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Machine Learning at Facebook’s Scale

TRANSLATION
. . . . NEWS FEED s
* Machine learning is used extensively
* Ranking posts in Newsfeed TAIZ\glENG

* Content understanding

* Object detection, segmentation, and tracking

* Speech recognition/translation

* From data centersto the edge Keypoints ~ Augmented Reality

Segmentation with Smart Camera




ML Execution Flow

Data Training Inference
Manipulation
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ML Model Training at Facebook

> weeks

Translation

days

hours

Training Time

minutes hours days months

Training Frequency

minutes




6+ Billion

Language Translations Per Day

Millions

Fake Accounts Removed Proactively

by Automated Systems Every Day



First, with Custom-Designed System Solutions

Facebook’s philosophy is to:
 Characterize and bucketize ML workloads of critical importance
« Custom-design server systems for the bucketized workloads

Storage Network Compute

DATA o 4 FEATURES Bammed TRAINING B EVALUATION B &

[—"——
|

Tioga Pass  Twin Lakes

Big Basin

Tioga Pass




Highly Scalable Infrastructure
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Outline

* Diversity of Machine Learning Workloads

* Neural Personalized Recommendation and System
Implications

* Machine Learning Inference at the Edge

e Conclusion




Diversity in ML Models at Facebook

Support Vector Gradient-Boosted Multi-Layer Convolutional Recurrent
Machines Decision Trees Perceptron Neural Nets Neural Nets
SVM GBDT \V | CNN RNN
Facer Sigma NEWSIREELe Facer Language
Translation
Ads
Speech Rec.
Search
. Content
Sigma Understanding

Hazelwood et al,, “Applied Machine learning at Facebook: A Datacenter Infrastructure Perspective”, HPCA 2018.
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Diversity in DNN Use Cases

Image
Classification

9
C.s &
&

o(\ Neural

o\ .
Q Machine Re
Translation

RNNs

Arithmetic Intensity

ML

Memory Intensity



Al Inference Cycle Breakdown

(7))
R
S 100 .
@) Non recommendation use cases
g 60 Recommendatton use cases Other RMCS
o RMC-3
£ 40
<
: § /1 RMC-1
= 0
0 50 100 150 200

Recommendation Models



ML Topics of Interest by the Research
Community

Machine Learning Use Cases

Recommendation
RNN ASR

RNN translator

Face ID : £ | \ .; Image Classification

Objéct segmentation

Object detection

https://www.sigarch.org/deep-learning-its-not-all-about-recognizing-cats-and-dogs/




Modeling Techniques Studied by the
Research Community

Machine Learning Networks Studied

Recommendation
Bayes .

RNNs




Neural Personalized
Recommendation Systems

The Use Case Challenge




An Example of Recommendation

User/Dense Features
Age: 25

oot oy o I
& Recommendation Models . ...
\-‘EEI I

Categorial/Sparse Features

Goods visited: 20 Books
Shops visited: 15 stores




What i1s Deep Learning Personalized
Recommendation?

Recommendation Inputs Embedding and Dense DNNs Model Outputs
s Dense Features Dense DNNs
> c
T : 9
= Sparse Embedding B
o — — = )
e Features Table - o X
2 £ S £ ~
E = ) +2 £ -
Q © b ) ©
- () (@) v O
T e 9 o c =
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£ = 3 L
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User/Dense Features 'E § 2 E\% I soffS
Age: 25 Sparse Embedding [\ | B - s SfsSE
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Goods visited: 20 Books £ Q @ Q Sl IR
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Diversity in Recommendation Models
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ML Operator Breakdown at Facebook
Datacenter Fleet

Bl Recommendation models Non-recommendation models

W
o

for n in (0, # batches) {
indices = [50, 23, 16, 17, 32]

lengths = [2, 3]
start = 0
for i in (0, # batches)
pool = lengths[i]
idx = indices [start,
start + pool]
voutput [i] = sum(&emb data,
&idx, start, pool)
start += pool

FC SLS Concat Conv BatchMM Activ. Recurrent Other

H o= NN
o ul Ul
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e
©
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e
n
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>
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X

o Ul

Gupta et al,, “The Architectural Implications of Facebook’'s DNN-based
Personalized Recommendation Systems,” HPCA-2020.



Embedding Table Accesses Incur High LLC
MPKI with Low Compute Intensity

(FLOPs/Byte)
LLC Miss Rate
(MPKI)
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SLS RNN FC Conv SLS RNN FC Conv

Gupta et al,, “The Architectural Implications of Facebook’'s DNN-based
Personalized Recommendation Systems,” HPCA-2020.



