produces a
spike. In both methods, an EoT signal is sent to the next layer
after the Computational Block has finished updating the neuron
potentials and generating spikes.

B. Architecture Description

In this section, we discuss the detailed design of the YOSO
accelerator. The accelerator consists of multiple Processing
Elements (PEs) that are connected together through a Network-
on-Chip (NoC) with each PE supporting up to 256 neurons. In
this work we build on the OpenSMART NoC architecture [30]
to implement a lightweight NoC that utilizes x-y routing to
send spike packets from one PE to another. Figure 1a shows
the layout of the different components of a PE. Under normal
operations, the core will update the accumulated weights and
the neuron potentials by accessing and updating the appropriate
data from the SRAM banks attached to the memory interface.

1) Router Interface: The router interface is responsible for
sending input spikes to the appropriate components depending
on the current state of the PE. When the PE is in programming
mode, incoming spikes may be sent to the memory interface
to set the initial values of the SRAM blocks while all spikes
will be directed to the core under normal operation.

The router interface also supports two methods of generating
output packets that are sent to the router. First, the router may
take the output spike from the Spike Address Storage – when
a spike is generated by the neuron core, a 8-bit neuron address
is sent to the Spike Address Storage SRAM which sends the
32-bit spike to the router interface. The router interface then
appends the 8-bit coordinates of the core output destination
and sends the 40-bit packet to the router. The second method
of output packet generation is by forwarding received spikes.
Spike forwarding allows a single layer to be mapped across
multiple cores without the need for the sender to keep track
of the coordinates of all the cores in the layer. If forwarding
is active, the router interface sends spikes received from the

5

CORE
Input spike

FIFO

Processing Element

MEMORY INTERFACE

Output spike
FIFO

Router Interface

Accumulated
Weights
SRAM

Neuron
SRAM

Weights
SRAM

Spike Address
SRAM

(a) A YOSO processing element

LOAD
Module

COMPUTE
Module

STORE
Module

MEMORY INTERFACE

LOAD to STORE
FIFO

Read
Requests

Write
Requests

Read
Responses

CMP to STORE
FIFO

Spiked
Neuron
Address

To Memory Interface

Incoming
spikes

Core

LOAD to CMP
FIFO

From Router Interface

(b) A detailed diagram of the core

Fig. 1. A processing element (a) and its core (b), the main components of
the YOSO neuromorphic processor.

router to the core while also using it to create a 40-bit packet
by appending the 8-bit coordinates of the core forwarding
destination which is then sent back to the router.

2) Memory Interface: The memory interface consists of
four individual SRAM interfaces – one for each of the SRAM
blocks in the PE. As YOSO uses single-port SRAMs, only a
single read/write request can be processed at one time. The
SRAM interfaces alternate between servicing requests from
the Write Request FIFO and the Read Request FIFO to ensure
that all requests are processed in a reasonable amount of time.
SRAM blocks whose write queues are connected to the router
interface are populated on program time while SRAM blocks
with write queues connected to the core will be updated during
run time.

Handling RAW dependencies. To handle RAW depen-
dencies, read requests must contain an additional bit which
indicates if the read is done with the intention to alter the current
value. Additionally, SRAM interfaces with RAW protection
contain a special 256-bit RW Protection Register - 1 bit for each
entry in the SRAM. When a read request with the intention
to write occurs, the bit in the RW Protection Register indexed
by the read address will be set to 1 and will only be set back
to 0 after a write request to that same address is processed.
Any subsequent reads (regardless of whether they intend to
alter the current value) will be stalled until the matching write
request is processed. Reads that do not have the intention to
write will not cause the RW Protection Register bit to be set.
Since the Weight SRAM is only written to during program
time, its SRAM interface does not contain this mechanism as
RAW dependencies will not occur during runtime.

3) Core: The core is the key computational element of the
PE. The design of the core was inspired by traditional deep

learning accelerators like VTA [31] and adopts a decoupled
access-execute model [32] to memory access hide latency. Each
core consists of 3 modules that communicate with each other
through FIFOs. This allows for a better utilization of the cores’
resources as the other modules can continue execution if one
of them encounters a stall.

