
Nonconfidential © 2020 Arm Limited

Big neural networks in small spaces

Rune Holm, Machine Learning Group, Arm

Towards end-to-end optimisation for ML at the edge

Nonconfidential © 2020 Arm Limited2

Bandwidth ReliabilityPower SecurityCost Latency

Why is ML Moving to the Edge?

Nonconfidential © 2020 Arm Limited3

Keyword
detection

Pattern
training

Voice & image
recognition

Object
detection

Image
enhancement

Autonomous
drive

Increasing power and cost (silicon)

In
cr

ea
sin

g
pe

rfo
rm

an
ce

 (O
ps

/s
ec

on
d)

~100W

~1W

~1-10mW

~10W

Wide Range of “Edge” Inference Applications

Nonconfidential © 2020 Arm Limited4

On-Device ML - Challenges
Tiny-edge device constraints for deploying ML

algorithms

• Limited memory

– SRAM (16 kB - 1024 kB)

• Limited compute capability (100 MHz - 1 GHz)

• Limited bandwidth

– DRAM (2-16 GB/s)

• The better we optimise, the more interesting use cases we

can run

On-Device ML solutions = Model Optimization à Compiler à Hardware

Nonconfidential © 2020 Arm Limited5

End-to-end optimisation

ML Networks
• Vision
• Voice
• Vibration

Hardware

PPAB
• Perf
• Power
• Area
• Bandwidth

o Pruning

o Quantization

o Clustering

o Algorithms

o Low-precision
arithmetic

o Compression

o Sparsity

Algo/SW/HW co-dev

o Layer tiling

o Scheduling for
bandwidth

o Scheduling for
memory usage

CompilerModel
Optimisations

Nonconfidential © 2020 Arm Limited

Model Optimisations

Nonconfidential © 2020 Arm Limited7

Trained
models

NetOpt
models

DepOpt
models

Deployment
Optimizations

Parameter Optimization

candidate
models...

Weight Clustering

Magnitude Pruning

Structured Pruning

Algorithmic
Optimizations

Network
Optimizations

Fine-tuning

Quantization

Fuse layers

Fold batch-norms

Equalization

Collaborative Optimizations

Overview of Model Optimizations

Nonconfidential © 2020 Arm Limited8

Overview of Pruning Techniques
Magnitude Pruning Channel Pruning Structured Pruning

Song Han et al. “Deep Compression: Compressing Deep
Neural Networks with Pruning, Trained Quantization and
Huffman Coding” arXiv: 1510.00149 (2015).

Yihui He et al. “Channel Pruning for Accelerating Very
Deep Neural Networks” arXiv: 1707.06168 (2017).

Sajid Anwar et al. “Structured Pruning of Deep
Convolutional Neural Networks” arXiv: 1512.08571 (2015).

https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1707.06168
https://arxiv.org/abs/1512.08571

Nonconfidential © 2020 Arm Limited9

Clustering: Non-uniform Quantization

• Cluster n-weights to the k-centroids (n>>k).

• Use K-Means for initial clustering

• Enables weight compression

• Update centroids during retraining.

• Sparsity preservation
Song Han et al. “Deep Compression: Compressing Deep Neural Networks with Pruning, Trained
Quantization and Huffman Coding” arXiv: 1510.00149 (2015).

Uniform quantization

Non-uniform quantization

https://arxiv.org/abs/1510.00149

Nonconfidential © 2020 Arm Limited10

Uniform Quantization: Balancing Range vs. Resolution
Finding Optimal (min, max) for Quantization

Goal: Find (xmin_opt, xmax_opt) that minimizes quantization error

Solution: Signal-to-Quantization Noise Ratio (SQNR) as a metric to choose

optimal quantization ranges.

