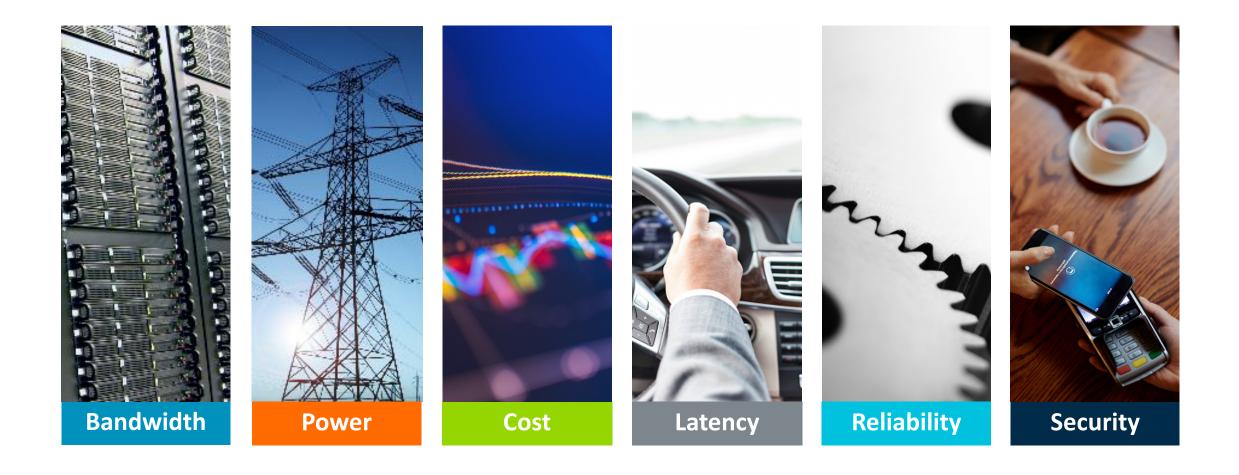
drm

Big neural networks in small spaces

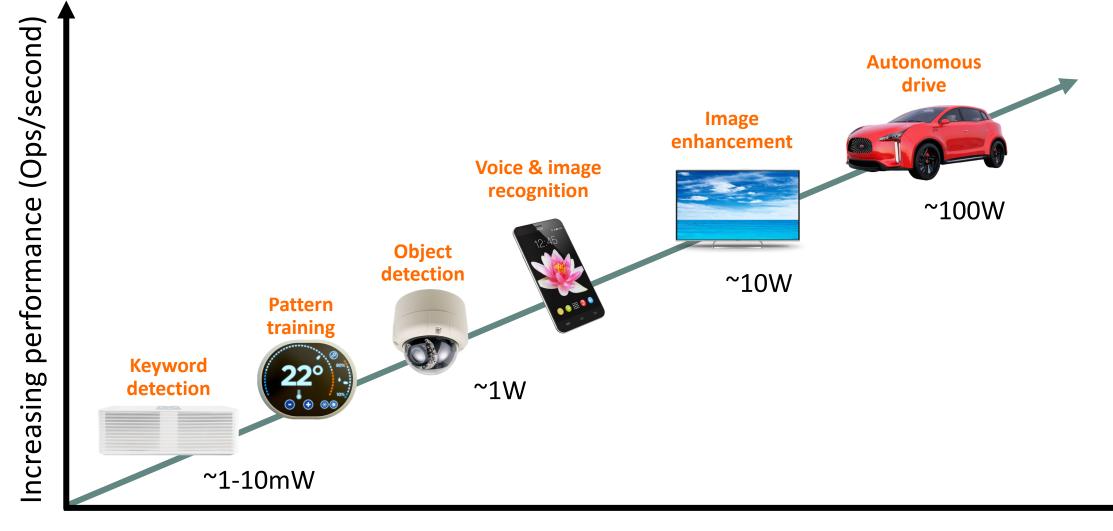
Towards end-to-end optimisation for ML at the edge

Rune Holm, Machine Learning Group, Arm

Why is ML Moving to the Edge?