Major Categories of Recommendation Models
— RMC-1, RMC-2, RMC-3
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Size of Embedding Tables
Number of FC Parameters
=
o

* NCF from MLPerf v0.5 Training



Lower Latency on SKL with Large Batching

B BatchMatMul FC [ SparseLengthsSum
[ Concat Flatten

| |

RMC-1
|

Tail latency is heavily influenced by cache hierarchy
(HSW/BDL's incl. vs. SKL's excl.)
. | o W I
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DEVELOPING A RECOMMENDATION BENCHMARK FOR MLPERF TRAINING

AND INFERENCE
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Exploiting Parallelism Opportunities with
Deep Learning Frameworks

Yu Emma Wang
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DeepRecSys: A System for Optimizing End-To-End
At-scale Neural Recommendation Inference

Udit Gupta*®, Samuel Hsia*, Vikram Saraph's, Xiaodong Wang?®, Brandon Reagen?,
Gu-Yeon Wei*, Hsien-Hsin S. Lee®, David Brooks®, Carole-Jean Wu®

*Harvard University Facebook Inc.

ugupta@g.harvard.edu carolejeanwu@fb.com

RecNMP: Accelerating Personalized
Recommendation with Near-Memory Processing

Liu Ke, Udit Gupta, Carole-Jean Wu, Benjamin Youngjae Cho, Mark Hempstead, Brandon Reagen, Xuan Zhang
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More on the DNN-based Recommendation
Models

* Facebook Deep Learning Recommendation Model

(DLRM)
* https://qgithub.com/facebookresearch/dIrm

* At-Scale Infrastructure Implication on Neural
Recommendation Optimization
e MLPerf Training and Inference Benchmark Suites
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The iIs Not Found in the
Controlled Datacenter Environment.

> 3 20+ 20+ 10+

—
3
How do we
optimize system
S 7 .
designs for real-
. _ time ML inference?
FRAGMENTED SMARTPHONE ECOSYSTEM POSES UNIQUE CHALLENGES
7 FOR EDGE INFERENCE

Machine Learning at Facebook: Understanding Inference at the Edge. Wu et al. HPCA-2019.



Lay of the Land
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| Taking a Closer Look at Smartphones Facebook Runs on
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Lay of the Land

= = = FRAGMENTATION = -‘

| In 2018 ~28% of SoCs Use CPUs Designed in 2013 or Later
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72%

OF THE WORLD’S CELL PHONES
ARE MORE THAN 7 YEARS OLD




Lay of the Land

= = = PERFORMANCE = = -.

| The Performance Difference between a Mobile CPU and GPU is Narrow

10
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SoC GPU flops/CPU flops




Lay of the Land

= = = PROGRAMMABILITY = = ‘

| Programmability is a Primary Roadblock for Using Mobile Co-processors
* OpenCL, OpenGL ES, Vulkan for Android GPUs
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Loading o0
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Quantitative Approach to Edge Inference Designs

| State of the Practice for Mobile Inference is Using CPUs

A 7] T

FRAGMENTATION PERFORMANCE PROGRAMMABILITY
There are more than 2000+ e Performance difference between e Programmability is a major road
different SoCs but mobile mobile CPUs and GPUs is block for co-processors (e.g.
CPUs show little diversity narrow Android GPUs)
with ARM’s Cortex A53

dominating the market




More Detall on Inference at the Edge

* Machine Learning at Facebook: Understanding Inference at the Edge. Wu
et al. HPCA-20109.

» Horizonal integration for efficient mobile inference B M‘F ' F

e . i : i VR T
 Vertical integration for efficient AR/VR inference 6 » 5 -- m ﬂ
* Variability matters (not just in the datacenter) ;_;:,hm «

lib_caffe2.s
C2/PT JNI/C++ API

C2/PT Runtime

Backends

ARM/x86, GPU, DSP, NPU
Y Y

Inferences per Second

<
QNNPACK
Metal APIs
(i0S)

CPU

e.g., Cortex-A/NEON

GPU
e.g., Mali/Adreno

* Group/Depth-Wise Conv.



Making Inference on DSPs Leads to Consistent Performance

CPU thermal throttling
causes sudden FPS drop

The primary reason for using
co-processors and accelerators
are for lower power and
more stable performance
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At-Scale Infrastructure Challenges for
Machine Learning

Diversity of ML Models in Facebook’s Datacenter i
f ,m, DeepRecSys

A Variety of Neural Personalized Recommendation
Models Dominate Al Inference Cycles (5.8 MLPerf Benchmark Suite

Legacy Devices Matter; Performance Differences at the
Edge Are Huge

Iit'is important to consider full-picture and system effects for
efficient, practical at-scale ML infrastructure designs

K. Hazelwood et al., “Applied Machine Learning at Facebook: A Datacenter Infrastructure Perspective,” HPCA 2018.
C.-J. Wu et al., “Machine Learning at Facebook: Understanding Inference at the Edge,” HPCA 2019.
U. Gupta et al., “The Architectural Implications of Facebook’s DNN-based Personalized Recommendation,” HPCA 2020.