Load Module. The load module is a finite state machine
with two states: an idle state and an active state. In the idle
state, the load module waits for an input spike to arrive from
the router interface. When an input spike arrives at the core,
the information encoded in the spike is decoded and used to
populate the initial values of the internal registers. If a register
is not set by the decoded spike values, they are set by the
values of reference registers which are written to during the
programming stage. After the register values have been set, the
load module sends the spike type along with the number of
addresses to be generated to the compute module and transits
to the active state. In the active state, the load module begins
to generate read requests according to algorithm described in
the previous section . The read requests are sent to different
SRAM blocks depending on the spike type. The generated
addresses are sent to both the memory interface and the store
module. After all the necessary addresses are generated, the
load module transits to the idle state and waits for the next
input spike.

Compute Module. Like the load module, the compute
module is a finite state machine with an idle state and an
active state. In the idle state, the compute module waits for
the load module to send the spike type and the number of
addresses to be generated. The compute module initializes its
registers with this data and transits to the active state.

In the active state, the compute module performs addition
operations on the data retrieved from the memory interface
in response to the requests generated by the load module.
Saturating adders are used to handle overflow and underflows.
The results are then sent to the store module along with the
spike type. After all the data is processed, the compute module
transits back to the idle state.

Store Module. The store module is responsible for checking
for spikes and storing updated values back to the appropriate
SRAM block. The store module takes the values from the
compute module and stores them in the address obtained from
the load module. Since there is no re-ordering of read requests,
we can ensure that the values from the compute module and
the store module correspond to one another. If the spike is
an EoT signal, the store module will first check if the neuron
potential crosses the threshold before storing the value. The
store module supports spike generation for both TTFS and
softmax layers. In order to support softmax, reserved spike
types are used to mark the first and last neuron in the layer. The
store module then picks the neuron highest neuron potential
within the range of neurons marked out by the two neurons
and sends out the spike associated with the neuron, regardless
of whether it has crossed the threshold.

VI. MAPPING

This section, we explain how SNNs are mapped to the YOSO
accelerator. In order to map a m× n fully connected layer,
C = MAX(n

N ,
m×n
W) PEs are needed where N is the maximum

number of neurons that can be mapped to a single core and W

6

is the maximum number of weights that the core can contain.
The PEs are placed within a

√
C by

√
C grid.

Parameter Mapping. Mapping a FCN to a YOSO core is a
straightforward process. Biases are stored in the neuron SRAM
as the initial value of the neuron potentials.

VII. EXPERIMENTAL METHODOLOGY

In this section, we outline the details of the experimental
setup and algorithms used in evaluating our works.

A. Input & Output representations

Benchmarking SNNs require input data to be encoded as
spike trains. For visual datasets, possible techniques include
using: (1) Event-based sensors - creating a dataset using event-
based cameras to generate spike trains (2) Stochastic methods
- conversion of image intensity of images from conventional
datasets into Poisson/Bernoulli spike trains (3) Intensity to
Latency (ItL) encoding - generating a spike train containing
a spike per pixel in the image, where the spike’s latency
is inversely proportional to the intensity of a pixel in an
image. The use of stochastic methods could potentially be
useful in improving generalizability of networks at the cost
of added training stage complexity. Hence, this work uses
the simpler ItL encoding scheme for data from conventional
image classification datasets used for ANNs. Although not
difficult, the extension of this work to integrate input data from
event-based sensors is a potential avenue for future work. The
output layer of our SNN implementation is one-hot encoded.
The categorical classes of each dataset are encoded such that
the index of the neuron that spikes corresponds to one of the
output classes.

B. Networks

The MNIST Handwritten Digits dataset [33] contains grey-
scale images of 10 handwritten digits of size 28 x 28, with
a total training set of 60,000 examples, and a test set of
10,000 examples. We built a fully-connected network with
three layers (300-300-10) with hidden layers containing 300
neurons in the hidden layer.

C. Hardware Simulation

The YOSO accelerator was synthesized using Synopsys
Design Compiler version P-2019.03-SP5 targeting a 22nm
technology node. Gate-level simulation was performed using
Synopsys VCS-MX K-2015.09-SP2-9 and power analysis was
performed with Synopsys PrimePower version P-2019.03-SP5.
The simulations were run at 120KHz and accounts for both
programming and inference time.

VIII. RESULTS AND ANALYSIS

A. Performance

Prior TTFS-encoding work [18] has shown an accuracy of
98.30% (without quantization) on the MNIST dataset. Our
work, in contrast, achieves 98.44% (without quantization) and
98.40% (with quantization). Our proposed method improves
the accuracy of fully connected TTFS-encoded SNNs on the
MNIST dataset. The chosen input parameters to Algorithm 1
were: (1) |{I1...In}| = 100 (2) β = 0.99 (3) η = 10 (4) ε =
0.001 (5) K = 100.