Large quantization error

due to limited resolution

xmin xmax

x x x x x x x x x x x x x x x

Large quantization error

due to saturation

xmin xmax

x x x x x x x xx x x x x x x x

saturate saturate

Nonconfidential © 2020 Arm Limited11

Optimized Models

Networks Optimization Accuracy Loss/Increase

Inception V3 pruned (50%), clustered (5-bit), quantized (8-bit) 1% loss

Resnet 50 pruned (50%), clustered (5-bit), quantized (8-bit) 1.1% loss

VGG16 pruned (50%), quantized (8-bit), clustered (3 clusters for last 3 layers) 0.3% increase

• Application domains
• image classification, object detection, speech recognition, etc.

• Reduce model size and improve compressibility
• Enable efficient on-device computation

* Post-training quantization applied. Accuracy further improves with fine-tuning.

Nonconfidential © 2020 Arm Limited

Neural Processor Unit
hardware

Nonconfidential © 2020 Arm Limited13

Key Ingredients for a Neural Processor Unit

• Efficient convolutions

• Bandwidth reduction mechanisms

• Static scheduling

NPU

DMA
Engine

MAC Engine

Input Feature Map Read

Weight Decoder
SRAM

Programmable Engine

DRAM

Nonconfidential © 2020 Arm Limited14

NPU

DMA

Engine

MAC Engine

Input Feature Map Read

Weight Decoder

SRAM

Programmable Engine

DRAM

Efficient convolutions
• Large amount of MAC units – utilize the 100+:1

ALU:LS ratio of typical convolutions

• Quantisation
• 8 bit integer operations for CNNs

• More bits for RNNs
• Fewer bits are possible for some layers

• Reuse of SRAM reads between MAC units, otherwise

SRAM read power dominates

• Significant number of zeros (ReLU: >50% feature map
zeros)
• Opportunities for clock gating

• Or even zero-skipping units

Nonconfidential © 2020 Arm Limited15

Importance of Weight and Feature Map Compression

• DRAM power can be nearly as high as the
processor power itself

• Bandwidth reduction techniques
important
• Weight compression
• Activation compression
• Tiling

NPU power
Weight DDR power

Feature map DDR
power

Power breakdown

Nonconfidential © 2020 Arm Limited16

Weight compression: typical distributions

Original weights distribution
0

Pruning

0-3.0 3.1

Clustering

(16 clusters)

-3.21 3.560.276-0.276

0-2.476 2.753

Quantize

1280 25522733

16-unique fp32 values16-unique uint8 values

50% sparsity

50% sparsity50% sparsity

Nonconfidential © 2020 Arm Limited17

Lossless weight compression

• Unequal distribution provides compression opportunities, straight out of TF/PyTorch

• Pruning and clustering provide additional possibilities

• Multiple off-ramps for different levels of developer effort

Networks FP32 Quantized Quantized +
compressed

Pruned, clustered,
quantized, compressed Savings

Size Bits/elem Size Bits/elem Size Bits/elem Size Bits/elem

Inception V3 92 MB 32 23 MB 8 16 MB 5.6 12 MB 4.2 7.7x

Resnet 50 100 MB 32 25 MB 8 15 MB 4.8 12 MB 3.8 8.3x

VGG16 540 MB 32 135 MB 8 96 MB 5.7 32 MB 1.9 16.9x

Nonconfidential © 2020 Arm Limited18

Lossless feature map compression

• Compression per 8x8 block
• 3.3x compression for Inception V3

Count of zeros per 8x8 block
Unique non-zero values

Fr
eq

ue
nc

y

Source: Arm Machine Learning group

High zero count indicates good
compression behavior

Standard padding behaviors for
tensors introduce more zeros

Many maps have repeating non-
zeros, again aiding compression

Nonconfidential © 2020 Arm Limited19

Static Scheduling
• Neural networks are statically

analyzable

• Compiler takes a NN and maps it

to a command stream consumed

by the ML processor

NN

Compiler

DMA X

DMA Y

WAIT for DMA (X,Y)

Conv X, Y

etc

Command Stream

NPU

DRAM

DMACompute units

SRAM

Nonconfidential © 2020 Arm Limited

NPU Compiler

Nonconfidential © 2020 Arm Limited21

Mapping neural networks onto NPU hardware

NPU: compute units paired with compiler-managed SRAM
storage, with DMA units to move data in and out of
limited-bandwidth DRAM

Neural network: operations and tensors, in a graph that
can have complex connectivity

How do we decide what operations to schedule when,
and which tensors or parts of tensors to keep in SRAM?

