Big néural networksin small spaces
Towards end-to-end optimisation for ML at the edge

Rune Holm, Machine Learning Group, Arm

Nonconfidential © 2020 Arm Limited

Why is ML Moving to the Edge?

Reliability Security

2 Nonconfidential © 2020 Arm Limited q r m

Wide Range of “Edge” Inference Applications

Autonomous

drive /
Image -

enhancement

Voice & image
recognition

~100W

Object
detection

Pattern
training

Keyword
detection

Increasing performance (Ops/second)

Increasing power and cost (silicon)

3 Nonconfidential © 2020 Arm Limited q r m

On-Device ML - Challenges

Tiny-edge device constraints for deploying ML
algorithms

+ Limited memory

—~ SRAM (16 kB - 1024 kB)

. - Ethos-N57 Ethos-N37
+ Limited compute capability (100 MHz - 1 GHz)
Up to 2 TOP/s @ 1 GHz Up to 1 TOP/s @ 1 GHz
: lelted bandWIdth 512 KB Internal SRAM 512 KB Internal SRAM

_ DRAM (2-16 GB/s)

Common Hardware Architecture Datatypes: Int8, Int16 Frequency: up to 1 GHz

- The better we optimise, the more interesting use cases we

can run

On-Device ML solutions = Model Optimization = Compiler = Hardware

4 Nonconfidential © 2020 Arm Limited m

End-to-end optimisation

5

ML Networks

Vision
Voice
Vibration

Nonconfidential © 2020 Arm Limited

Optimisations

o O O O

Model

Pruning
Quantization
Clustering
Algorithms

J

Compiler »

Layer tiling

o Scheduling for
bandwidth

o Scheduling for
| memory usage |

Algo/SW/HW co-dev

Hardware

Low-precision
arithmetic

Compression
Sparsity

PPAB

Power

Bandwidth

arm

4 4 4 4 4 4 4 4 4
+ + 4 + 4 + + 4 +
+ 4 4 4 4 + 4 4 4

M d I 0 t. I t.
4 4 b + 4 4 4 4 4
4 + 4 + 4 + + 4 +
B B + - + K B + +
+ + + + + + + + +

Nonconfidential © 2020 Arm Limited

arm

4 4 4 4 4 4 4+ 4

Overview of Model Optimizations

Equalization

Fold batch-norms

S Fuse layers
Algorithmic 1 —"V-\/ - 1

Optimizations

Quantization

del candidate NetOpt DepOpt
moaeis |
\ N modelsj models Fine-tuning models
Network Deployment
\ Optimizations Optimizations I

|

7 Nonconfidential © 2020 Arm Limited Co"aborative Optimizations a r m

Overview of Pruning Techniques

Magnitude Pruning Channel Pruning Structured Pruning

before pruning after pruning

number of chapnels:

pruning
synapses

--> nonlinear

pruning
neurons

1 1 0 1 1 1 1 0 o0 o
LWL 0 0 0 0 0 0 0 0 0 0
- ~ (a) (b) (@) (d) 0o 0 1 1 1 0o 0o 1 1 o
Train Connectivity troreo o 00 0o
1 0 1 0 1 1 0 0 o0 1
\ J
<L A . Sparsity = 50% Sparsity = 75%
e) ﬁ v \Z
Prune Connections & Lo 0o 1o 0 0 1
S y E 0 1 0 1 0 o o0 o 1 o0
< G 1 0o 1 0 1 0 0 1 0 o
e B :
5; o 1 0 1 o0 o 1 0 0 o©
Train Weights &) 1 0 1 0 1 1 0 0o o 1
- / nonlinear ° Romlinear Stride = 2 Stride = 4

H l. “D jon: ing D - « .
Song Han et al. “Deep Compression: Compressing Deep Yihui He et al. “Channel Pruning for Accelerating Very Sajid Anwar et al. “Structured Pruning of Deep

Neural Networks with Pruning, Trained Quantization and PR Convolutional Neural Networks” arXiv: 1512.08571 (2015).

