
Nonconfidential © 2020 Arm Limited

Big neural networks in small spaces

Rune Holm, Machine Learning Group, Arm

Towards end-to-end optimisation for ML at the edge
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Bandwidth ReliabilityPower SecurityCost Latency

Why is ML Moving to the Edge?
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Keyword 
detection
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training

Voice & image 
recognition

Object 
detection 

Image 
enhancement

Autonomous 
drive

Increasing power and cost (silicon)
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Wide Range of “Edge” Inference Applications
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On-Device ML - Challenges
Tiny-edge device constraints for deploying ML 

algorithms

• Limited memory

– SRAM (16 kB - 1024 kB)

• Limited compute capability (100 MHz - 1 GHz)

• Limited bandwidth

– DRAM (2-16 GB/s)

• The better we optimise, the more interesting use cases we 

can run

On-Device ML solutions = Model Optimization à Compiler à Hardware
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End-to-end optimisation

ML Networks
• Vision
• Voice
• Vibration

Hardware

PPAB
• Perf
• Power
• Area
• Bandwidth

o Pruning

o Quantization

o Clustering

o Algorithms

o Low-precision 
arithmetic

o Compression

o Sparsity

Algo/SW/HW co-dev

o Layer tiling

o Scheduling for 
bandwidth

o Scheduling for 
memory usage

CompilerModel
Optimisations
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Model Optimisations
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Trained
models

NetOpt
models

DepOpt
models

Deployment 
Optimizations

Parameter Optimization

candidate
models...

Weight Clustering

Magnitude Pruning

Structured Pruning

Algorithmic 
Optimizations

Network 
Optimizations

Fine-tuning

Quantization

Fuse layers

Fold batch-norms

Equalization

Collaborative Optimizations

Overview of Model Optimizations
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Overview of Pruning Techniques
Magnitude Pruning Channel Pruning Structured Pruning

Song Han et al. “Deep Compression: Compressing Deep 
Neural Networks with Pruning, Trained Quantization and 
Huffman Coding” arXiv: 1510.00149 (2015).

Yihui He et al. “Channel Pruning for Accelerating Very 
Deep Neural Networks” arXiv: 1707.06168 (2017).

Sajid Anwar et al. “Structured Pruning of Deep 
Convolutional Neural Networks” arXiv: 1512.08571 (2015).

https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1707.06168
https://arxiv.org/abs/1512.08571
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Clustering: Non-uniform Quantization

• Cluster n-weights to the k-centroids (n>>k).

• Use K-Means for initial clustering

• Enables weight compression

• Update centroids during retraining.

• Sparsity preservation
Song Han et al. “Deep Compression: Compressing Deep Neural Networks with Pruning, Trained 
Quantization and Huffman Coding” arXiv: 1510.00149 (2015).

Uniform quantization

Non-uniform quantization

https://arxiv.org/abs/1510.00149
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Uniform Quantization: Balancing Range vs. Resolution
Finding Optimal (min, max) for Quantization

Goal: Find (xmin_opt, xmax_opt) that minimizes quantization error

Solution: Signal-to-Quantization Noise Ratio (SQNR) as a metric to choose 

optimal quantization ranges. 

Large quantization error

due to limited resolution

xmin xmax

x x x x x x x x x x x x x x x

Large quantization error

due to saturation

xmin xmax

x x x x x x x xx x x x x x x x

saturate saturate
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Optimized Models

Networks Optimization Accuracy Loss/Increase

Inception V3 pruned (50%), clustered (5-bit), quantized (8-bit) 1% loss

Resnet 50 pruned (50%), clustered (5-bit), quantized (8-bit) 1.1% loss

VGG16 pruned (50%), quantized (8-bit),  clustered (3 clusters for last 3 layers) 0.3% increase

• Application domains
• image classification, object detection, speech recognition, etc.

• Reduce model size and improve compressibility
• Enable efficient on-device computation

* Post-training quantization applied. Accuracy further improves with fine-tuning.   
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Neural Processor Unit 
hardware
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Key Ingredients for a Neural Processor Unit

• Efficient convolutions 

• Bandwidth reduction mechanisms

• Static scheduling

NPU

DMA 
Engine

MAC Engine

Input Feature Map Read

Weight Decoder
SRAM

Programmable Engine

DRAM
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NPU

DMA 

Engine

MAC Engine

Input Feature Map Read

Weight Decoder

SRAM

Programmable Engine

DRAM

Efficient convolutions
• Large amount of MAC units – utilize the 100+:1 

ALU:LS ratio of typical convolutions

• Quantisation
• 8 bit integer operations for CNNs

• More bits for RNNs
• Fewer bits are possible for some layers

• Reuse of SRAM reads between MAC units, otherwise 

SRAM read power dominates

• Significant number of zeros (ReLU:  >50% feature map 
zeros)
• Opportunities for clock gating

• Or even zero-skipping units
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Importance of Weight and Feature Map Compression

• DRAM power can be nearly as high as the 
processor power itself

• Bandwidth reduction techniques 
important
• Weight compression
• Activation compression
• Tiling

NPU power
Weight DDR power

Feature map DDR 
power

Power breakdown
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Weight compression: typical distributions