TABLE I
PERFORMANCE ON MNIST DATASET (TTFS-ENCODING)

Network Coding ANN acc(%) SNN acc(%)
TrueNorth [34] Rate - 99.42
Rueckauer et al [24] Rate 98.56 98.50
Mostafa [25] Temporal - 97.55
Comsa et al [17] Temporal - 97.96
Rueckauer et al [18] Temporal 98.56 98.30
YOSO (Our Work) Temporal 98.56 98.44
YOSO (Our Work) + Quantization Temporal 98.56 98.40

Although the accuracy achieved by our TTFS-encoded
networks is slightly lower than that of rate-based networks, the
power consumed per inference is significantly lower as shown
in Table II. Our work pushes the performance and efficiency
boundary through the use of TTFS-encoded SNNs. While we
demonstrate results on fully connected networks, our future
work includes evaluating the performance gains obtained on
larger networks and datasets [2], [35].

TABLE II
COMPARISON OF OUR WORK WITH GENERAL NEUROMORPHIC

ACCELERATORS ON THE MNIST DATASET SORTED BY ACCURACY. OUR
WORK DEMONSTRATES BOTH LOW POWER AND HIGH ACCURACY. ENC. IS

ENCODING, ACC. IS TOP-1 ACCURACY IN PERCENT, FPS IS FRAMES PER
SECOND, TECH IS IN NM, POWER IN MW.

Accelerator Enc. Acc. fps Tech Power uJ/frame
SNNwt [36] Rate 91.82 - 65 - 214.700
TrueNorth-a [34] Rate 92.70 1000 28 0.268 0.268
Spinnaker [37] Rate 95.01 77 130 300.000 3896.000
Tianji [38] Rate 96.59 - 120 120.000 -
Shenjing [39] Rate 96.11 40 28 1.260 38.000
YOSO (this work) Temp. 98.40 30 22 (0.978*) 0.836 (32.604*) 27.867
TrueNorth-b [34] Rate 99.42 1000 28 108.000 108.000
* Scaled for 28nm process (×1.17 for half a generation)

B. Choice of output layer

Typically, the output layer of an ANN is chosen to be a
softmax layer because it ensures that the final layer’s outputs
are both normalized and strictly positive. For TTFS-encoded
SNNs, the output neurons are one-hot encoded. One problem
with such a method is if all neurons in the final layer receive
negative inputs or inhibitory input comes later than another
neuron spiking, either no neuron spikes or the incorrect neuron
will spike.

One solution would be to perform softmax on the membrane
potentials of the output layer neurons to determine the predicted
output class, instead of choosing the neuron that spikes first.
This method has allowed us to realize 1% improvement in
accuracy of the network. This technique can be used when
there is no need to use a purely spiking neural network.

IX. CONCLUSION

In this work, we introduced the YOSO accelerator, and
an improved Time-to-First-Spike training algorithm which
demonstrates the viability of temporally-encoded SNNs for
image classification tasks. To address the limitations of
temporally-encoded SNNs, we proposed a novel training
algorithm which achieves state of the art accuracy on temporally
encoded SNNs. By combining this highly accurate temporal
encoding method with our energy-efficient hardware design,
YOSO, we demonstrate state-of-the-art temporal encoding
results with high efficiency (1.17× better) and a lower power

7

consumption (1.29× better) over other state-of-the-art designs
with comparable accuracy.

X. ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their comments and
suggestions to improve this work. This research is supported
by A*STAR under its RIE2020 IAF-ICP (Award I2001E0053).
Any opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do not
reflect the views of the A*STAR.

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into recti-
fiers: Surpassing human-level performance on ImageNet classification,”
arXiv:1502.01852 [cs.CV], Feb. 2015.

[2] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. S. Bernstein, A. C. Berg, and F. Li, “ImageNet
large scale visual recognition challenge,” arXiv:1409.0575 [cs.CV], Sep.
2014.

[3] M. Tan and Q. Le, “EfficientNet: Rethinking model scaling for con-
volutional neural networks,” in Proceedings of the 36th International
Conference on Machine Learning, ser. Proceedings of Machine Learning
Research, K. Chaudhuri and R. Salakhutdinov, Eds., vol. 97, Jun. 2019,
pp. 6105–6114.

[4] A. Howard, M. Sandler, G. Chu, L. Chen, B. Chen, M. Tan, W. Wang,
Y. Zhu, R. Pang, V. Vasudevan, Q. V. Le, and H. Adam, “Searching for
MobileNetV3,” arXiv:1905.02244 [cs.CV], May 2019.