Wide Range of "Edge" Inference Applications

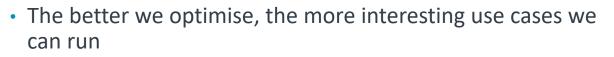


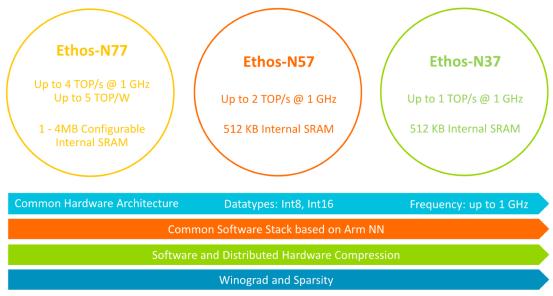
Increasing power and cost (silicon)

On-Device ML - Challenges

Tiny-edge device constraints for deploying ML algorithms

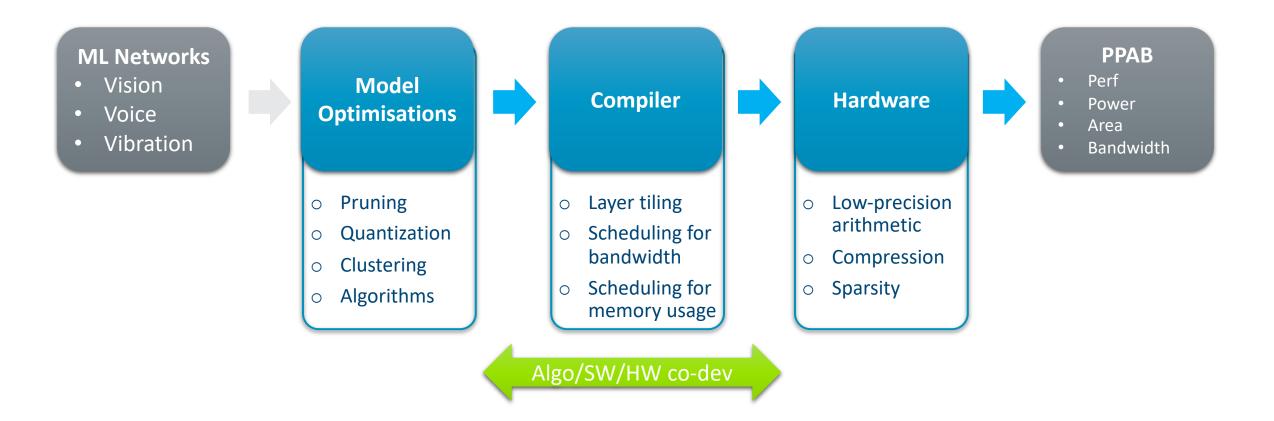
- Limited memory
 - SRAM (16 kB 1024 kB)
- Limited compute capability (100 MHz 1 GHz)
- Limited bandwidth
 - DRAM (2-16 GB/s)





On-Device ML solutions = Model Optimization \rightarrow Compiler \rightarrow Hardware