NPU

DRAM

DMACompute units

SRAM

Nonconfidential © 2020 Arm Limited22

Styles of compilation
C compilers

- Optimising low level
flow(instruction
scheduling)

- Fixed high level flow
(memory layout, access
order)

Database query planners

- Optimising high
level flow (layout,
access order)

- Fixed low level flow
(pre-implemented
routines)

Try to do both at the same time? Infeasible compilation times

The NN compilation problem looks more like query planning than C compilation

A neural network compiler needs to match that

SELECT * FROM A
INNER JOIN B
ON A.id = B.id

INNER JOIN C

ON B.val = C.id

int max
(int a, int b)
{
return b>a?b:a;

}

max(int, int):
cmp w1, w0
csel w0, w1, w0, ge
ret

Nonconfidential © 2020 Arm Limited23

Scheduling to reduce bandwidth

Choose traversal order to minimize resident
memory and bandwidth of a pass.

Inputs large and weights small: Outermost
loop index – Output Y

Inputs small and weights large: Outermost
loop index - Output Channel

1

10

100

1000

10000

0 40 80 120 160

Inception v4

Input Weights

Si
ze

 (K
B)

Convolution layer #

conv2d_weights_large(input, output, weights):
for(output channel)

for(output Y)
for(output X)

for(input channel)
for(kernel XY)

MAC
write accumulator

conv2d_inputs_large(input, output, weights):
for(output Y)

for(output channel)
for(output X)

for(input channel)
for(kernel XY)

MAC
write accumulator

Nonconfidential © 2020 Arm Limited24

Tiling together passes for better schedule
Tile together passes to avoid writing full intermediate feature maps when possible.

Search for best schedule realizable within the amount of SRAM available.

Out of SRAM Out of SRAM5 MB 4 MB 3.5 MB3 MB

Best schedule

DRAM bandwidth:

Nonconfidential © 2020 Arm Limited25

Schedule search
NNs can have complex topology

- a locally optimal choice not necessarily globally optimal

Search can be formulated as a dynamic programming problem, as
long as you can use cost functions satisfying the Bellman equation.

Style Database query planning paper

Top-down search

Bottom-up search

Top-down/bottom-up hybrid

Nonconfidential © 2020 Arm Limited26

Quantised, before optimisations After optimisations

Power breakdown

NPU power Weight DDR power Feature map DDR power

Bringing it all together

Done well, we can eliminate 95%+ of
intermediate data traffic to DRAM

(CNNs, 1 MB SRAM, 299x299 input
resolution)

Leaving us with:

• NN input read bandwidth

• NN output write bandwidth

• Compressed weight read bandwidth

Tiling

SRAM scheduling

Feature map compression

Sparsity/clustering/quantisation

Weight compression

Read reuse

Sparsity

Nonconfidential © 2020 Arm Limited27

Conclusion

We can enable big neural networks in small spaces

No ”one weird trick” to solve it all at once

Rather, lots of painstaking engineering required: model optimisation, compiler, hardware

ML Networks
• Vision
• Voice
• Vibration

Hardware

PPAB
• Perf
• Power
• Area
• Bandwidth

o Pruning

o Quantization

o Clustering

o Algorithms

o Low-precision
arithmetic

o Compression

o Sparsity

o Layer tiling

o Scheduling for
bandwidth

o Scheduling for
memory usage

CompilerModel
Optimisations