[5] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally,
and K. Keutzer, “SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and <1MB model size.” arXiv:1602.07360 [cs.CV], Feb.
2016.

[6] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada,
F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo,
I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner,
W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron
integrated circuit with a scalable communication network and interface,”
Science, vol. 345, no. 6197, pp. 668–673, Aug. 2014.

[7] F. Ponulak and A. Kasiński, “Introduction to spiking neural networks:
Information processing, learning and applications,” Acta neurobiologiae
experimentalis, vol. 71, pp. 409–33, Jan. 2011.

[8] W. Gerstner, W. M. Kistler, R. Naud, and L. Paninski, Neuronal Dynamics:
From Single Neurons to Networks and Models of Cognition. Cambridge
University Press, Jan. 2014.

[9] W. Gerstner, Wulfram, Kistler, and W. M., Spiking Neuron Models:
Single Neurons, Populations, Plasticity. Cambridge University Press,
Jan. 2002.

[10] J. Hopfield, “Pattern recognition computation using action potential
timing for stimulus representation,” Nature, vol. 376, pp. 33–36, Aug.
1995.

[11] S. Bohte, “The evidence for neural information processing with precise
spike-times: A survey,” Nat. Comput., vol. 3, pp. 195–206, Jun. 2004.

[12] M. Pfeiffer and T. Pfeil, “Deep learning with spiking neurons: Opportu-
nities and challenges,” Frontiers in Neuroscience, vol. 12, p. 774, Oct.
2018.

[13] C.-K. Lin, A. Wild, G. Chinya, M. Davies, N. Srinivasa, D. Lavery,
and H. Wang, “Programming spiking neural networks on Intel Loihi,”
Computer, vol. 51, no. 3, pp. 52–61, Mar. 2018.

[14] D. Neil and S. Liu, “Minitaur, an event-driven FPGA-based spiking
network accelerator,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 22, no. 12, pp. 2621–2628, Dec. 2014.

[15] H. Mostafa, B. U. Pedroni, S. Sheik, and G. Cauwenberghs, “Fast
classification using sparsely active spiking networks,” in 2017 IEEE
International Symposium on Circuits and Systems (ISCAS), May 2017,
pp. 1–4.

[16] F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla,
N. Imam, Y. Nakamura, P. Datta, G. Nam, B. Taba, M. Beakes, B. Brezzo,
J. B. Kuang, R. Manohar, W. P. Risk, B. Jackson, and D. S. Modha,
“TrueNorth: Design and tool flow of a 65 mW 1 million neuron
programmable neurosynaptic chip,” vol. 34, no. 10, Oct. 2015, pp. 1537–
1557.

[17] I. M. Comsa, T. Fischbacher, K. Potempa, A. Gesmundo, L. Versari,
and J. Alakuijala, “Temporal coding in spiking neural networks with
alpha synaptic function,” in IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), May 2020, pp. 8529–8533.

[18] B. Rueckauer and S.-C. Liu, “Conversion of analog to spiking neural
networks using sparse temporal coding,” in 2018 IEEE International
Symposium on Circuits and Systems (ISCAS), May 2018, pp. 1–5.

[19] A. Taherkhani, A. Belatreche, Y. Li, G. Cosma, L. Maguire, and
T. McGinnity, “A review of learning in biologically plausible spiking
neural networks,” Neural Networks, vol. 122, pp. 253–272, Feb. 2020.

[20] A. Cattani, G. T. Einevoll, and S. Panzeri, “Phase-of-firing code,”
arXiv:1504.03954 [q-bio.NC], Apr. 2015.

[21] S. B. Shrestha and G. Orchard, “Slayer: Spike layer error reassignment
in time,” in Advances in Neural Information Processing Systems 31,
2018, pp. 1412–1421.

[22] Y. Wu, L. Deng, G. Li, J. Zhu, Y. Xie, and L. Shi, “Direct training for
spiking neural networks: faster, larger, better,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 33, 2019, pp. 1311–1318.

[23] E. O. Neftci, H. Mostafa, and F. Zenke, “Surrogate gradient learning in
spiking neural networks,” arXiv:1901.09948 [cs.NE], Jan. 2019.

[24] B. Rueckauer, I.-A. Lungu, Y. Hu, M. Pfeiffer, and S.-C. Liu, “Conversion
of continuous-valued deep networks to efficient event-driven networks
for image classification,” Frontiers in Neuroscience, vol. 11, p. 682, Dec.
2017.