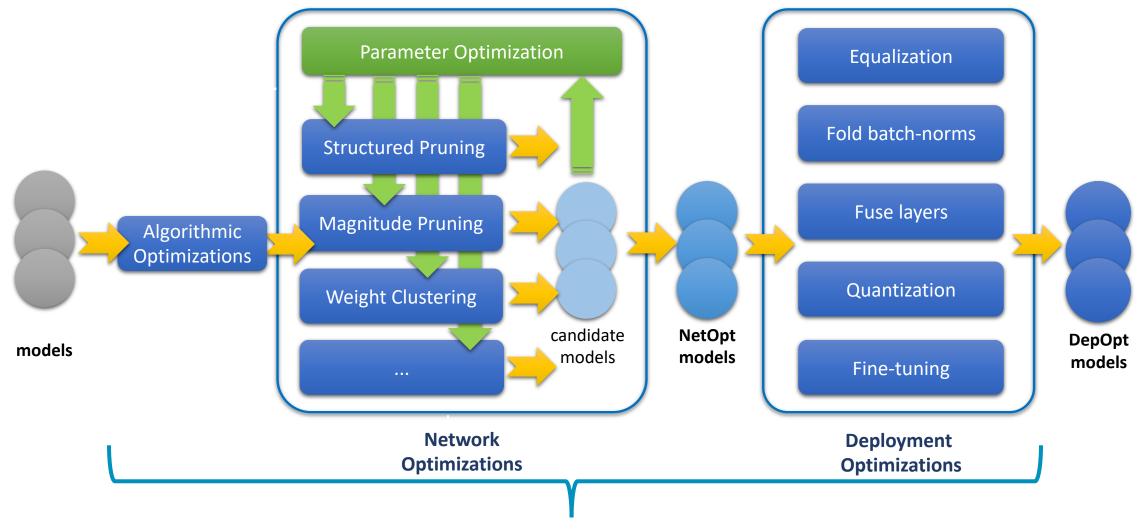
End-to-end optimisation



Model Optimisations

Nonconfidential © 2020 Arm Limited

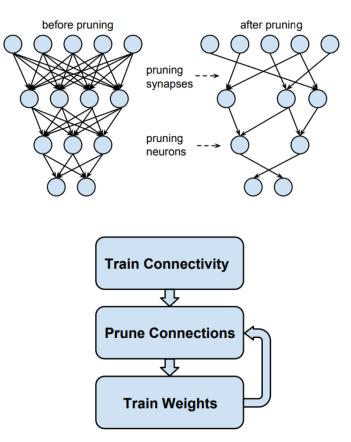
Overview of Model Optimizations



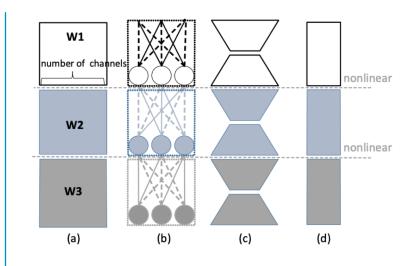
Collaborative Optimizations

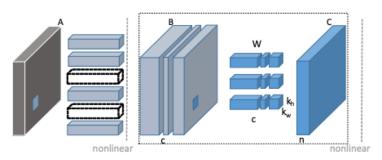
Overview of Pruning Techniques

Magnitude Pruning



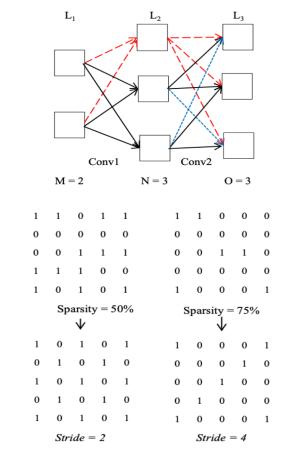
Channel Pruning





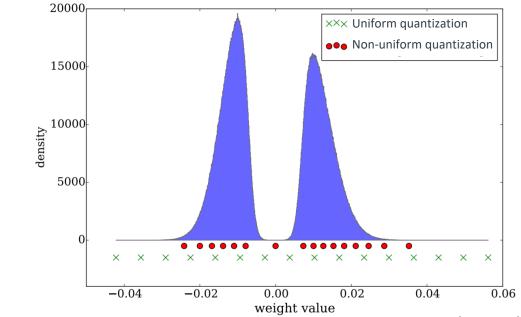
Yihui He et al. "*Channel Pruning for Accelerating Very Deep Neural Networks*" <u>arXiv: 1707.06168</u> (2017).

Structured Pruning

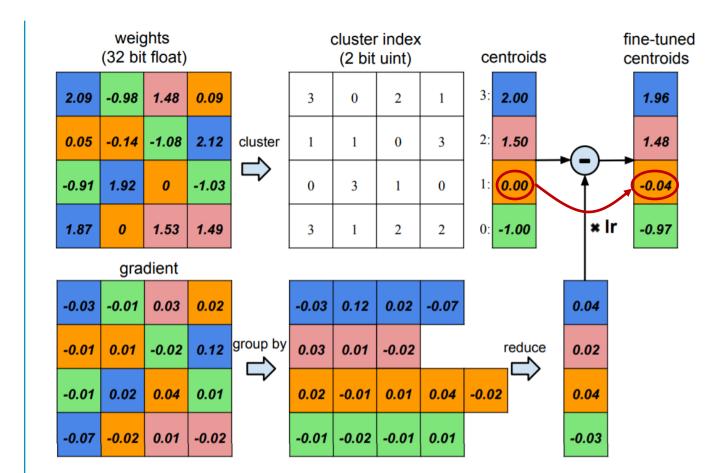


Sajid Anwar et al. "Structured Pruning of Deep Convolutional Neural Networks" <u>arXiv: 1512.08571</u> (2015).