8 Nonconfidential © 2020 Arm Limited q r m

https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1707.06168
https://arxiv.org/abs/1512.08571

Clustering: Non-uniform Quantization

20000 . -
x*xx Uniform quantization
e®¢ Non-uniform quantization
15000}
10000}
2
%]
=
]
o
5000¢
O e 00000 © oo000000 O O
X X X X X X X X X X X X X X X X

—0.04 —0.02 0.00 0.02 0.04 0.06
weight value

* Cluster n-weights to the k-centroids (n>>k).

- Use K-Means for initial clustering

- Enables weight compression
 Update centroids during retraining.

- Sparsity preservation

9 Nonconfidential © 2020 Arm Limited

weights cluster index fine-tuned
(32 bit float) (2 bit uint) centroids centroids

3 0 2 1 3

cluster | | 0 3

=

gradient

group by reduce

=

Song Han et al. “Deep Compression: Compressing Deep Neural Networks with Pruning, Trained
Quantization and Huffman Coding” arXiv: 1510.00149 (2015).

https://arxiv.org/abs/1510.00149

Uniform Quantization: Balancing Range vs. Resolution

Finding Optimal (min, max) for Quantization
/‘

/ "\ AN

saturatef -\.

'/- § saturate
I

I I
| |
1 1
<

: Xmin : Xrmax : Xmin : Xrmax
I Large quantization error I Large quantization error
| e e . | .

due to limited resolution due to saturation

Goal: Find (X, optr Xmax_opt) that minimizes quantization error

Solution: Signal-to-Quantization Noise Ratio (SQNR) as a metric to choose
optimal quantization ranges.

10 Nonconfidential © 2020 Arm Limited q r m

Optimized Models

Networks Optimization Accuracy Loss/Increase
Inception V3 pruned (50%), clustered (5-bit), quantized (8-bit) 1% loss
Resnet 50 pruned (50%), clustered (5-bit), quantized (8-bit) 1.1% loss
VGG16 pruned (50%), quantized (8-bit), clustered (3 clusters for last 3 layers) 0.3% increase

* Post-training quantization applied. Accuracy further improves with fine-tuning.

* Application domains
* image classification, object detection, speech recognition, etc.

 Reduce model size and improve compressibility
* Enable efficient on-device computation

11 Nonconfidential © 2020 Arm Limited q r m

Neural Processor Umt
hardware

Nonconfidential © 2020 Arm Limited

arm

4 4 4 4 4 4 4 4

Key Ingredients for a Neural Processor Unit

NPU

Input Feature Map Read

e Efficient convolutions
Weight Decoder

e Bandwidth reduction mechanisms MAC Engine

Programmable Engine

e Static scheduling

13 Nonconfidential © 2020 Arm Limited q r m

Efficient convolutions

NPU

Input Feature Map Read

Large amount of MAC units — utilize the 100+:1
ALU:LS ratio of typical convolutions

Quantisation Weight Decoder
- 8 bit integer operations for CNNs

- More bits for RNNs
- Fewer bits are possible for some layers

. i Programmable Engine
Reuse of SRAM reads between MAC units, otherwise

SRAM read power dominates

Significant number of zeros (ReLU: >50% feature map

Zeros)

- Opportunities for clock gating
- Or even zero-skipping units

14 Nonconfidential © 2020 Arm Limited q r m

Importance of Weight and Feature Map Compression

Power breakdown

* DRAM power can be nearly as high as the
processor power itself

* Bandwidth reduction techniques

important
« Weight compression

- Activation compression
« Tiling

15 Nonconfidential © 2020 Arm Limited q r m

Weight compression: typical distributions
50% sparsity
Pruning
-3.0 0 3.1 -3.21 -0.2760 0.276 3.56
Original weights distribution
Clustering
(16 clusters)
o :
50% sparsity >0% sparsity
Quantize
- \| | X - \| N X
0 33 128 227 255 -2.476 0 2.753
16-unique uint8 values 16-unique fp32 values