[25] H. Mostafa, “Supervised learning based on temporal coding in spiking
neural networks,” arXiv:1606.08165 [cs.NE], Jun. 2016.

[26] M. Zhang, J. Wang, Z. Zhang, A. Belatreche, J. Wu, Y. Chua, H. Qu,
and H. Li, “Spike-timing-dependent back propagation in deep spiking
neural networks,” arXiv:2003.11837 [cs.NE], Mar. 2020.

[27] Y. Shouyi, O. Peng, Y. Jianxun, L. Tianyi, L. Xiudong, L. Leibo, and
W. Shaojun, “An ultra-high energy-efficient reconfigurable processor for
deep neural networks with binary/ternary weights in 28nm CMOS,” IEEE
Symposium on VLSI Circuits, pp. 37–38, Jun. 2018.

[28] M. Bouvier, A. Valentian, T. Mesquida, F. Rummens, M. Reyboz,
E. Vianello, and E. Beigne, “Spiking neural networks hardware im-
plementations and challenges: A survey,” ACM Journal on Emerging
Technologies in Computing Systems (JETC), vol. 15, no. 2, pp. 1–35,
2019.

[29] P. U. Diehl, D. Neil, J. Binas, M. Cook, S. Liu, and M. Pfeiffer, “Fast-
classifying, high-accuracy spiking deep networks through weight and
threshold balancing,” in 2015 International Joint Conference on Neural
Networks (IJCNN), Jul. 2015, pp. 1–8.

[30] H. Kwon and T. Krishna, “OpenSMART: Single-cycle multi-hop noc
generator in BSV and Chisel,” in 2017 IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS), Apr. 2017,
pp. 195–204.

[31] T. Moreau, T. Chen, Z. Jiang, L. Ceze, C. Guestrin, and A. Krish-
namurthy, “VTA: an open hardware-software stack for deep learning,”
arXiv:1807.04188 [cs.LG], Jul. 2018.

[32] J. E. Smith, “Decoupled access/execute computer architectures,” in
Proceedings of the 9th Annual Symposium on Computer Architecture
(ISCA), Apr. 1982, p. 112–119.

[33] Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010.
[34] S. K. Esser, R. Appuswamy, P. Merolla, J. V. Arthur, and D. S.

Modha, “Backpropagation for energy-efficient neuromorphic computing,”
in Advances in neural information processing systems (NIPS), Dec 2015,
pp. 1117–1125.

[35] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” Technical report, University of Toronto, Apr. 2009.

[36] Z. Du, D. D. B.-D. Rubin, Y. Chen, L. Hel, T. Chen, L. Zhang, C. Wu,
and O. Temam, “Neuromorphic accelerators: A comparison between
neuroscience and machine-learning approaches,” in 2015 48th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
Dec 2015, pp. 494–507.

[37] M. M. Khan, D. R. Lester, L. A. Plana, A. Rast, X. Jin, E. Painkras, and
S. B. Furber, “Spinnaker: mapping neural networks onto a massively-
parallel chip multiprocessor,” in 2008 IEEE International Joint Confer-
ence on Neural Networks (IJCNN), Jun 2008, pp. 2849–2856.

[38] Y. Ji, Y. Zhang, W. Chen, and Y. Xie, “Bridge the gap between
neural networks and neuromorphic hardware with a neural network
compiler,” in Proceedings of the Twenty-Third International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), Mar 2018, pp. 448–460.

[39] B. Wang, J. Zhou, W.-F. Wong, and L.-S. Peh, “Shenjing: A low power
reconfigurable neuromorphic accelerator with partial-sum and spike
networks-on-chip,” Proceedings of Design, Automation, and Test in
Europe (DATE), Mar 2020.

8

	Introduction
	Background
	Formalizing TTFS-SNNs

	Related Work
	Spiking Neural Networks
	Hardware Accelerators
	Quantization
	Summary

	Training Competitive TTFS-SNNs
	Firing Threshold Determination
	Weight Normalization
	Training Network

	Architecture Description
	Abstract Hardware Model
	Processing input spikes
	Processing End-of-Timestep (EoT) Signals

	Architecture Description
	Router Interface
	Memory Interface
	Core

	Mapping
	Experimental Methodology
	Input & Output representations
	Networks
	Hardware Simulation

	Results and Analysis
	Performance
	Choice of output layer

	Conclusion
	Acknowledgements
	References