Clustering: Non-uniform Quantization



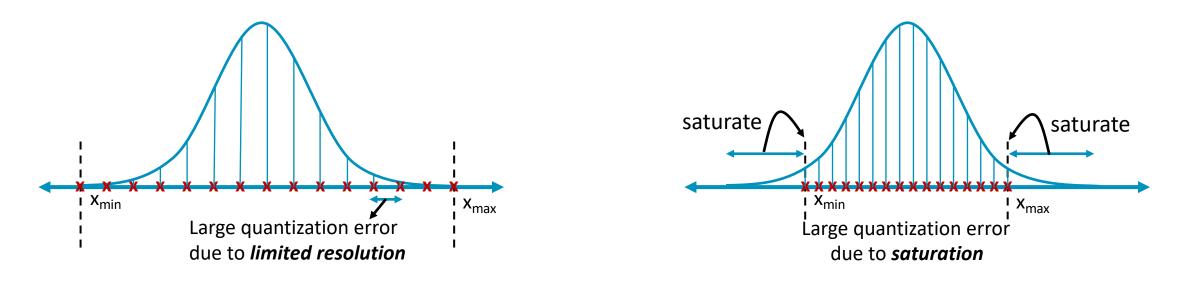
- Cluster n-weights to the k-centroids (n>>k).
- Use K-Means for initial clustering
- Enables weight compression
- Update centroids during retraining.
- Sparsity preservation



Song Han et al. "Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding" <u>arXiv: 1510.00149</u> (2015).

Uniform Quantization: Balancing Range vs. Resolution

Finding Optimal (min, max) for Quantization



Goal: Find (x_{min opt}, x_{max opt}) that minimizes quantization error

Solution: Signal-to-Quantization Noise Ratio (SQNR) as a metric to choose optimal quantization ranges.

Optimized Models

Networks	Optimization	Accuracy Loss/Increase		
Inception V3	pruned (50%), clustered (5-bit), quantized (8-bit)	1% loss		
Resnet 50	pruned (50%), clustered (5-bit), quantized (8-bit)	1.1% loss		
VGG16	pruned (50%), quantized (8-bit), clustered (3 clusters for last 3 layers)	0.3% increase		

* Post-training quantization applied. Accuracy further improves with fine-tuning.

- Application domains
 - image classification, object detection, speech recognition, etc.
- Reduce model size and improve compressibility
- Enable efficient on-device computation

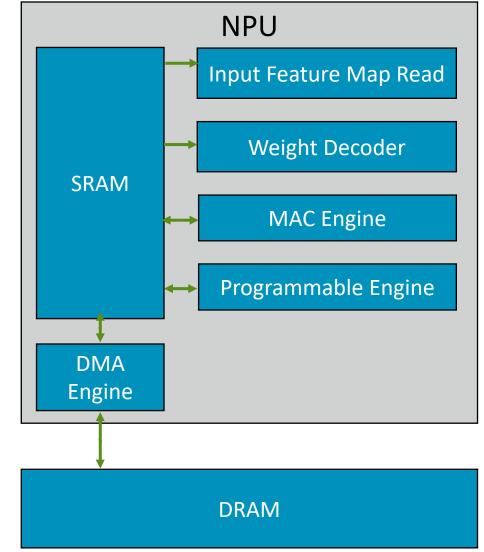
Neural Processor Unit hardware

arm

Nonconfidential © 2020 Arm Limited

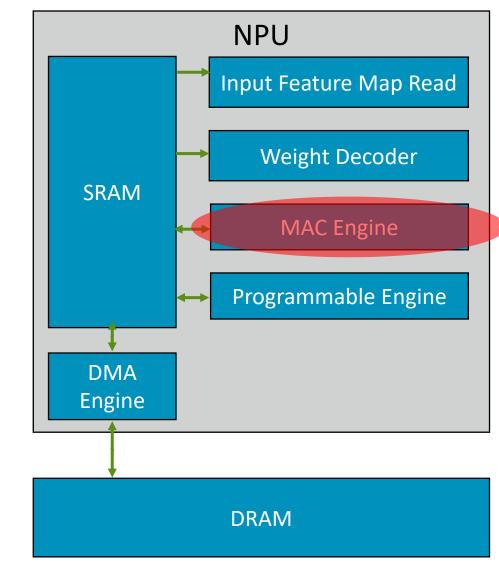
Key Ingredients for a Neural Processor Unit