16 Nonconfidential © 2020 Arm Limited

arm

Lossless weight compression

* Unequal distribution provides compression opportunities, straight out of TF/PyTorch

* Pruning and clustering provide additional possibilities

* Multiple off-ramps for different levels of developer effort

. Quantized + Pruned, clustered, .
Networks Quantized . Savings
compressed quantized, compressed
Size | Bits/elem Size | Bits/elem Size Bits/elem Size Bits/elem
Inception V3 92 MB 32| 23 MB 8| 16 MB 5.6 12 MB 4.2 7.7x
Resnhet 50 100 MB 32| 25MB 8| 15MB 4.8 12 MB 3.8 8.3x
VGG16 540 MB 32 | 135 MB 8 96 MB 5.7 32 MB 1.9 16.9x

17 Nonconfidential © 2020 Arm Limited q r m

Frequency

Lossless feature map compression

High zero count indicates good
compression behavior

500,000 |
450,000 Many maps have repeating non-
400,000 zeros, again aiding compression
350,000 o .
Standard padding behaviors for
300,000

tensors mtroduce more zeros

250,000 L e e 64 uniquenz

56 unique nz

200,000 > 48 unique nz
— -'—: 40 unique nz es
150,000 = uniqu \\)
32 unique nz 0
100,000 fl«e
)
50,000 || NG Lo L i e i i e i L L Lo L L L0 L L g L e o P \)?/(\
et PP PPl ot ol "l il 0 unique nz \)(\\0\
0 zero 8 zeros 16 zeros 24 zeros 32 zeros 40 zeros 48 zeros 56 zeros 64 zeros

Count of zeros per 8x8 block

 Compression per 8x8 block

* 3.3x compression for Inception V3

18 Nonconfidential © 2020 Arm Limited q r m

Static Scheduling

* Neural networks are statically
analyzable

N
* Compiler takes a NN and maps it

PU
to a command stream consumed

by the ML processor

DMA X
DMAY DRAM
| WAIT for DMA (X,Y)
Conv X, Y
etc
19 Nonconfidential © 2020 Arm Limited q r m

4 4 + E: 4 + 4 + +
+ 4 + Kl E: + 4 + +
4 + + 4 4 4+ + + K
i I
+ 4+ + 4 4+ + 4+ + +
4 ks + 4 4 + 4 + +
+ + + + + + + + +
+ + + + + + + + +
Nonconfidential © 2020 Arm Limited q r m
4 4 + E: 4 + 4 + +

Mapping neural networks onto NPU hardware

NPU: compute units paired with compiler-managed SRAM
storage, with DMA units to move data in and out of
limited-bandwidth DRAM

Neural network: operations and tensors, in a graph that
can have complex connectivity

How do we decide what operations to schedule when,
and which tensors or parts of tensors to keep in SRAM?

NPU

Compute units DMA

SRAM

DRAM

1x35x35x288

Conv2D
weights (48x1x1x288)

bias (48)

1x35x35x48

Conv2D

weights (64x5x5x48)
bias (64)

Conv2D

weights (64x1x1x288)
bias (64)

onV2D

weights (64x1x1x288)
bias (64)

1x35x35x288

weights (384x3x3x288)

bias (384)

x3Zx17x384

5x35x64

1x35x35x64

Conv2D

weights (96x3x3x64)
bias (96)

1x35x35x96
Conv2D

weights (96x3x3x986)
bias (96)

Concatenation

1x35x35x288

Relu

1x35x35x64

Conv2D

weights (96x3x3x64)
bias (96)

1x35x35x96

Conv2D

Concatenation

1x35x35x96

eragePool2D

1x35x35x288

Conv2D

weights (64x1x1x288)
bias (64)