Original weights distribution
0

Pruning

0-3.0 3.1

Clustering

(16 clusters)

-3.21 3.560.276-0.276

0-2.476 2.753

Quantize

1280 25522733

16-unique fp32 values16-unique uint8 values

50% sparsity

50% sparsity50% sparsity
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Lossless weight compression

• Unequal distribution provides compression opportunities, straight out of TF/PyTorch

• Pruning and clustering provide additional possibilities

• Multiple off-ramps for different levels of developer effort

Networks FP32 Quantized Quantized + 
compressed

Pruned, clustered, 
quantized, compressed Savings

Size Bits/elem Size Bits/elem Size Bits/elem Size Bits/elem

Inception V3 92 MB 32 23 MB 8 16 MB 5.6 12 MB 4.2 7.7x

Resnet 50 100 MB 32 25 MB 8 15 MB 4.8 12 MB 3.8 8.3x

VGG16 540 MB 32 135 MB 8 96 MB 5.7 32 MB 1.9 16.9x
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Lossless feature map compression 

• Compression per 8x8 block
• 3.3x compression for Inception V3

Count of zeros per 8x8 block
Unique non-zero values

Fr
eq

ue
nc

y

Source: Arm Machine Learning group

High zero count indicates good 
compression behavior

Standard padding behaviors for 
tensors introduce more zeros

Many maps have repeating non-
zeros, again aiding compression 
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Static Scheduling
• Neural networks are statically 

analyzable

• Compiler takes a NN and maps it 

to a command stream consumed 

by the ML processor

NN 

Compiler

DMA X

DMA Y

WAIT for DMA (X,Y)

Conv X, Y

etc

Command Stream

NPU

DRAM

DMACompute units

SRAM
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NPU Compiler
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Mapping neural networks onto NPU hardware

NPU: compute units paired with compiler-managed SRAM 
storage, with DMA units to move data in and out of 
limited-bandwidth DRAM

Neural network: operations and tensors, in a graph that 
can have complex connectivity

How do we decide what operations to schedule when, 
and which tensors or parts of tensors to keep in SRAM?

NPU

DRAM

DMACompute units

SRAM
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Styles of compilation
C compilers

- Optimising low level 
flow(instruction 
scheduling)

- Fixed high level flow 
(memory layout, access 
order)

Database query planners 

- Optimising high 
level flow (layout, 
access order)

- Fixed low level flow 
(pre-implemented 
routines)

Try to do both at the same time? Infeasible compilation times

The NN compilation problem looks more like query planning than C compilation

A neural network compiler needs to match that

SELECT * FROM A 
INNER JOIN B 
ON A.id = B.id

INNER JOIN C 

ON B.val = C.id

int max
(int a, int b)
{
return b>a?b:a;

}

max(int, int):
cmp w1, w0
csel w0, w1, w0, ge
ret
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Scheduling to reduce bandwidth

Choose traversal order to minimize resident 
memory and bandwidth of a pass.

Inputs large and weights small: Outermost 
loop index – Output Y

Inputs small and weights large: Outermost 
loop index - Output Channel

1

10

100

1000

10000

0 40 80 120 160

Inception v4

Input Weights

Si
ze

 (K
B)

Convolution layer #

conv2d_weights_large(input, output, weights):
for(output channel)

for(output Y)
for(output X)

for(input channel)
for(kernel XY)

MAC
write accumulator

conv2d_inputs_large(input, output, weights):
for(output Y)

for(output channel)
for(output X)

for(input channel)
for(kernel XY)

MAC
write accumulator
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Tiling together passes for better schedule
Tile together passes to avoid writing full intermediate feature maps when possible. 

Search for best schedule realizable within the amount of SRAM available.

Out of SRAM Out of SRAM5 MB 4 MB 3.5 MB3 MB

Best schedule

DRAM bandwidth:
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Schedule search
NNs can have complex topology

- a locally optimal choice not necessarily globally optimal

Search can be formulated as a dynamic programming problem, as 
long as you can use cost functions satisfying the Bellman equation. 

Style Database query planning paper

Top-down search

Bottom-up search

Top-down/bottom-up hybrid
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Quantised, before optimisations After  optimisations

Power breakdown

NPU power Weight DDR power Feature map DDR power

Bringing it all together

Done well, we can eliminate 95%+ of 
intermediate data traffic to DRAM

(CNNs, 1 MB SRAM, 299x299 input 
resolution)

Leaving us with:

• NN input read bandwidth

• NN output write bandwidth

• Compressed weight read bandwidth 

Tiling

SRAM scheduling

Feature map compression

Sparsity/clustering/quantisation

Weight compression

Read reuse

Sparsity
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Conclusion

We can enable big neural networks in small spaces

No ”one weird trick” to solve it all at once

Rather, lots of painstaking engineering required: model optimisation,  compiler, hardware

ML Networks
• Vision
• Voice
• Vibration

Hardware

PPAB
• Perf
• Power
• Area
• Bandwidth

o Pruning

o Quantization

o Clustering

o Algorithms

o Low-precision 
arithmetic

o Compression

o Sparsity

o Layer tiling

o Scheduling for 
bandwidth

o Scheduling for 
memory usage

CompilerModel
Optimisations