- Efficient convolutions
- Bandwidth reduction mechanisms
- Static scheduling



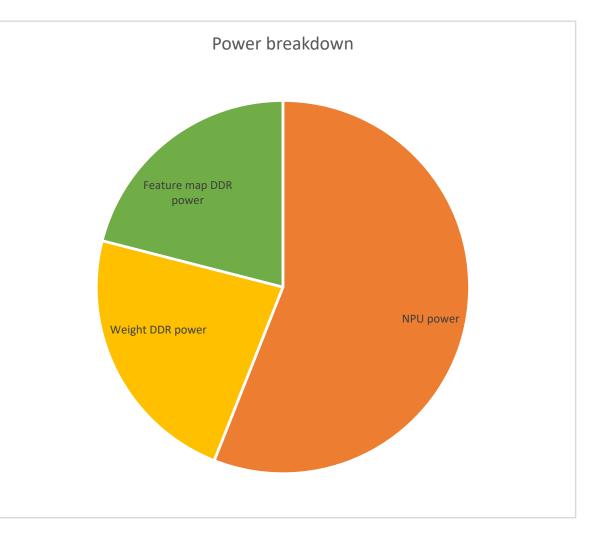
Efficient convolutions

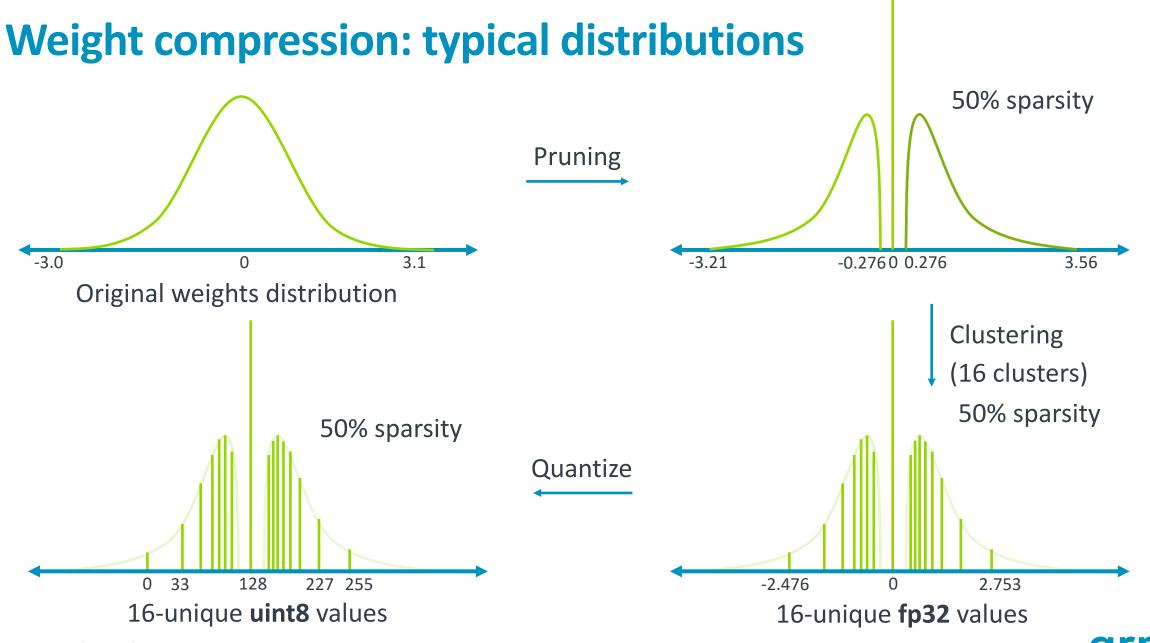
- Large amount of MAC units utilize the 100+:1 ALU:LS ratio of typical convolutions
- Quantisation
 - 8 bit integer operations for CNNs
 - More bits for RNNs
 - Fewer bits are possible for some layers
- Reuse of SRAM reads between MAC units, otherwise SRAM read power dominates
- Significant number of zeros (ReLU: >50% feature map zeros)
 - Opportunities for clock gating
 - Or even zero-skipping units



Importance of Weight and Feature Map Compression

- DRAM power can be nearly as high as the processor power itself
- Bandwidth reduction techniques important
 - Weight compression
 - Activation compression
 - Tiling