1x35x35x64

1x35x35x288

weights (96x3x3x96)
bias (96) MaxPool2D
elu
1x17x17x96 1x17x17x288

arm

Styles of compilation

C compilers Database query planners SELECT * FroM A
INNER JOIN B
ini.: max _ L . ON A.id = B.id
{<mt a, int b) _ QOptimising low level - Optimising high INNER JOIN C
return b>a?b:a; flow(instruction level flow (layout, ON B.val = C.id
} scheduling) access order)
max (int, int): F d h h I Iﬂ F d I I Iﬂ NB"”"l:C'id
cmp wl, w0 - Fixed high level flow - Fixed low level flow 7
csel w0, wi, w0, ge (memory layout, access (pre-implemented P 1d-8.1d
t .
= order) routines) 4 N
RO R1 R2

Try to do both at the same time? Infeasible compilation times

The NN compilation problem looks more like query planning than C compilation

A neural network compiler needs to match that

22 Nonconfidential © 2020 Arm Limited a r m

Scheduling to reduce bandwidth

Choose traversal order to minimize resident
memory and bandwidth of a pass.

Inputs large and weights small: Outermost
loop index — Output Y

Inputs small and weights large: Outermost
loop index - Output Channel

convZd inputs large (input, output, weights):

for (output Y)
for (output channel)
for (output X)
for (input channel)
for (kernel XY)
MAC

write accumulator
23 Nonconfidential © 2020 Arm Limited

Inception v4
10000

) “

= AV IV Iy iy 'n

v

k “WAJVLHAJ
n

0 40 80 120 160

Convolution layer #
—Input Weights

convZd weights large (input, output, weights):
for (output channel)
for (output Y)
for (output X)
for (input channel)
for (kernel XY)
MAC

write accumulator

arm

Tiling together passes for better schedule

Tile together passes to avoid writing full intermediate feature maps when possible.

Search for best schedule realizable within the amount of SRAM available.

nx1

1Xn

nx1

i

1Xn

i
1x1

he——

DRAM bandwidth: 5 VB Out of SRAM 3.5 MB Out of SRAM

24 Nonconfidential © 2020 Arm Limited

arm

Best schedule

Schedule search

NNs can have complex topology

- a locally optimal choice not necessarily globally optimal

Search can be formulated as a dynamic programming problem, as
long as you can use cost functions satisfying the Bellman equation.

Database query planning paper

Top-down search

Optlrnal TOp—DOWH Join Enumeration (extended version)

David E. DeHaan
Frank Wm. Tompa

Bottom-up search Dynamic Programming Strikes Back
Guido Moerkotte Thomas Neumann
University of Mannheim Max-Planck Institute for Informatics
Mannheim, Germany Saarbriicken, Germany
moerkotte@informatik.uni-mannheim.de neumann@mpi-inf.mpg.de
Top-down/bottom-up hybrid A Call for Order in Search Space Generation

Process of Query Optimization

Anisoara Nica

Sybase, An SAP Company
Waterloo, Ontario, Canada
anica@sybase.com

25 Nonconfidential © 2020 Arm Limited q r m

Power breakdown

Bringing it all together

- Feat
Done well, we can eliminate 95%+ of

intermediate data traffic to DRAM

Sparsity
(CNNs, 1 MB SRAM, 299x299 input W
resolution)

Leaving us with:
* NN input read bandwidth
* NN output write bandwidth

* Compressed weight read bandwidth

Quantised, before optimisations After optimisations

HNPU power @ Weight DDR power M Feature map DDR power

26 Nonconfidential © 2020 Arm Limited q r m

Conclusion

We can enable big neural networks in small spaces

No “one weird trick” to solve it all at once

Rather, lots of painstaking engineering required: model optimisation, compiler, hardware

ML Networks
e Vision Model
* \oice Optimisations
* Vibration
o Pruning
o Quantization
o Clustering
o Algorithms

27 Nonconfidential © 2020 Arm Limited _

Compiler

Layer tiling

Scheduling for
bandwidth

Scheduling for

memory usage)

»

Hardware

Low-precision
arithmetic

Compression
Sparsity

PPAB
Perf

Power
Area
Bandwidth

arm