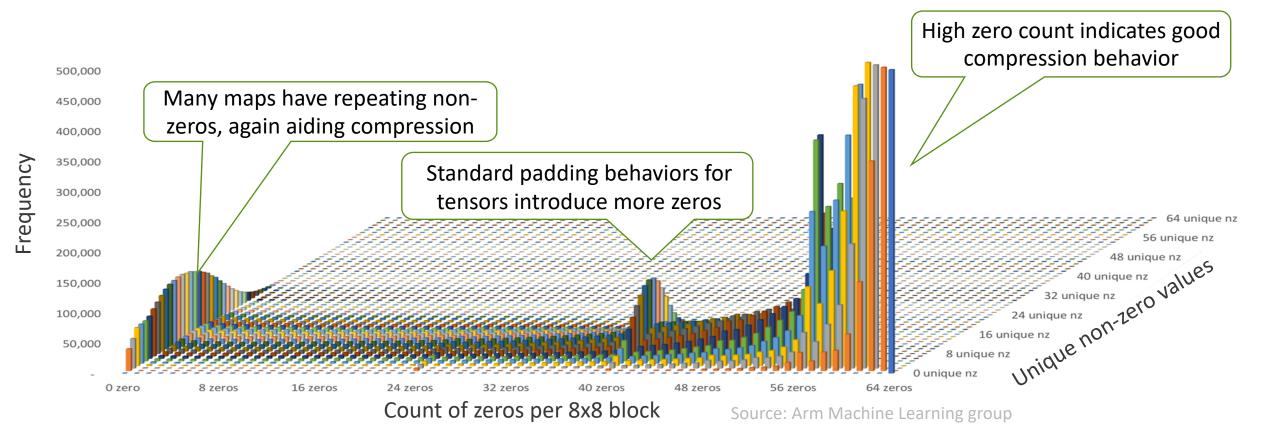
Lossless weight compression

- Unequal distribution provides compression opportunities, straight out of TF/PyTorch
- Pruning and clustering provide additional possibilities

• Multiple off-ramps for different levels of developer effort

Networks	FP32		Quantized		Quantized + compressed		Pruned, clustered, quantized, compressed		Savings
	Size	Bits/elem	Size	Bits/elem	Size	Bits/elem	Size	Bits/elem	
Inception V3	92 MB	32	23 MB	8	16 MB	5.6	12 MB	4.2	7.7x
Resnet 50	100 MB	32	25 MB	8	15 MB	4.8	12 MB	3.8	8.3x
VGG16	540 MB	32	135 MB	8	96 MB	5.7	32 MB	1.9	16.9x

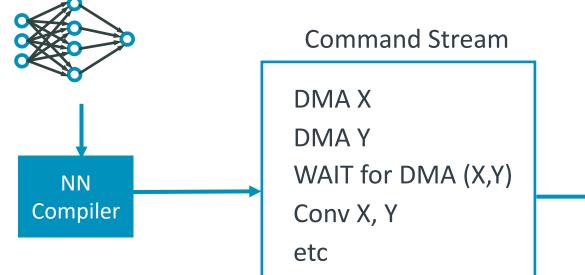
Lossless feature map compression

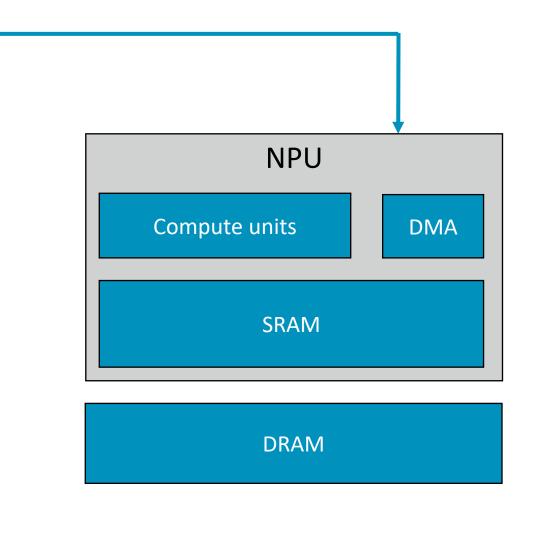


- Compression per 8x8 block
- 3.3x compression for Inception V3

Static Scheduling

- Neural networks are statically analyzable
- Compiler takes a NN and maps it to a command stream consumed by the ML processor





NPU Compiler

arm

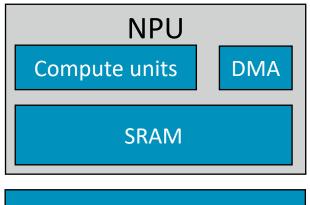
Nonconfidential © 2020 Arm Limited

Mapping neural networks onto NPU hardware

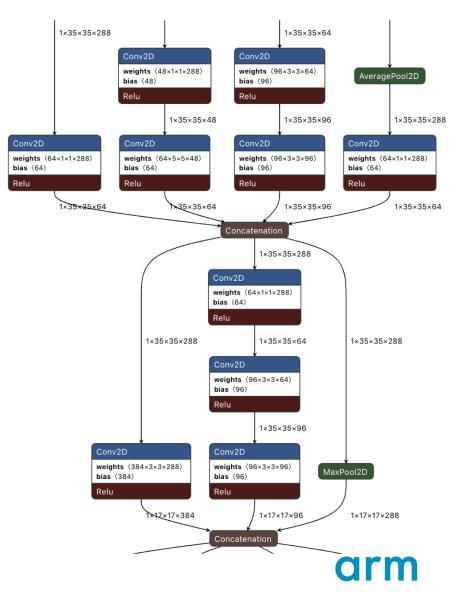
NPU: compute units paired with compiler-managed SRAM storage, with DMA units to move data in and out of limited-bandwidth DRAM

Neural network: operations and tensors, in a graph that can have complex connectivity

How do we decide what operations to schedule when, and which tensors or parts of tensors to keep in SRAM?



DRAM



Styles of compilation

Database query planners

Optimising high

access order)

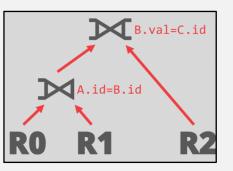
routines)

level flow (layout,

- Fixed low level flow

(pre-implemented

```
SELECT * FROM A
INNER JOIN B
ON A.id = B.id
INNER JOIN C
ON B.val = C.id
```



Try to do both at the same time? Infeasible compilation times

-

The NN compilation problem looks more like query planning than C compilation

A neural network compiler needs to match that

Inception v4

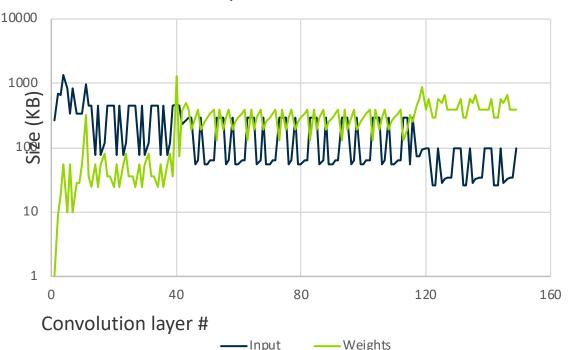
Scheduling to reduce bandwidth

Choose traversal order to minimize resident memory and bandwidth of a pass.

Inputs large and weights small: Outermost loop index – Output Y

Inputs small and weights large: Outermost loop index - Output Channel

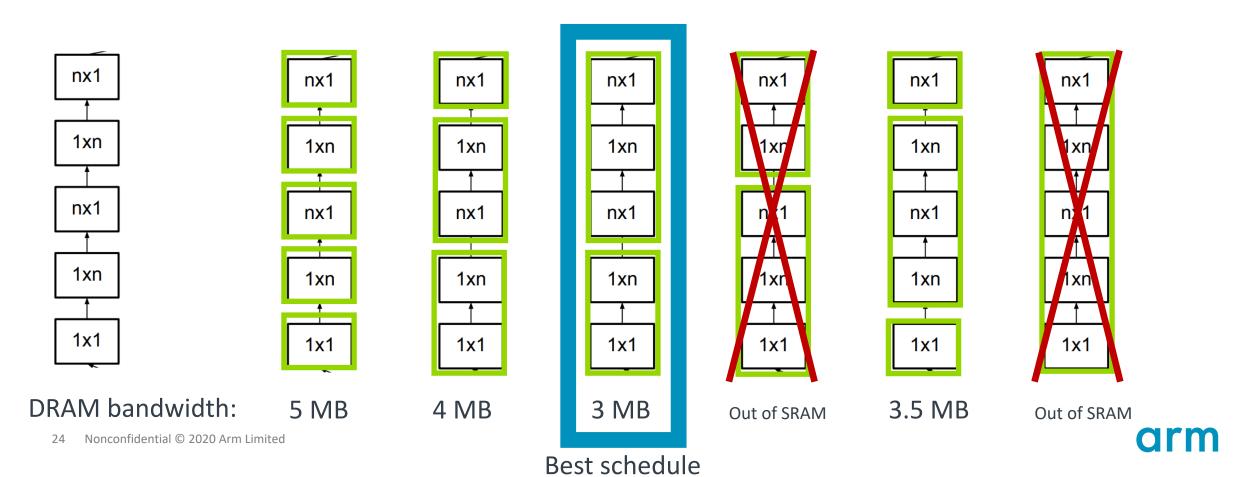
conv2d_inputs_large(input, output, weights):
for(output Y)
for(output channel)
for(output X)
for(input channel)
for(kernel XY)
MAC
write accumulator



conv2d_weights_large(input, output, weights):
for(output channel)
for(output Y)
for(output X)
for(input channel)
for(kernel XY)
MAC
write accumulator

Tiling together passes for better schedule

Tile together passes to avoid writing full intermediate feature maps when possible. Search for best schedule realizable within the amount of SRAM available.

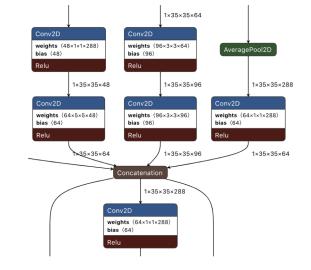


Schedule search

NNs can have complex topology

- a locally optimal choice not necessarily globally optimal

Search can be formulated as a dynamic programming problem, as long as you can use cost functions satisfying the Bellman equation.



Style	Database query planning paper			
Top-down search	Optimal Top-Down Join Enumeration (extended version)			
	David E. DeHaan Frank Wm. Tompa			
Bottom-up search	Dynamic Programming Strikes Back			
	Guido Moerkotte Thomas Neumann University of Mannheim Max-Planck Institute for Informatics Mannheim, Germany Saarbrücken, Germany moerkotte@informatik.uni-mannheim.de neumann@mpi-inf.mpg.de			
Top-down/bottom-up hybrid	A Call for Order in Search Space Generation Process of Query Optimization			
	Anisoara Nica Sybase, An SAP Company Waterloo, Ontario, Canada anica@sybase.com			

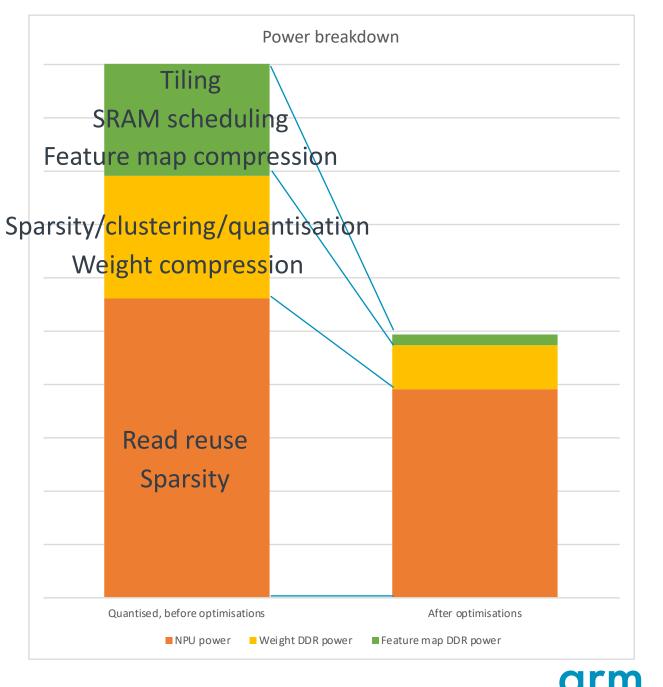
Bringing it all together

Done well, we can eliminate 95%+ of intermediate data traffic to DRAM

(CNNs, 1 MB SRAM, 299x299 input resolution)

Leaving us with:

- NN input read bandwidth
- NN output write bandwidth
- Compressed weight read bandwidth



Conclusion

We can enable big neural networks in small spaces

No "one weird trick" to solve it all at once

Rather, lots of painstaking engineering required: model optimisation, compiler, hardware

